

23rd Canadian Conference on Computational Geometry, 2011

2

CCCG 2011, Toronto ON, August 10–12, 2011

Preface
This volume contains the papers presented at the 23rd Canadian Conference on Computational Geometry (CCCG’11),
held in Toronto on August 10-12, 2011, in a special collaboration with the Fields Institute. These papers are also
available electronically at http://www.cccg.ca and at http://2011.cccg.ca.

We are grateful to the Program Committee for agreeing to a rigorous review process. They, and other reviewers,
thoroughly examined all submissions and provided excellent feedback.

Out of 105 papers submitted, 83 were accepted. We thank the authors of all submitted papers, all those who have
registered, and in particular Noga Alon, William Steiger and Emo Welzl for presenting plenary lectures.

We also thank those who provided valuable information that helped with this year’s organization. Organizers
from the past ten years, and in particular Stephane Durocher and Jason Morrison from last year, answered many
questions. The same can be said for several friends and colleagues who happened to be located near the organizers
during critical decision times. Included in this group are Sébastien Collette, who also prepared these proceedings, as
well as Perouz Taslakian and Narbeh Bedrossian who designed the cover and conference logo.

Last but not least, we are grateful for sponsorship from the Fields Institute, AARMS, and the Mprime Network
(formerly MITACS). Their financial support has helped us to cover many costs and waive the registration fees for
over 90 students and postdocs. Fields also permitted us to rely on their ever helpful staff (in particular Alison
Conway, Natalie Dytyniak, and Andrea Yeomans) for planning, registration and on-site assistance.

Greg Aloupis and David Bremner
(Conference Organizers)

Copyrights of the articles in these proceedings are maintained by their respective authors.
More information about this conference and about previous and future editions is available online at

http://cccg.ca

3

23rd Canadian Conference on Computational Geometry, 2011

Invited Speakers

• Noga Alon (Tel Aviv U.) – Erdős memorial lecture

• William Steiger (Rutgers U.)

• Emo Welzl (ETH Zurich)

Organizing Committee

• Greg Aloupis (U. Libre de Bruxelles)

• David Bremner (U. New Brunswick)

Program Committee

• Greg Aloupis (U. Libre de Bruxelles)

• Binay Bhattacharya (Simon Fraser U.)

• Therese Biedl (U. Waterloo)

• Prosenjit Bose (Carleton U.)

• David Bremner (U. New Brunswick)

• Paz Carmi (Ben-Gurion University of the Negev)

• Timothy Chan (U. Waterloo)

• Sébastien Collette (U. Libre de Bruxelles)

• Mirela Damian (Villanova U.)

• Erik D. Demaine (MIT)

• Antoine Deza (McMaster U.)

• Vida Dujmović (Carleton U.)

• Adrian Dumitrescu (U. Wisconsin-Milwaukee)

• Stephane Durocher (U. Manitoba)

• Will Evans (U. British Columbia)

• Joachim Gudmundsson (National ICT, Australia)

• Maarten Löffler (U. California, Irvine)

• Anna Lubiw (U. Waterloo)

• Henk Meijer (Roosevelt Academy)

• Jason Morrison (U. Manitoba)

• Asish Mukhopadhyay (U. Windsor)

• Sheung-Hung Poon (National Tsing Hua U.)

• Michiel Smid (Carleton U.)

• Jack Snoeyink (UNC Chapel Hill)

• Diane Souvaine (Tufts U.)

• Godfried Toussaint (McGill U.)

• Jorge Urrutia (U. Nacional Autónoma de México)

• Marc van Kreveld (Utrecht U.)

• Caoan Wang (Memorial U. Newfoundland)

4

CCCG 2011, Toronto ON, August 10–12, 2011

Other Reviewers

• Md. Shafiul Alam

• Olivier Devillers

• Anne Driemel

• Muriel Dulieu

• Fabrizio Frati

• Minghui Jiang

• Marcin Kaminski

• Matya Katz

• Matias Korman

• Stefan Langerman

• Chung-Shou Liao

• Dave Millman

• Pat Morin

• Satish Chandra Panigrahi

• Suneeta Ramaswami

• Noushin Saeedi

• Maria Saumell

• Marc Scherfenberg

• Rodrigo Silveira

• Matthew Skala

• Darren Strash

• Shin-Ichi Tanigawa

• Perouz Taslakian

• Lowell Trott

• Mikael Vejdemo-Johansson

• Antoine Vigneron

• David R. Wood

• Stefanie Wuhrer

• Ke Yi

• Norbert Zeh

5

23rd Canadian Conference on Computational Geometry, 2011

Contents

Invited speaker 1 - Wednesday Aug.10 9:40-10:40 13

Geometric Partitioning
William Steiger, Rutgers University 13

Session 1α - Wednesday Aug.10 11:00-12:00 14

Convex blocking and partial orders on the plane
Canek Peláez, José Miguel Díaz-Báñez, Marco A. Heredia, J. Antoni Sellarès, Jorge Urrutia
and Inmaculada Ventura 15

On k-Gons and k-Holes in Point Sets
Birgit Vogtenhuber, Oswin Aichholzer, Ruy Fabila-Monroy, Clemens Huemer, Jorge Urrutia,
Marco A. Heredia, Hernan Gonzalez-Aguilar, Thomas Hackl and Pavel Valtr 21

Hardness Results for Two-Dimensional Curvature-Constrained Motion Planning
David Kirkpatrick, Irina Kostitsyna and Valentin Polishchuk 27

Session 1β - Wednesday Aug.10 11:00-12:00 33

Optimizing Budget Allocation in Graphs
Boaz Benmoshe, Eran Omri and Michael Elkin 33

Bottleneck Steiner Tree with Bounded Number of Steiner Vertices
A. Karim Abu-Affash, Paz Carmi and Matthew Katz 39

Connecting Two Trees with Optimal Routing Cost
Mong-Jen Kao, Bastian Katz, Marcus Krug, Der-Tsai Lee, Martin Nöllenburg, Ignaz Rutter
and Dorothea Wagner 43

Session 1γ - Wednesday Aug.10 11:00-12:00 48

Minimum Many to Many Matchings for Computing the Distance Between Two Sequences
David Rappaport, Godfried Toussaint and Mustafa Mohamad 49

Staying Close to a Curve
Anil Maheshwari, Jörg-Rüdiger Sack, Kaveh Shahbaz and Hamid Zarrabi-Zadeh 55

Isotopic Frchet Distance
Erin Chambers, David Letscher, Tao Ju and Lu Liu 59

Session 2α - Wednesday Aug.10 13:30-15:10 65

Edge Unfoldings of Platonic Solids Never Overlap
Takashi Horiyama and Wataru Shoji 65

Development of Curves on Polyhedra via Conical Existence
Joseph O’Rourke and Costin Vilcu 71

Common Developments of Several Different Orthogonal Boxes
Zachary Abel, Erik Demaine, Martin Demaine, Hiroaki Matsui, Günter Rote and Ryuhei Uehara 77

Edge-Unfolding Orthogonal Polyhedra is Strongly NP-Complete
Zachary Abel and Erik D. Demaine 83

6

CCCG 2011, Toronto ON, August 10–12, 2011

A Topologically Convex Vertex-Ununfoldable Polyhedron
Zachary Abel, Erik D. Demaine and Martin L. Demaine 89

Session 2β - Wednesday Aug.10 13:30-15:10 92

Isoperimetric Triangular Enclosure with a Fixed Angle
Prosenjit Bose and Jean-Lou De Carufel 93

Robust approximate assembly partitioning
Elisha Sacks, Victor Milenkovic and Yujun Wu 99

Approximation Algorithms for a Triangle Enclosure Problem
Karim Douieb, Matthew Eastman, Anil Maheshwari and Michiel Smid 105

Finding the Maximum Area Parallelogram in a Convex Polygon
Kai Jin and Kevin Matulef 111

Illumination problems on translation surfaces with planar infinities
Nikolay Dimitrov 117

Session 2γ - Wednesday Aug.10 13:30-15:10 123

Detecting VLSI Layout and Connectivity Errors in a Query Window
Ananda Swarup Das, Prosenjit Gupta and Kannan Srinathan 123

Finding Maximum Density Axes Parallel Regions for Weighted Point Sets
Ananda Swarup Das, Prosenjit Gupta, Kannan Srinathan and Kishore Kothapalli 129

Bichromatic Line Segment Intersection Counting in O(n sqrt(log n)) Time
Timothy M. Chan and Bryan T. Wilkinson 135

Sequential Dependency Computation via Geometric Data Structures
Gruia Calinescu and Howard Karloff 141

Point Location in Well-Shaped Meshes Using Jump-and-Walk
Jean-Lou De Carufel, Craig Dillabaugh and Anil Maheshwari 147

Open Problems Session - Wednesday Aug.10 16:00-17:00 153

Open Problems from CCCG 2010
Erik D. Demaine and Joseph O’Rourke 153

Session 3α - Thursday Aug.11 9:00-10:20 157

Where and How Chew’s Second Delaunay Refinement Algorithm Works
Alexander Rand 157

Probabilistic Bounds on the Length of a Longest Edge in Delaunay Graphs of Random Points in
d-Dimensions
Esther M. Arkin, Antonio Fernandez Anta, Joseph S. B. Mitchell and Miguel A. Mosteiro 163

Outerplanar graphs and Delaunay triangulations
Md. Ashraful Alam, Igor Rivin and Ileana Streinu 169

Toward the Tight Bound of the Stretch Factor of Delaunay Triangulations
Ge Xia and Liang Zhang 175

7

23rd Canadian Conference on Computational Geometry, 2011

Session 3β - Thursday Aug.11 9:00-10:20 181

Rigid components in fixed-lattice and cone frameworks
Matthew Berardi, Brent Heeringa, Justin Malestein and Louis Theran 181

Orientations of Simplices Determined by Orderings on the Coordinates of their Vertices
Emeric Gioan, Kevin Sol and Gérard Subsol 187

Pushing the boundaries of polytopal realizability
David Bremner, Antoine Deza, William Hua and Lars Schewe 193

On the generation of topological (nk)-configurations
Jürgen Bokowski and Vincent Pilaud 199

Session 3γ - Thursday Aug.11 9:00-10:20 205

Sliding labels for dynamic point labeling
Andreas Gemsa, Martin Nöllenburg and Ignaz Rutter 205

A Discrete and Dynamic Version of Klee’s Measure Problem
Hakan Yildiz, John Hershberger and Subhash Suri 211

Kinetically-aware Conformational Distances in Molecular Dynamics
Chen Gu, Xiaoye Jiang and Leonidas Guibas 217

Collinearities in Kinetic Point Sets
Benjamin Lund, George Purdy, Justin Smith and Csaba Toth 223

Session 4α - Thursday Aug.11 10:50-11:50 228

Convexifying Polygons Without Losing Visibilities
Oswin Aichholzer, Greg Aloupis, Erik D. Demaine, Martin L. Demaine, Vida Dujmovic, Ferran Hurtado,
Anna Lubiw, Günter Rote, André Schulz, Diane L. Souvaine and Andrew Winslow 229

Expansive Motions for d-Dimensional Open Chains
Sarah Eisenstat and Erik D. Demaine 235

Making triangulations 4-connected using flips
Prosenjit Bose, Dana Jansens, André Van Renssen, Maria Saumell and Sander Verdonschot 241

Session 4β - Thursday Aug.11 10:50-11:50 248

Approximating the Medial Axis by Shooting Rays: 3D Case
Svetlana Stolpner, Kaleem Siddiqi and Sue Whitesides 249

An Incremental Algorithm for High Order Maximum Voronoi Diagram Construction
Khuong Vu and Rong Zheng 255

Approximating a Motorcycle Graph by a Straight Skeleton
Stefan Huber and Martin Held 261

Session 4γ - Thursday Aug.11 10:50-11:50 267

Small Octahedral Systems
Grant Custard, Antoine Deza, Tamon Stephen and Feng Xie 267

Combinatorics of Minkowski decomposition of associahedra
Carsten Lange 273

8

CCCG 2011, Toronto ON, August 10–12, 2011

A Fourier-Theoretic Approach for Inferring Symmetries
Xiaoye Jiang, Jian Sun and Leonidas Guibas 279

Invited speaker 2 - Thursday Aug.11 13:30-14:30 285

List coloring and Euclidean Ramsey Theory
Noga Alon, Tel Aviv University 285

Session 5α - Thursday Aug.11 16:05-17:25 287

Rigidity-Theoretic Constructions of Integral Fary Embeddings
Timothy Sun 287

Drawing some planar graphs with integer edge-lengths
Therese Biedl 291

Approximating the Obstacle Number for a Graph Drawing Efficiently
Deniz Sarioz 297

A Note on Minimum-Segment Drawings of Planar Graphs
Stephane Durocher, Debajyoti Mondal, Rahnuma Islam Nishat and Sue Whitesides 303

Session 5β - Thursday Aug.11 16:05-17:25 309

Characterization of Shortest Paths on Directional Frictional Polyhedral Surfaces
Gutemberg Guerra Filho and Pedro J. De Rezende 309

Memory-Constrained Algorithms for Shortest Path Problem
Tetsuo Asano and Benjamin Doerr 315

Finding Optimal Geodesic Bridges Between Two Simple Polygons
Amit Bhosle and Teofilo Gonzalez 319

Approximating Geodesic Distances on 2-Manifolds in R3

Christian Scheffer and Jan Vahrenhold 325

Session 5γ - Thursday Aug.11 16:05-17:25 331

An In-Place Priority Search Tree
Minati De, Anil Maheshwari, Subhas Nandy and Michiel Smid 331

Orthogonal Range Search using a Distributed Computing Model
Pouya Bisadi and Bradford Nickerson 337

On Finding Skyline Points for Range Queries in Plane
Anil Kishore Kalavagattu, Ananda Swarup Das, Kishore Kothapalli and Kannan Srinathan 343

Space-efficient Algorithms for Empty Space Recognition among a Point Set in 2D and 3D
Minati De and Subhas Nandy 347

Session 6α - Friday Aug.12 9:00-10:20 354

Realizing Site Permutations
Stephane Durocher, Saeed Mehrabi, Debajyoti Mondal and Matthew Skala 355

Establishing Strong Connectivity using Optimal Radius Half-Disk Antennas
Greg Aloupis, Mirela Damian, Robin Flatland, Matias Korman, Ozgur Ozkan,
David Rappaport and Stefanie Wuhrer 361

9

23rd Canadian Conference on Computational Geometry, 2011

Euclidean Movement Minimization
Mohammadamin Fazli, Mohammadali Safari, Nima Anari, Pooya Jalaly Khalilabadi
and Mohammad Ghodsi 367

A Randomly Embedded Random Graph is Not a Spanner
Abbas Mehrabian 373

Session 6β - Friday Aug.12 9:00-10:20 375

Approximation Algorithms for the Discrete Piercing Set Problem for Unit Disks
Minati De, Gautam Das and Subhas Nandy 375

New Lower Bounds for the Three-dimensional Orthogonal Bin Packing Problem
Chia-Hong Hsu and Chung-Shou Liao 381

The 22 Simple Packing Problem
André Van Renssen and Bettina Speckmann 387

On covering of any point configuration by disjoint unit disks
Yosuke Okayama, Masashi Kiyomi and Ryuhei Uehara 393

Session 6γ - Friday Aug.12 9:00-10:20 398

Improving Accuracy of GNSS Devices in Urban Canyons
Boaz Ben-Moshe, Elazar Elkin, Harel Levi and Ayal Weissman 399

Geometry-Free Polygon Splitting
Sherif Ghali 405

Robustness of topology of digital images and point clouds
Peter Saveliev 411

Planar Pixelations and Shape Reconstruction
Brandon Rowekamp 417

Invited speaker 3 - Friday Aug.12 11:00-12:00 423

Counting Simple Polygonizations of Planar Point Sets
Emo Welzl, ETH Zurich 423

Session 7α - Friday Aug.12 13:30-15:10 424

Algorithms for Bivariate Majority Depth
Dan Chen and Pat Morin 425

Exact Algorithms and APX-Hardness Results for Geometric Set Cover
Elyot Grant and Timothy Chan 431

Enumerating Minimal Transversals of Geometric Hypergraphs
Khaled Elbassioni, Imran Rauf and Saurabh Ray 437

Helly Numbers of Polyominoes
Jean Cardinal, Hiro Ito, Matias Korman and Stefan Langerman 443

Session 7β - Friday Aug.12 13:30-15:10 449

Open Guard Edges and Edge Guards in Simple Polygons
Csaba Toth, Godfried Toussaint and Andrew Winslow 449

10

CCCG 2011, Toronto ON, August 10–12, 2011

Computing k-Link Visibility Polygons in Environments with a Reflective Edge
Salma Sadat Mahdavi, Ali Mohades and Bahram Kouhestani 455

Edge-guarding Orthogonal Polyhedra
Giovanni Viglietta, Nadia M. Benbernou, Erik D. Demaine, Martin L. Demaine, Anastasia Kurdia,
Joseph O’Rourke, Godfried Toussaint and Jorge Urrutia 461

Wireless Localization within Orthogonal Polyhedra
Tobias Christ and Michael Hoffmann 467

Weak Visibility Queries in Simple Polygons
Mojtaba Nouri Bygi and Mohammad Ghodsi 473

Session 7γ - Friday Aug.12 13:30-15:10 479

The Possible Hull of Imprecise Points
Jeff Sember and William Evans 479

A Slow Algorithm for Computing the Gabriel Graph with Double Precision
David L. Millman and Vishal Verma 485

An Experimental Analysis of Floating-Point Versus Exact Arithmetic
Martin Held and Willi Mann 489

On Inducing n-gons
Marjan Abedin, Ali Mohades and Marzieh Eskandari 495

Weak Matching Points with Triangles
Fatemeh Panahi, Ali Mohades, Mansoor Davoodi and Marzieh Eskandari 501

11

23rd Canadian Conference on Computational Geometry, 2011

12

CCCG 2011, Toronto ON, August 10–12, 2011

Geometric Partitioning

William Steiger ∗

The well-known Ham Sandwich Theorem says that given d nice sets in Rd, there exists a hyperplane that splits
each of them into two parts of equal measure. When the sets are finite, there is the computational problem of finding
such a plane.

This is a starting point for other facts about when, and how various sets can or cannot be split in various ways.
Several old and new geometric partitioning results of this kind will be discussed.

∗Department of Computer Science, Rutgers University, NJ, USA. steiger@cs.rutgers.edu

CCCG 2011, Toronto ON, August 10–12, 2011

13

23rd Canadian Conference on Computational Geometry, 2011

14

CCCG 2011, Toronto ON, August 10–12, 2011

Convex blocking and partial orders on the plane1

José Miguel Díaz-Báñez∗ Marco A. Heredia† Canek Peláez† J. Antoni Sellarès‡ Jorge Urrutia§
Inmaculada Ventura∗

Abstract

Let C = {c1, . . . , cn} be a collection of disjoint closed
convex sets in the plane. Suppose that one of them,
say c1, represents a valuable object we want to uncover,
and we are allowed to pick a direction α ∈ [0, 2π) along
which we can translate (remove) the elements of C one
at a time while avoiding collisions. In this paper we find
an O(n2 log n) time algorithm that finds a direction α
that minimizes the number of elements of C that have
to be removed before we can reach c1.

1 Introduction

Consider a set C = {c1, . . . , cn} of pairwise disjoint
closed bounded convex sets, and a direction α ∈ [0, 2π);
e.g., the vertical upwards direction. It is well known
that the elements of C can be translated (removed) one
at a time by moving them upwards while avoiding colli-
sions with other elements of C [7, 10]. Suppose that c1
is a special object that we want to uncover, and that we
are allowed to choose a direction α along which we can
remove the elements of C one at a time while avoiding
collisions.

We want to find the direction α that minimizes the
number of elements we need to remove before we reach
c1. In Figure 1, it is easy to see that if we remove the
elements of C in the direction α2, four elements of C
have to be removed before we reach c1, while for α1 we
only need to remove two.

This problem can be seen as a variant of the problem
known in computational geometry as the separability
problem [2, 5, 9]. It is also related to spherical orders
determined by light obstructions [6].

In this paper we present an O(n2 log n) time algo-
rithm to solve this problem, assuming that for every
pair of elements of C we can compute a tangent line to

∗Departamento Matemática Aplicada II, Universidad de
Sevilla, Spain.
†Posgrado en Ciencia e Ingeniería de la Computación, Univer-

sidad Nacional Autónoma de México, Mexico.
‡Institut d’Informàtica i Matemàtica Aplicada, Universitat de

Girona, Spain.
§Instituto de Matemáticas, Universidad Nacional Autónoma

de México, Mexico.
1A shorter version of this paper appeared in the XIV Span-

ish Meeting on Computational Geometry held June 27-30, 2011.
Corresponding author: canek@ciencias.unam.mx

Figure 1: A set C of convex sets.

both of them in constant time.

2 Preliminaries

Let X be a finite set, and < a relation on the elements
of X that satisfies the following conditions: (a) If x < y
and y < z then x < z (transitivity), and (b) x ≮ x
(antireflexivity). The set X together with < is called a
partial order, and it is usually denoted as P (X,<).

Given x, y ∈ X, we say that y covers x if x < y and
there is no element w ∈ X such that x < w < y. The
diagram of P (X,<) is the directed graph whose vertices
are the elements of X and there is an oriented edge from
x to y if y covers x. We say that the diagram of P (X,<)
is planar if it can be drawn on the plane in such a way
that the elements of X are represented by points on
the plane, no edges of G intersect, except perhaps at a
common endpoint, and if y is a cover of x, then they
are joined by a monotonically increasing oriented edge
from x to y (in the vertical direction).

Given two elements x, y ∈ X, a supremum of them is
an element w ∈ X such that x < w, y < w, and for any
other element z ∈ X such that x < z and y < z we have
that w < z. An infimum is defined in a similar way,
except that we require w to be w < x and w < y. An
ordered set is called a lattice if any two elements have
a unique supremum and infimum. A lattice is called a
planar lattice if its diagram is planar. Finally, a finite
order P (<,X) is called a truncated planar lattice if by

CCCG 2011, Toronto ON, August 10–12, 2011

15

23rd Canadian Conference on Computational Geometry, 2011

adding to P (<,X) both a least and a greatest element
the resulting order is a planar lattice.

Let C = {c1, . . . , cn} be a set of disjoint closed convex
sets on the plane. Given two convex sets ci and cj in C,
we say that cj is an upper cover of ci in the direction
α (for short, an α-cover) if the following conditions are
satisfied:

1. There is at least one directed line segment with
direction α starting at a point in ci and ending at
a point in cj .

2. Any directed line segment with direction α starting
at a point in ci and ending at a point in cj does not
intersect any other element of C.

Observe that if cj is an α-cover of ci, then ci is an
(α + π)-cover of cj . We say that cj blocks ci in the
direction α, written as ci ≺α cj , if there is a sequence
ci = cσ(1), cσ(2), . . . , cσ(k) = cj of elements of C such
that cσ(r+1) is an α-cover of cσ(r), r = 1, . . . , k− 1 (Fig-
ure 2).

Figure 2: cj is an α-cover of cσ(3) and ci ≺α cj .

Clearly if ci ≺α cj and cj ≺α ck, then ci ≺α ck, and
thus C together with the blocking relation ≺α is a par-
tial order on C, which we will denote as P (≺α, C). It is
known that P (≺α, C) is a truncated planar lattice [10].

The diagram of such truncated lattice has the ele-
ments of C as vertices and there is an oriented edge
from ci to cj if cj is an α-cover of ci (Figure 3). The
elements of C that we need to remove in the α direction
before an element ci of C is reached are those convex
sets cj such that ci ≺α cj , the set containing these ele-
ments will be called the α-upper set of ci, or for short,
the α-up-set of ci in α. Thus our problem reduces to
that of finding the direction α such that the cardinality
of the α-up-set of c1 is minimized.

Observe that as α changes, so does P (≺α, C). In
fact, it is easy to find families of convex sets for which
P (≺α, C) changes a quadratic number of times. We
proceed now to prove some properties of P (≺α, C), 0 ≤
α < 2π which will allow us to find an α such that the
α-up-set of c1 has minimum cardinality in O(n2 log n)
time.

Given a convex set c, a line ` is called a supporting
line of c if it intersects c, and c is contained in one of the

closed half planes determined by `. Given two convex
sets ci and cj , a line ` is called an internal tangent of
them if ` supports them, and ci is contained in one of
the closed half planes determined by `, and cj in the
other. A set of directions I is called an interval, if there
are α, β ≤ 2π such that the elements of I are angles of
the form α+ δ, 0 ≤ δ ≤ β, addition taken mod 2π.

Figure 3: Diagram of P (≺α, C) for α = π/2.

Lemma 1 Let ci and cj be two convex sets in C. The
set of directions in which cj blocks ci is a non-empty
interval Ii,j.

Proof. Clearly a direction in which cj does not block ci
always exists. Without loss of generality we will assume
that such direction is 0.

Let θ1 be the first direction greater than 0 where
ci ≺θ1 cj : Such θ1 exists because cj always blocks ci
in a set of directions enclosed by the two internal tan-
gents defined by ci and cj .

Let θ2 be the last direction greater than θ1 such that
for any γ ∈ [θ1, θ2] ci ≺γ cj . If there is no other direction
γ ∈ [θ2, 2π] where ci ≺γ cj then our result holds. Sup-
pose then that there are θ3 and θ4 such that i) θ2 < θ3,
ii) θ3 < θ4 < 2π, and for γ ∈ [θ3, θ4], ci ≺γ cj , and iii)
for any γ ∈ [θ2, θ3], ci 6≺γ cj , (Figure 4).

Clearly θ3 − θ2 < π, or θ1 − θ4 < π, where the sec-
ond angle is taken modulo 2π. Assume without loss of
generality that θ3 − θ2 < π, and that 0 < θ2 <

π
2 < θ3,

for otherwise we can rotate C appropriately until this
condition holds.

Let γ = π
2 , then ci 6≺γ cj . Since ci ≺θ2 cj , we

know that there is a sequence ci = cσ(1), cσ(2), . . . ,
cσ(k) = cj such that cσ(r+1) is a θ2-cover of cσ(r) for
r = 1, . . . , k−1. For the same reason, there is a sequence
ci = cω(1), cω(2), . . . , cω(m) = cj such that cω(r+1) is a θ3-
cover of cω(r) for r = 1, . . . ,m − 1. The two sequences
differ in at least one element, otherwise our gap would
not exist.

Let `1 and `2 be the supporting lines of ci in the γ
direction: Since ci 6≺γ cj , cj cannot intersect the interior

23rd Canadian Conference on Computational Geometry, 2011

16

CCCG 2011, Toronto ON, August 10–12, 2011

Figure 4: We can assume that θ3 − θ2 < π.

of the strip bounded by `1 and `2. Suppose first that cj
is to the left of this strip (Figure 5).

Figure 5: cj to the left of `1 and `2.

Since cσ(2) is a θ2-cover of ci = cσ(1), there is a line
segment parallel to the direction θ2 with endpoints in
ci = cσ(1) and cσ(2). Similarly for cσ(r) and cσ(r+1),
there is a line segment parallel to the direction θ2 with
endpoints in cσ(r) and cσ(r+1), r ∈ {2, . . . , k − 1}. Each
cσ(r), r ∈ {2, . . . , k − 1}, contains two endpoints from
two of this segments, and this endpoints can be joined
with a line segment totally contained in cσ(r).

This forms a connected curve that starts in ci and
ends in cj , passing through all the elements of the se-
quence. This curve consist of two types of line segments:
Those parallel to the θ2 direction, and those completely
contained in the elements of the sequences. But θ2 < γ,
so the first type always goes to the right. And the sec-
ond type may go to the left, but contained in an element
of the sequence (Figure 6).

The only way such a curve exists, is if at least one
element in {cσ(1), cσ(2), . . . , cσ(k)} intersects the strip

Figure 6: A sequence of θ2-covers from cj to ci, and the
curve that passes through the elements of it.

bounded by `1 and `2, which implies that ci ≺γ cj , a
contradiction!

If we suppose that cj is to the right of `2, a
contradiction arises, but using the sequence ci =
cω(1), cω(2), . . . , cω(m) = cj in the θ3 direction. There-
fore, the directions where cj blocks ci form a non-empty
interval. �

It follows from the proof of Lemma 1 that the end-
points of the intervals Ii,j are defined by the internal
tangents of pairs of elements in C. The next observa-
tion follows:

Observation 1 There are at most 4
(
n
2

)
combinatori-

ally distinct values of α where P (≺α, C) may change;
these changes occur in slopes generated by internal tan-
gents between pairs of elements of C.

We can then reduce the search space for α0 to the set
D = {γ1, . . . , γ4(n

2)
} containing these directions. For the

sake of clarity, we are supposing that no two internal
tangents are parallel and that the elements of D are
ordered as γi < γj if i < j.

We observe that D can be calculated in O(n2 log n) if
we suppose that the internal tangents between any two
convex sets in C can be determined in constant time.
For each γk we can store the indexes i, j of the convex
sets that define the internal tangent.

3 α-triangulations

Our problem can be solved by calculating the truncated
lattices P (≺γi , C) for every direction γi ∈ D, and then
obtaining the γi-up-set of c1 in each one of them. Select-
ing a γi ∈ D which produces a smallest γi-up-set yields

CCCG 2011, Toronto ON, August 10–12, 2011

17

23rd Canadian Conference on Computational Geometry, 2011

an optimal solution. Since calculating the truncated lat-
tice has a cost of O(n log n) time for each of the 4

(
n
2

)

directions in D [10], this results in an O(n3 log n)-time
algorithm to solve our problem.

To improve this complexity, we will show that we need
to calculate from scratch only one truncated lattice. For
the remaining directions of D the corresponding trun-
cated lattice (more precisely, the α-triangulation, to be
described shortly) can be updated in constant time.

For each direction α ∈ [0, 2π), we extend P (≺α, C)
to a planar lattice P ′(≺α, C) by adding two special ver-
tices, a source s and a sink t, i.e. for each ci ∈ C,
s ≺α ci ≺α t. For a fixed direction we can picture t as a
very large convex set standing above all of C, and s as a
very large convex set standing below all of C (Figure 7).

Figure 7: The lattice P ′(≺α, C) for α = π/2.

For each α, we now extend P ′(≺α, C) to a triangula-
tion Tα, that is, a planar graph where every internal face
is a triangle, which we will call an α-triangulation, by
adding oriented edges avoiding creating oriented cycles
(Figure 8).

By Observation 1 there are at most 4
(
n
2

)
triangula-

tions, and we want to know how Tα changes as α goes
from γk to γk+1. We remark that there are cases when
the triangulations Tγk and Tγk+1

are the same (Figure 9).
The next observation will be used:

Observation 2 Let α, β be such that P (≺α, C) 6=
P (≺β , C), then there is at least one pair of elements
ci, cj ∈ C such that cj is an α-cover of ci in P (≺α, C),
and it is not a β-cover of ci in P (≺β , C), or vice versa;
that is, the set of edges of the diagram of P (≺α, C)
is different from the set of edges of the diagram of
P (≺β , C). Moreover, if α, β ∈ D, then ci and cj de-
fine α or β.

Figure 8: The triangulation Tα for α = π
2
.

Figure 9: The triangulations Tγk and Tγk+1 are the same,
since the partial order does not change.

It turns out that the difference between the Tγk and
Tγk+1

triangulations is an arc flip, as defined in [8]:

Lemma 2 Given the triangulation Tγk , the triangula-
tion Tγk+1

can be obtained from Tγk (if they are differ-
ent) by flipping an arc in Tγk . Such an arc flip either
adds or removes an arc between the convex sets ci and
cj that define γk+1.

Proof. Suppose that P (≺γk , C) and P (≺γk+1
, C) are

different. By Observation 2 two cases arise:

1. There are two elements ci and cj of C that generate
γk such that cj is a γk-cover of ci, but it is not a
γk+1-cover of ci.

2. The elements ci and cj that generate γk+1 become
comparable in P (≺γk+1

, C), and one of them, say
cj is a γk+1-cover of ci.

In case 1 when we flip the edge connecting ci to cj in
Tγk they become not comparable in Tγk+1

. Furthermore

23rd Canadian Conference on Computational Geometry, 2011

18

CCCG 2011, Toronto ON, August 10–12, 2011

it is easy to see that there is a line parallel to the γk+1

direction that separates ci from cj , and that this line
intersects two elements of C ∪ {s, t}− {ci, cj}. This are
the two vertices that become adjacent as we flip the edge
connecting ci and cj . Thus Tγk+1

can be obtained from
Tγk in constant time.

In the second case the inverse occurs. �

In Figure 10 and Figure 11 we can see an example of
the arc flip performed in the proof of Lemma 2.

Figure 10: The arc ci → cj before flipping.

Figure 11: The arc ca → cb after flipping.

4 An O(n2 log n) algorithm to find α0

Theorem 3 Finding α0 can be done in O(n2 log n).

To prove Theorem 3 we need the following result:

Lemma 4 For any element ci, as we go from γ1 to
γ4(n

2)
, the up-set of ci changes O(n) times.

Proof. By Lemma 1, the set of directions for which cj
blocks ci is an interval Ii,j . This means that for each
cj 6= ci in C, as we go from γ1 to γ4(n

2)
, cj starts to

block ci once and stops blocking it once. Therefore the
up-set of ci changes a linear number of times, that is
any cj ∈ C enters and exits it once. �

We proceed now with the proof of Theorem 3.

Proof. We first generate the set D of critical direc-
tions in O(n2) time. Observe that this can be done
in quadratic time since we are assuming that the tan-
gents generated by two elements of C can be calculated
in constant time. Next we sort the elements of D in
O(n2 log n) time. When we store each γi ∈ D we also
store the elements of C that generate it. Next we con-
struct Tγ1 in O(n log n) time, coloring the vertices of the
triangulation as follows:

• We color red the elements of C in the γ1-up-set of
c1, including c1.

• We color blue the remaining elements of C.

At this stage, we also calculate the number of incom-
ing arcs to each ci whose initial vertex is blue, or red.
Such a coloring can be done in O(n) time. Let ci and cj
be the elements that generated γk+1. It is easy to check
that if cj was not a γk-cover of ci or vice versa, then
P (≺γk , C) = P (≺γk+1

, C) and the up-set of c1 does not
change. Suppose then that cj was a γk-cover of ci. By
Lemma 2, P (≺γk , C) 6= P (≺γk+1

, C) and we can obtain
Tγk+1

from Tγk in constant time. The crucial part of our
procedure is how to update the up-set of c1.

Suppose first that the elements ci and cj that deter-
mine γk+1 are different from c1.

Several cases arise.

1. c1 ≺γk ci, c1 ≺γk cj , and ci is not comparable
to cj in P (≺γk , C), but ci is comparable to cj in
P (≺γk+1

, C). In this case, the up-set of c1 remains
unchanged.

2. c1 ≺γk ci, c1 ≺γk cj , and ci is comparable to cj
in P (≺γk , C), but ci is not comparable to cj in
P (≺γk+1

, C). In this case the up-set of c1 may
change. Suppose that cj is a γk-cover of ci. Ob-
serve that ci remains in the up-set of c1, but cj may
not belong to it anymore. In this case the arc from
ci to cj is flipped. If at least one arc from a red
element cr to cj remains then cj remains in the up-
set of c1, otherwise the up-set of c1 changes, and is
recalculated in linear time.

CCCG 2011, Toronto ON, August 10–12, 2011

19

23rd Canadian Conference on Computational Geometry, 2011

3. ci and cj do not belong to the up-set of c1. In this
case, the up-set of c1 does not change.

4. ci ≺γk cj and ci is not in the up-set of c1 in
P (≺γk , C). The up-set of c1 remains unchanged
in P (≺γk+1

, C).

5. ci 6≺γk cj , cj is not in the up-set of c1, and ci belongs
to the up-set of c1. In this case, cj is an γk+1-cover
of ci and the up-set of c1 changes. Therefore we
must recalculate the up-set of c1.

Each time we recalculate the up-set of c1, we also re-
calculate for each ci the number of incoming arcs start-
ing at a blue or red point.

A similar case analysis is carried out when ci = c1,
the details are left to the reader. By Lemma 4, we have
to update the up-set of c1 only a linear number of times,
and thus the whole process takes O(n2 log n) time. This
proves Theorem 3. �

5 Conclusions

In this paper we studied a variant of the classic separa-
bility problem. Given a set C = {c1, . . . , cn} of pairwise
disjoint closed convex sets, find a direction αminimizing
the number of elements of C that have to be removed,
in the direction α, before we reach a particular element
c1 ∈ C. We presented an O(n2 log n)-time algorithm
to solve this problem, under the assumption that the
internal tangents between any two sets of C can be cal-
culated in constant time: For example, this is the case
for circles and ellipses, convex polygons with a constant
number of sides, and shapes defined by a constant num-
ber of Bézier curves.

We suspect that the complexity of our problem is
Ω(n2 log n). In particular any approach that has to sort
the elements of D may in general take O(n2 log n) time
unless some extra restrictions on the elements of C are
imposed. For example for circles, we can sort the slopes
generated by them in quadratic time (using the dual
space), improving the complexity of our algorithm to
O(n2). The details of this will be given in the full ver-
sion of this paper.

It is easy to see that if we want to calculate for each
ci ∈ C the number of elements that have to be removed
before we can remove ci, this can be done in O(n3).

6 Acknowledgments

Research of José Miguel Díaz-Báñez and Inmacu-
lada Ventura partially supported by Spanish Govern-
ment under Project MEC MTM2009-08652; research
of Marco A. Heredia and Canek Peláez partially sup-
ported by CONACYT of Mexico; research of J. An-
toni Sellarès partially supported by the Spanish MCI

grant TIN2010-20590-C02-02; and research of Jorge Ur-
rutia partially supported by SEP-CONACYT of Mex-
ico, Proyecto 80268, and by Spanish Government under
Project MEC MTM2009-08652.

References

[1] M. Abellanas, S. Bereg, F. Hurtado, A. García Olaverri,
D. Rappaport, J. Tejel. Moving coins. Computational
Geometry, 34(1):35-48, 2006.

[2] N. G. de Bruijn. Aufgaben 17 and 18 (in Dutch). Nieuw
Archief voor Wikskunde, 2(954):67.

[3] B. Chazelle, T. Ottmann, E. Soisalon-Soininen, D.
Wood. The Complexity and Decidability of Separation
ICALP 119-127, 1984.

[4] A. Dumitrescu, M. Jiang. On Reconfiguration of Disks
in the Plane and Related Problems WADS 254-265,
2009.

[5] L. Fejes-Tóth and A. Heppes. Über stabile Kör-
persysteme (in German). Compositio Mathematica,
15(2):119–126, 1963.

[6] S. Foldes, I. Rival and J. Urrutia. Light sources ob-
structions and spherical orders. Discrete Mathematics,
102(1):13–23, 1992.

[7] L. J. Guibas and F. F. Yao. On translating a set of
rectangles. In Proceedings of the Twelfth Annual ACM
Symposium on Theory of Computing, 154–160, 1980.

[8] F. Hurtado, M. Noy and Jorge Urrutia. Flipping Edges
in Triangulations. Discrete & Computational Geometry,
22(3):333-346, 1999.

[9] G. Toussaint. Movable separability of sets. Computa-
tional Geometry, North-Holland, Amsterdam, 335–375,
1985.

[10] I. Rival and J. Urrutia. Representing orders on the
plane by translating convex figures. Order, 4(4):319–
339, 1988.

23rd Canadian Conference on Computational Geometry, 2011

20

CCCG 2011, Toronto ON, August 10–12, 2011

On k-Gons and k-Holes in Point Sets

Oswin Aichholzer∗ Ruy Fabila-Monroy† Hernán González-Aguilar ‡ Thomas Hackl∗

Marco A. Heredia § Clemens Huemer¶ Jorge Urrutia‡ Pavel Valtr‖ Birgit Vogtenhuber∗

Abstract

We consider a variation of the classical Erdős-Szekeres
problems on the existence and number of convex k-gons
and k-holes (empty k-gons) in a set of n points in the
plane. Allowing the k-gons to be non-convex, we show
bounds and structural results on maximizing and mini-
mizing their numbers. Most noteworthy, for any k and
sufficiently large n, we give a quadratic lower bound
for the number of k-holes, and show that this number
is maximized by sets in convex position. We also pro-
vide an improved lower bound for the number of convex
6-holes.

1 Introduction

Let S be a set of n points in general position in the
plane. A k-gon is a simple polygon spanned by k points
of S. A k-hole is an empty k-gon; that is, a k-gon which
contains no points of S in its interior.

Around 1933 Esther Klein raised the following ques-
tion which was (partially) answered in the classical pa-
per by Erdős and Szekeres [12] in 1935: “Is it true
that for any k there is a smallest integer g(k) such
that any set of g(k) points contains at least one con-
vex k-gon?” As observed by Klein, g(4) = 5, and
Kalbfleisch et al. [19] solved the more involved case of
g(5) = 9. The case k = 6 was only solved as recently as
2006 by Szekeres and Peters [23]. They showed that
g(6) = 17 by an exhaustive computer search. The
well known Erdős–Szekeres Theorem [12] states that
g(k) is finite for any k. The current best bounds are
2k−2 + 1 ≤ g(k) ≤

(
2k−5
k−2

)
+ 1 for k ≥ 5; see [13, 24].

∗Institute for Software Technology, University of Technology,
Graz, Austria, [oaich|thackl|bvogt]@ist.tugraz.at
†Departamento de Matemáticas, Cinvestav, Mexico City, Mex-

ico, ruyfabila@math.cinvestav.edu.mx
‡Instituto de Matemáticas, Universidad Na-

cional Autónoma de México, Mexico City, Mexico,
[hernan|urrutia]@matem.unam.mx
§Posgrado en Ciencia e Ingenieŕıa de la Computación, Uni-

versidad Nacional Autónoma de México, Mexico City, Mexico,
marco@ciencias.unam.mx
¶Departament de Matemàtica Aplicada IV, Uni-

versitat Politècnica de Catalunya, Barcelona, Spain,
clemens.huemer@upc.edu
‖Department of Applied Mathematics and Institute for Com-

puter Science (ITI), Charles University, Prague, Czech Republic

Erdős and Guy [11] posed the following generaliza-
tion: “What is the least number of convex k-gons de-
termined by any set S of n points in the plane?” The
trivial solution for the case k = 3 is

(
n
3

)
. But for convex

4-gons this question is related to the search for the rec-
tilinear crossing number c̄r(S) of S; see the next section
for details.

In 1978 Erdős [9] raised the following question for
convex k-holes: “What is the smallest integer h(k) such
that any set of h(k) points in the plane contains at
least one convex k-hole?” As had been observed by
Esther Klein, every set of 5 points determines a convex
4-hole, and 10 points always contain a convex 5-hole, a
fact proved by Harborth [17]. However, in 1983 Hor-
ton showed that there exist arbitrarily large sets of
points containing no convex 7-hole [18]. It took al-
most a quarter of a century after Horton’s construc-
tion to answer the existence question for 6-holes. In
2007/08 Nicolás [21] and independently Gerken [16]
proved that every sufficiently large point set contains
a convex 6-hole.

Erdős also proposed the following variation of the
problem [10]. “What is the least number hk(n) of
convex k-holes determined by any set of n points in
the plane?” We know by Horton’s construction that
hk(n) = 0 for k ≥ 7. Table 1 shows the current best
lower and upper bounds for k = 3 . . . 6; see [4, 5, 7, 14]
and Section 6.

n2 −O(n)≤ h3(n) ≤ 1.6196n2 + o(n2)
n2

2
−O(n)≤ h4(n) ≤ 1.9397n2 + o(n2)
3bn−4

8
c ≤ h5(n) ≤ 1.0207n2 + o(n2)

bn−1
858
c − 2≤ h6(n) ≤ 0.2006n2 + o(n2)

Table 1: Bounds on the number hk(n) of convex k-holes.

In this paper we generalize the above questions by
allowing k-gons and k-holes to be non-convex. Thus
whenever we refer to a (general) k-gon or k-hole, unless
it is specifically stated to be convex or non-convex, it
could be either. We remark that in some related litera-
ture, k-holes are assumed to be convex.

A set of k points in convex position obviously spans
precisely one convex k-hole. In contrast, a point set
might admit exponentially many different polygoniza-

CCCG 2011, Toronto ON, August 10–12, 2011

21

23d Canadian Conference on Computational Geometry, 2011

numbers of k-gons numbers of k-holes

convex non-convex general convex non-convex general
min max min max min max min max

k=4
c̄r(n)
Θ(n4)

3
(
n
4

)
−3c̄r(n)

Θ(n4)

(
n
4

)

Θ(n4)

3
(
n
4

)

−2c̄r(n)
Θ(n4)

≥ n2

2
−O(n)

≤ 1.9397n2+o(n2)
Θ(n2) [5, 7]

≤ n3

2
−O(n2)

≥ n3

2
−O(n2 logn)

Θ(n3) [3]

≥ 5
2
n2−O(n)

≤ n3

2
+O(n2)

Ω(n2) [3], O(n3) [Sec. 5]

(
n
4

)

Θ(n4) [3]

k=5 Θ(n5) [6]
10

(
n
5

)

−2(n−4)c̄r(n)
Θ(n5) [4]

(
n
5

)

Θ(n5) [4]
Θ(n5)
[Sec. 2]

≥ 3bn−4
8
c

≤ 1.0207n2+o(n2)
Ω(n) [4], O(n2) [5]

≤ n!/(n−4)!
Θ(n4) [Sec. 4]

≥ 17n2−O(n)

≤O(n
7
2)

Ω(n2) [4], O(n
7
2) [Sec. 5]

(
n
5

)

Θ(n5) [4]

k≥6 Θ(nk) [6]
Θ(nk)
[Sec. 2]

(
n
k

)

Θ(nk)
[Sec. 2]

Θ(nk)
[Sec. 2]

k=6:≥ bn−1
858
c − 2

O(n2) [5]
Ω(n) [Sec. 6]

k≥7: ∅ [18]

≤ n!/(n−k+1)!

Θ(nk−1) [Sec. 4]

≥ n2−O(n)

≤O(n
k+2
2)

Ω(n2), O(n
k+2
2) [Sec. 5]

(
n
k

)

Θ(nk)
[Sec. 3]

Table 2: Bounds on the numbers of convex, non-convex and general k-gons and k-holes for n points and constant k.

tions (spanning cycles) [8, 15, 22], which implies that
the number of k-gons and k-holes can be larger than(
n
k

)
. This makes questions like minimizing or maximiz-

ing the number of non-convex and general k-holes more
challenging than they might appear at first glance.

Table 2 summarizes known bounds on the numbers
of k-gons and k-holes, including the results of this pa-
per. Every entry in the table shows lower and upper
bounds, also in explicit form if available. Among other
results, we generalize properties concerning 4-holes [3]
and 5-holes [4] to k ≥ 6. In Section 2 we give asymp-
totic bounds on the number of non-convex and general
k-gons. In Section 3 we consider (general) k-holes. We
show that for sufficiently small k their number is maxi-
mized by sets in convex position, which is not the case
for large k. Section 4 provides a tight bound for the
maximum number of non-convex k-holes, and Section 5
contains bounds for the minimum number of general
k-holes. In Section 6 we improve the lower bound for
convex 6-holes, and we conclude with open problems in
Section 7.

2 General k-gons

For non-convex k-gons of small cardinalty their number
can be related to the rectilinear crossing number c̄r(S)
of a set S of n points in the plane. This is the number
of proper intersections in the drawing of the complete
straight line graph on S. By c̄r(n) we denote the mini-
mum possible rectilinear crossing number over all point
sets of cardinality n. Determining c̄r(n) is a well known
problem in discrete geometry; see [6, 11] as general ref-
erences and [2] for bounds on small sets. Asymptotically
we have c̄r(n) ≈ 0.38

(
n
4

)
= Θ(n4) [1].

It is easy to see that the number of convex 4-gons
is equal to c̄r(S) and is thus minimized by sets real-
izing c̄r(n). Moreover, as four points in non-convex
position span three non-convex 4-gons, we have at
most 3

(
n
4

)
−3c̄r(n) ≈ 1.86

(
n
4

)
non-convex and at most

3
(
n
4

)
−2c̄r(n) ≈ 2.24

(
n
4

)
general 4-gons. All these bounds

are tight for point sets which minimize the rectilinear
crossing number.

A similar relation has been obtained for the number
of non-convex 5-gons in [4]: Any set of n points has at
most 10

(
n
5

)
−2(n−4)c̄r(n) ≈ 6.2

(
n
5

)
non-convex 5-gons,

and again this bound is obtained for sets minimizing
the rectilinear crossing number. Note that this number
exceeds the maximum number of convex 5-gons. For
the number of general 5-gons, and for non-convex and
general k-gons with k ≥ 6, no such direct relations to
c̄r(n) are possible.

n
2 points

n
2 points

Figure 1: The so-called double chain DC(n).

Polygonizations, also called spanning cycles, can be
considered as k-gons of maximal size (i.e., k = n).
Garćıa et al. [15] construct a point set with Ω(4.64n)
spanning cycles, the so-called double chain DC(n),
which is currently the best known example; see Fig-
ure 1. The upper bound on the number of spanning
cycles of any n-point set was improved several times
during the last years, most recently to O(70.21n) [22]
and O(68.664n) [8], neglecting polynomial factors in the
asymptotic expressions. The minimum is obtained by
point sets in convex position, which have exactly one
spanning cycle.

For the number of general k-gons this implies a
lower bound of

(
n
k

)
, as well as an upper bound of

O
(
68.664k

(
n
k

))
. For constant k, we obtain Θ(nk). On

23rd Canadian Conference on Computational Geometry, 2011

22

CCCG 2011, Toronto ON, August 10–12, 2011

the other hand, the double chain provides Ω(nk) non-
convex k-gons, where k ≥ 4 is again a constant. To
see this, choose one vertex from the upper chain of
DC(n) and k − 1 ≥ 3 vertices from the lower chain of
DC(n), and connect them to a simple, non-convex poly-

gon. This gives at least n
2

(
n/2
k−1
)

= Ω(nk) non-convex
k-gons. As the lower bound on the maximal number
of non-convex k-gons asymptotically matches the upper
bound on the maximal number of general k-gons, we get
our first result.

Lemma 1 Let S be a set of n points in the plane in gen-
eral position and k ≥ 3 a constant. Then the maximum
number of non-convex k-gons in S is Θ(nk) and the
maximum number of general k-gons in S is also Θ(nk).

3 Maximizing the number of (general) k-holes

In [3] it is shown that the number of 4-holes is max-
imized for point sets in convex position if n is suffi-
ciently large. It was conjectured that this is true for
any constant k ≥ 4. The following theorem settles this
conjecture in the affirmative.

Theorem 2 For every k ≥ 4 and n ≥ 2(k−1)!
(
k
4

)
+k−1,

the number of k-holes is maximized by a set of n points
in convex position.

Proof. Every non-convex k-hole has as its vertex set a
non-convex k-tuple, and every non-convex k-tuple has
at least one triangle formed by three extreme points
(i.e., points on the convex hull of the k-tuple) that con-
tains points of the k-tuple in its interior. So consider
such a non-empty triangle ∆. We count the number of
non-convex k-holes having the three vertices of ∆ as ex-
treme points. Note that any such k-hole can be reduced
to a (not necessarily simple) non-empty (k−1)-gon by
removing a reflex vertex from its boundary.

Denote by K the set of (not necessarily simple) non-
empty (k−1)-gons having the vertices of ∆ on their
convex hull. First, |K| can be bounded from above by
the number of (not necessarily simple) possibly empty
(k−1)-gons having the three vertices of ∆ on their

boundary, which is (k−2)!
2

(
n−3
k−4
)
.

Further, every (k−1)-gon in K can be completed to
a (simple) non-convex k-hole in at most k−1 ways by
adding a reflex vertex. Thus the number of non-convex
k-holes having all vertices of ∆ on their convex hull is
bounded from above by

(k − 1)
(k − 2)!

2

(
n− 3

k − 4

)
=

(k − 1)!

2

(
n− 3

k − 4

)
.

Considering convex k-holes, observe that every k-
tuple gives at most one convex k-hole. Denote by N the
number of k-tuples that do not form a convex k-hole,
and by T the number of non-empty triangles. Then we

get (1) as a first upper bound on the number of (general)
k-holes of a point set.

(
n

k

)
−N +

(
(k − 1)!

2

(
n− 3

k − 4

))
· T (1)

To obtain an improved upper bound from (1), we need
to derive a good lower bound for N . To this end, con-
sider again a non-empty triangle ∆. As ∆ is not empty,
none of the

(
n−3
k−3
)
k-tuples that contain all three vertices

of ∆ forms a convex k-hole. On the other hand, for such
a k-tuple, all of its

(
k
3

)
contained triangles might be non-

empty. We obtain T ·
(
n−3
k−3
)
/
(
k
3

)
as a lower bound for

N , and thus (2) as an upper bound for the number of
k-holes.

(
n

k

)
+

(
(k − 1)!

2

(
n− 3

k − 4

)
−
(
n−3
k−3
)

(
k
3

)
)
· T (2)

For n ≥ 2(k − 1)!
(
k
4

)
+ k − 1 this is at most

(
n
k

)
, the

number of k-holes of a set of n points in convex position,
which proves the theorem. �

The above theorem states that convexity maximizes
the number of k-holes for k = O(logn

log logn) and suffi-
ciently large n. Moreover, the proof implies that any
non-empty triangle in fact reduces the number of empty
k-holes. Thus it follows that, for k = O(logn

log logn) and
n sufficiently large, the maximum number of convex
k-holes is strictly larger than the maximum number of
non-convex k-holes; see also the next section.

At the other extreme, for k≈n the statement does not
hold: As already mentioned in the introduction, a set
of k points spans at most one convex k-gon, but might
admit exponentially many different non-convex k-gons.

Theorem 3 The number of k-holes in the double chain
DC(n) on n points is at least

(n−4
2

n−k
2

)
· n− k + 2

2
· Ω(4.64k).

Proof. Recall that DC(n) admits Ω(4.64n) polygo-
nizations. Thus, for a double chain on k points
(k/2 points on each chain), we have Ω(4.64k) different
k-polygonizations. We distribute the remaining n − k
points among all possible positions, meaning that for
each k-polygonization, we obtain the double chain on
n points with a k-hole drawn, as shown in Figure 2.

In their proof, Garćıa et al. count paths that start at
the first vertex of the upper chain and end at the last
vertex of the lower chain. Before the first vertex on the
lower chain, they add an additional point q to complete
these paths to polygonizations. We slightly extend this
principle, by also adding an additional point p on the
upper chain after the last vertex. Then we complete
each path C to a polygonization in one of the following

CCCG 2011, Toronto ON, August 10–12, 2011

23

23d Canadian Conference on Computational Geometry, 2011

p1 p

pk
2−1

qk
2−1

q1
q

Pp

p1 p

pk
2−1

qk
2−1

q1
q

Pq

Figure 2: Two ways to complete a path to a polygoniza-
tion.

ways: Either we add p to C directly next to p k
2−1 and

then complete C via q, obtaining Pq, or we add q to C
directly next to q1, and close the polygonization via p,
obtaining Pp.

Note that this changes the number of polygonizations
only by a constant factor and thus does not influence
the asymptotic bound. However, the interior of Pq is
the exterior of Pp, meaning that if we place a point
somewhere on the double chain and it lies inside Pq,
then it lies outside Pp, and vice versa. It follows that, in
one of the two polygonizations, at least half of the k+ 2
positions to insert points are outside the polygonization.
Hence we can distribute the n−k

2 points on each chain

to at least k
2 + 1 possible positions in total. Now, on

one of the two chains we have at least k
4 + 1 positions;

see again Figure 2. More precisely, there are k
4 + j + 1

positions on this chain (where 0 ≤ j < k
4), and on the

other chain there are (at least) max{2, k4 − j} positions.
Using this, we obtain

(n−k
2 + k

4 +j
n−k
2

)
·max

{(n−k
2 +1
n−k
2

)
,

(n−k
2 + k

4−j−1
n−k
2

)}

possibilities to place the remaining points on the two
chains. This factor is minimized for j = k

4 − 2, which
yields the claimed lower bound for the number of k-holes
of DC(n). �

4 An upper bound for non-convex k-holes

The following theorem shows that, asymptotically, the
maximum number of non-convex k-holes is smaller than
the maximum number of convex k-holes.

Theorem 4 For any constant k ≥ 3, the number of
non-convex k-holes in a set of n points is bounded by
O(nk−1) and there exist sets with Θ(nk−1) non-convex
k-holes.

Proof. We first show that there are at most O(nk−1)
non-convex k-holes by giving an algorithmic approach
to generate all non-convex k-holes. We represent a non-
convex k-hole by the counter-clockwise sequence of its
vertices, where we require that the last vertex is reflex.
Note that any non-convex k-hole has r ≥ 1 such repre-
sentations, where r is the number of its reflex vertices.
Thus the number of different representations is an upper
bound on the number of non-convex k-holes.

We have n possibilities to choose the first vertex v1,
n−1 for the second vertex v2, and so on. Several of the
sequences obtained might lead to non-simple polygons,
but we are only interested in an upper bound. For the
second-last vertex vk−1 we have n− k + 2 possibilities,
but the last vertex vk is uniquely defined. As vk is
required to be reflex and the polygon has to be empty,
we have to use the inner geodesic connecting vk−1 back
to v1. Only if this geodesic contains exactly one point,
namely vk, we do obtain one non-convex k-hole (again
ignoring possible non-simplicity). Thus we obtain at
most n!/(n−k+1)! = O(nk−1) non-convex k-holes.

Figure 3: A set with Θ(nk−1) non-convex k-holes.

For an example which achieves this bound see Fig-
ure 3. Each of the four indicated groups of points con-
tains a linear fraction of the point set; e.g. n

4 points.
It is sufficient to only consider the k-holes with trian-
gular convex hull of the type indicated in the figure,
which sums to Ω(n3 ·

(
n
k−4
)
) = Ω(nk−1) non-convex

k-holes. �

5 On the minimum number of (general) k-holes

Every set of k points admits at least one polygonization.
Using this obvious fact, we obtain the following result.

Theorem 5 Let S be a set of n points in the plane in
general position. For every c < 1 and every k ≤ c · n, S
contains Ω(n2) k-holes.

23rd Canadian Conference on Computational Geometry, 2011

24

CCCG 2011, Toronto ON, August 10–12, 2011

Proof. We follow the lines of the proof of Theorem 5
in [3]. Consider the point set S in x-sorted order,
S = {p1, . . . , pn}, and sets Si,j = {pi, . . . , pj} ⊆ S. The
number of sets Si,j of cardinality at least k is

n−k+1∑

i=1

n∑

j=i+k−1
1 =

(n− k + 1)(n− k + 2)

2
= O(n2).

For each Si,j use the k− 2 points of Si,j\{pi, pj} which
are closest to the segment pipj to obtain a subset of k
points including pi and pj . Each such set contains at
least one k-hole which has pi and pj among its vertices.
Moreover, as pi and pj are the left and rightmost points
of Si,j , they are also the left and rightmost points of
this k-hole. This implies that any k-hole of S can count
for at most one set Si,j , which gives a lower bound of
Ω(n2) for the number of k-holes in S. �

Theorem 6 For every constant k ≥ 4 and every
n = m2 ≥ k, there exist sets with n points in general po-
sition that admit at most O(n2(

√
n log n)k−3) k-holes.

Proof. The point set S we consider is the squared Hor-
ton set of size

√
n × √n; see [25]. Roughly speaking,

S is a grid which is perturbed such that every set of
originally collinear points forms a Horton set. It can
be shown that for any two points p, q ∈ S, the num-
ber of empty triangles in S that contain the edge pq is
O(
√
n log n), regardless of the choice of p and q; details

will be given in the full version of this paper.
To estimate the number of k-holes in S, we will use

triangulations and their dual: For a triangulation of
a k-hole, the dual is a binary tree where every node
represents a triangle. It can be rooted at any triangle
that has an edge on the boundary of the k-hole; see [20].

It is well known that there are Ck−2 = O(4k ·k− 3
2) such

rooted binary trees [20]. Although exponential in k, this
bound is constant in the size n of S.

Now pick an empty triangle ∆ in S and an arbitrary
rooted binary tree B. Consider all k-holes which con-
tain ∆ and admit a triangulation that is represented
by B rooted at ∆. As the number of empty triangles
incident to an edge in S is O(

√
n log n), each of the n−3

edges in B yields O(
√
n log n) possibilities to continue

a triangulated k-hole, and we obtain an upper bound
of O((

√
n log n)k−3) for the number of triangulations of

k-holes for ∆ that represent B.
Multiplying this by the (constant) number of rooted

binary trees of size k−2 does not change the aysmptotics
and thus yields an upper bound of O((

√
n log n)k−3) for

the number of all triangulations of all k-holes contain-
ing ∆. As any k-hole can be triangulated, this is also an
upper bound for the number of k-holes containing ∆.

Finally, there are O(n2) empty triangles in S (see
again [5]), and thus we obtain O(n2(

√
n log n)k−3) as

an upper bound for the number of k-holes in S. �

Note that the Horton set has Ω(n3) 4-holes. A general
super-quadratic lower bound for the number of 4-holes
would solve a conjecture of Bárány to the positive, show-
ing that every point set contains an edge that spans a
super-constant number of 3-holes; see e.g. [6], Chap-
ter 8.4, Problem 4. This would also imply a quadratic
lower bound for the number of convex 5-holes. So far,
not even a super-linear bound is known for the latter
problem [6].

6 An improved lower bound for convex 6-holes

Gerken [16] showed that each set of at least 1717 points
in general position contains a convex 6-hole. This imme-
diately implies that each set of n points contains a linear
number of convex 6-holes, namely at least b n

1717c. In the
following we slightly improve on this bound. We start
by showing a result for monochromatic convex 6-holes
in two-colored point sets.

Lemma 7 Each set of r red points and b blue points in
general position in the plane with r ≥ 1716

⌈
b
2

⌉
+ 1717

contains a convex red 6-hole.

Proof. Consider a non-crossing perfect matching of the
blue points; if b is odd, then allow one isolated point p.
We extend the segments (in both directions) one by one,
until each segment either hits another segment, the line
of a previously extended segment or goes to infinity. If
b is odd, we take an arbirtary segment through p and
extend it as well. Altogether, this results in a decom-
position of the plane into

⌈
b
2

⌉
+ 1 convex regions. As

the red points lie inside these regions, it follows by the
pigeon-hole principle that at least one of these regions
contains 1717 red points, and thus a red convex 6-hole
by [16]. �

Theorem 8 Each set S of n points in general position
in the plane contains at least bn−1858 c − 2 convex 6-holes.

Proof. We prove the statement by contradiction. As-
sume that the point set S contains strictly less than
bn−1858 c− 2 convex 6-holes, and color the points of S red.
Now we eliminate all red convex 6-holes by placing an
additional blue point inside each of them, such that the
resulting two-colored point set is in general position.
By this, at most b ≤ bn−1858 c − 3 blue points are added.
Therefore the number n of red points is at least

n ≥ 858(b+ 3) + 1 ≥ 1716

⌈
b

2

⌉
+ 1717.

By Lemma 7, any such two-colored point set contains a
convex red 6-hole, a contradiction. �

CCCG 2011, Toronto ON, August 10–12, 2011

25

23d Canadian Conference on Computational Geometry, 2011

7 Conclusion

We have shown various lower and upper bounds on the
numbers of convex, non-convex, and general k-holes and
k-gons in point sets. Several questions remain unset-
tled. For example, some of the presented bounds are not
tight, like the classic question for the minimum number
of convex k-holes for k ≤ 6. Maybe the most intriguing
open question in this context is whether there exists a
super-quadratic lower bound for the number of general
k-holes for k ≥ 4.

Acknowledgments

Research on this topic was initiated during the Third Work-

shop on Discrete Geometry and its Applications in More-

lia (Michoacán, Mexico). We thank Edgar Leonel Chávez

González, and Feliu Sagols for helpful discussions. Research

of Oswin Aichholzer, Thomas Hackl, and Birgit Vogtenhuber

supported by the FWF [Austrian Fonds zur Förderung der

Wissenschaftlichen Forschung] under grant S9205-N12, NFN

Industrial Geometry. Research of Clemens Huemer partially

supported by projects MEC MTM2009-07242 and Gen. Cat.

DGR 2009SGR1040. Research of Marco Antonio Heredia,

Hernán González-Aguilar, and Jorge Urrutia partially sup-

ported by CONACyT (Mexico) grant CB-2007/80268. Work

by Pavel Valtr supported by project 1M0545 of the Ministry

of Education of the Czech Republic. We thank the anony-

mous referees for their helpful comments.

References

[1] B. M. Ábrego, S. Fernández-Merchant, J. Leaǹos, and
G. Salazar. A central approach to bound the number
of crossings in a generalized configuration. Electronic
Notes in Discrete Mathematics, 30:273–278, 2008.

[2] O. Aichholzer. On the rectilinear crossing num-
ber. http://www.ist.tugraz.at/aichholzer/research/rp/
triangulations/crossing/.

[3] O. Aichholzer, R. Fabila-Monroy, H. González-Aguilar,
T. Hackl, M. A. Heredia, C. Huemer, J. Urrutia, and
B. Vogtenhuber. 4-holes in point sets. In Proc. 27th
European Workshop on Computational Geometry Eu-
roCG’11, pages 115–118, Morschach, Switzerland, 2011.

[4] O. Aichholzer, T. Hackl, and B. Vogtenhuber. On 5-
holes and 5-gons. In Proc. XIV Encuentros de Ge-
ometŕıa Computacional ECG2011, pages 7–10, Alcalá
de Henares, Spain, 2011.

[5] I. Bárány and P. Valtr. Planar point sets with a small
number of empty convex polygons. Studia Scientiarum
Mathematicarum Hungarica, 41(2):243–269, 2004.

[6] P. Brass, W. Moser, and J. Pach. Research problems in
discrete geometry. Springer, 2005.

[7] A. Dumitrescu. Planar sets with few empty convex
polygons. Studia Scientiarum Mathematicarum Hun-
garica, 36(1-2):93–109, 2000.

[8] A. Dumitrescu, A. Schulz, A. Sheffer, and C. Tóth.
Bounds on the maximum multiplicity of some com-
mon geometric graphs. In Proc. 28th International
Symposium on Theoretical Aspects of Computer Science
(STACS 2011), Leibniz International Proceedings in In-
formatics (LIPIcs), pages 637–648, Dagstuhl, Germany,
2011.

[9] P. Erdős. Some more problems on elementary geometry.
Austral. Math. Soc. Gaz., 5:52–54, 1978.

[10] P. Erdős. Some old and new problems in combinato-
rial geometry. In Convexity and Graph Theory, M.
Rosenfeld et al., eds., Annals Discrete Math., 20:129–
136, 1984.

[11] P. Erdős and R. Guy. Crossing number problems. Amer.
Math. Monthly, 88:52–58, 1973.

[12] P. Erdős and G. Szekeres. A combinatorial problem in
geometry. Compositio Math., 2:463–470, 1935.

[13] P. Erdős and G. Szekeres. On some extremum prob-
lems in elementary geometry. Ann. Univ. Sci. Budapest.
Eötvös, Sect. Math., 3/4:53–62, 1960.

[14] A. Garćıa. A note on the number of empty triangles.
In Proc. XIV Encuentros de Geometŕıa Computacional
ECG2011, pages 101–104, Alcalá de Henares, Spain,
2011.

[15] A. Garćıa, M. Noy, and J. Tejel. Lower bounds on the
number of crossing-free subgraphs of Kn. Computa-
tional Geometry: Theory and Applications, 16:211–221,
2000.

[16] T. Gerken. Empty convex hexagons in planar point
sets. Disc. Comp. Geom., 39(1-3):239–272, 2008.

[17] H. Harborth. Konvexe Fünfecke in ebenen Punktmen-
gen. Elemente Math., 33:116–118, 1978.

[18] J. Horton. Sets with no empty convex 7-gons. Canad.
Math. Bull., 26(4):482–484, 1983.

[19] J. Kalbfleisch, J. Kalbfleisch, and R. Stanton. A
combinatorial problem on convex n-gons. In Proc.
Louisiana Conference on Combinatorics, Graph Theory
and Computing, pages 180–188, Louisiana State Univer-
sity, 1970.

[20] J. A. D. Loera, J. Rambau, and F. Santos. Triangula-
tions: Structures for Algorithms and Applications, vol-
ume 25 of Algorithms and Computation in Mathemat-
ics. Springer-Verlag, 2010.

[21] C. Nicolás. The empty hexagon theorem. Disc. Comp.
Geom., 38(2):389–397, 2007.

[22] M. Sharir and A. Sheffer. Counting triangulations of
planar point sets. arXiv:0911.3352, 2009.

[23] G. Szekeres and L. Peters. Computer solution to the 17-
point Erdős–Szekeres problem. The ANZIAM Journal,
48(2):151–164, 2006.

[24] G. Tóth and P. Valtr. The Erdős–Szekeres theorem:
upper bounds and related results. Combinatorial and
Computational Geometry, J.E. Goodman, J. Pach, and
E. Welzl (Eds.),, 52:557–568, 2005.

[25] P. Valtr. Convex independent sets and 7-holes in re-
stricted planar point sets. Disc. Comp. Geom., 7:135–
152, 1992.

23rd Canadian Conference on Computational Geometry, 2011

26

CCCG 2011, Toronto ON, August 10–12, 2011

Hardness Results for Two-Dimensional
Curvature-Constrained Motion Planning

David Kirkpatrick∗ Irina Kostitsyna† Valentin Polishchuk‡

Abstract

We revisit the problem of finding curvature-constrained
paths in a polygonal domain with holes. We give a
new proof that finding a shortest curvature-constrained
path is NP-hard; our proof is substantially simpler, and
makes fewer assumptions about the polygonal domain,
than the earlier proof of [Reif and Wang, 1998]. We also
prove that it is NP-hard to decide existence of a simple
(i.e., non-self-intersecting) path.

1 Introduction

Understanding the feasibility and optimality of the
motion of car-like robots in the presence of obsta-
cles entails, among many things, an understanding of
curvature-constrained paths between specified configu-
rations in the plane, that avoid a given set of obsta-
cles. The study of curvature-constrained path planning
has a rich history that long predates and goes well be-
yond robot motion planning, for example the work of
Markov [29] on the construction of railway segments.

1.1 Definitions

Let P be a polygonal domain with holes (forbidden
regions, or obstacles) in R2. Let π : [0, L] 7→ P be
a continuous differentiable path, parameterized by arc
length, and denote by π′(t) the derivative of π at t.
Path π is said to be curvature constrained if, for some
constant c, the average curvature of π on every inter-
val [t1, t2] ⊆ [0, L], namely ||π′(t1) − π′(t2)||/|t1 − t2|,
is bounded above by c. Intuitively, every point on such
a path can be sandwiched between two tangent circles
of radius 1/c. We assume that π(0) = s, π(L) = t are
two given points in P , and π′(0) = S, π′(L) = T are two
given vectors; the pair (s, S) (resp., (t, T)) is called the
initial (resp., final) configuration of π. The path π is
simple if it has no self-intersections: π(t1) 6= π(t2) for
t1 6= t2.

∗Department of Computer Science, University of British
Columbia, kirk@cs.ubc.ca. Supported by the Natural Sciences
and Engineering Research Council of Canada.
†Department of Computer Science, State University of New

York at Stony Brook, ikost@cs.stonybrook.edu
‡Helsinki Institute for Information Technology, Department of

Computer Science, University of Helsinki, polishch@helsinki.fi.
Supported by the Academy of Finland grant 138520.

Under suitable scaling we can assume that c = 1.
Hereafter we will assume that all paths avoid the interior
of obstacles, that is they remain within P ; all such paths
with average curvature bounded by 1 are referred to as
admissible paths.

1.2 Background

A fundamental result in curvature-constrained motion
planning, due to Dubins [15], states that in the absence
of obstacles shortest admissible paths are one of two
types: a (unit) circular arc followed by a line segment
followed by another arc (CLC), or a sequence of three
circular arcs (CCC)1. Variations and generalizations of
the problem were studied in [8,9,11,13,14,18,28,30,31,
33,34,36,37].

Dubins’ characterization plays a fundamental role in
establishing the existence as well as the optimality of
curvature-constrained paths. Jacobs and Canny [22]
showed that even in the presence of obstacles it suf-
fices to restrict attention to paths of Dubins form be-
tween obstacle contacts and that if such a path exists
then the shortest such path is well-defined. Fortune and
Wilfong [19] give a super-exponential time algorithm for
determining the existence of, but not actually construct-
ing, such a path. Characterizing the intrinsic complex-
ity of the existence problem for curvature-constrained
paths is hampered by the fact that there are no known
bounds on the minimum length or intricacy (number of
elementary segments), expressed as a function of the de-
scription of the polygonal domain, of obstacle-avoiding
paths in Dubins form. In a variety of restricted domains
polynomial-time algorithms exist that construct short-
est admissible paths [1, 2, 6].

The NP-hardness of computing a shortest admissible
path amid polygonal obstacles was established by Reif
and Wang [32]. This motivated a variety of approaches
to approximating shortest admissible paths including [4,
5, 22,35,38–40]. It is known, for example, that shortest
robust paths, shortest paths of bounded intricacy and
minimum intricacy paths of bounded length all have
polynomial-time approximations. The books [25,26] are
general references; for some very recent work on Dubins
paths see [7, 12,16,17,20,21].

1In general, any of the C or L segments could have zero length.

CCCG 2011, Toronto ON, August 10–12, 2011

27

23rd Canadian Conference on Computational Geometry, 2011

1.3 Results

In Section 2 we present a new proof that finding a short-
est admissible path from (s, S) to (t, T) is NP-hard. Our
proof is considerably simpler than the one given in [32].
In addition, our construction is more “robust” in that
it applies even in non-degenerate polygonal domains,
specifically domains that have no “pinhole” gaps be-
tween obstacles.

Our hardness proof in Section 2 depends critically on
the fact that admissible paths can self-intersect. This
leaves open the possibility that the problem of finding
a shortest simple admissible path could be solved in
polynomial time. (Note that the simplicity constraint is
relevant in many applications; e.g. laying out a conveyor
belt or designing a pipeline.) In Section 3 we show that
this is not the case: even deciding the existence of an
admissible path is NP-hard, if we restrict attention to
simple paths (which, of course, implies that finding any
approximation to the shortest such path is NP-hard).

2 NP-hardness of determining shortest curvature-
constrained paths

Our NP-hardness proof involves a reduction from
4CNF-satisfiability. Specifically, suppose that Φ is a
formula in 4CNF involving m clauses and k variables
X0, . . . , Xk−1. We show how to construct a polygonal
environment E, whose description is bounded in size
by some polynomial in k, together with configurations
(s, S) and (t, T) and a distance D, such that there exists
an admissible path from (s, S) to (t, T) whose length is
at most D if and only if Φ is satisfiable.

Our proof, like that of Reif and Wang, uses the idea
of path-encoding, introduced by Canny and Reif [10]
in their proof that determining the shortest obstacle-
avoiding path, with no constraint on curvature, join-
ing specified points in R3, is NP-hard. The fact that
our problem is set in R2 makes it difficult to adapt the
Canny-Reif approach directly (further evidenced by the
fact that shortest obstacle-avoiding paths in R2 can be
constructed in polynomial time, at least in the familiar
algebraic model of computation).

In general, the path encoding approach involves first
constructing a basic environment that admits exactly 2k

distinct shortest paths (referred to as canonical paths)
between the two specified placements. These canonical
paths all have essentially the same length DΦ that can
be distinguished, using a number of bits that is poly-
nomial in k, from all non-canonical paths. Canonical
paths are associated with the distinct truth assignments
to the variables X0, . . . , Xk−1. Next, the environment is
augmented with additional obstacles that serve to block
(filter) every canonical path whose associated truth as-
signment does not satisfy the formula Φ.

In Reif and Wang’s proof canonical paths pass

through a sequence of checkpoints, at distinguishable
angles and unequal–but essentially indistinguishable–
lengths. The complexity of their construction arises
from the rather sensitive analysis needed to show that
as paths continue and errors propagate these properties
are preserved. This exploits, among other things, the
existence of pinhole gaps between obstacles, at which
the checkpoints are located.

2.1 Overview of the proof

We avoid the complexity of the Reif-Wang construction
by mimicking the proof, due to Asano et al. [3], of the
NP-hardness of minimum-length motion planning for a
rod (measuring the trace length of any fixed point), the
first construction to employ the path-encoding approach
in a planar setting. In this variant, canonical paths all
have exactly the same length Dφ. In fact, canonical
paths all have exactly the same length as they pass a se-
quence of checkpoints, vertical lines in our construction.
Between these checkpoints the environment consists of
elementary modules, each of which performs some ba-
sic manipulation of the canonical paths that enter the
module. In fact, as we will argue, the properties of
our modular construction are decomposable in the sense
that they assume paths respect curvature constraints
onlywithin modules; in the transitions between modules
only continuity is assumed. As a consequence, local
analysis alone supports a global conclusion: if Φ is not
satisfiable then any admissible path from (s, S) to (t, T)
has length that exceeds DΦ by an amount that can be
expressed in a number of bits that is polynomial in k.
Hence, even though DΦ itself may not be exactly ex-
pressible in a polynomial (in k) number of bits, there
exists a distance D ≥ DΦ that can be so expressed, such
that there exists a (relaxed) admissible path of length
at most D if and only of Φ is satisfiable.
Figure 1 illustrates the full reduction in schematic form.
As it suggests, the construction is based on a sequence
of three top-level modules. The first module, what we
call a Compound Beam Splitter, splits a single in-coming
canonical path into 2k parallel canonical paths, indexed
from 0 on the topmost path to 2k−1 on the bottommost
path, with fixed separation σ. We interpret the b-th bit
of the binary representation of the index of a canonical
path as a truth assignment to the variable Xb. Each
of these paths has exactly the same length, measured
from their common start point S to the vertical line L1.
The second module is a Formula Filter module that ob-
structs exactly those canonical paths whose associated
truth assignment does not satisfy the formula Φ. The
third module, a Compound Beam Combiner, is just the
mirror image of the first, except that the 2k in-coming
paths have a smaller separation σ′, the result of having
passed through the Formula Filter.
It turns out that all three of these modules can be con-

23rd Canadian Conference on Computational Geometry, 2011

28

CCCG 2011, Toronto ON, August 10–12, 2011

Φ

S T

L1 L2

Figure 1: Full Reduction schematic.

structed by appending copies of one elementary (pa-
rameterized) module that we call a Wide Beam Splitter
WBS(∆) or its mirror image a Wide Beam Combiner
WBS−1(∆) (Fig. 2). The details are analogous to those
in the proof of Asano et al. [3].

A

WBS(∆)

∆

WBS−1(∆)

B1

B2

A1

A2

B

Figure 2: Wide Beam Splitter (WBS) and
Combiner(WBS−1) schematics.

2.2 Details of the wide beam-splitter module

The detailed construction of our Wide Beam Splitter
is shown in Figure 3. It is described in terms of two
parameters w, the width of the module, and ∆w, the
separation of the two canonical paths that emerge from
the module. Since w < 4, it is straightforward to see
that as w decreases ∆w decreases. More precisely, since
the horizontal (resp., vertical) separation of the centers
of the left and right turning circle pairs is w − 2 (resp.,√

4w − w2), we have ∆w = 4− 2
√

4w − w2.
As illustrated there are two canonical traversals of the

Wide Beam Splitter. Both share a horizontal segment
starting at the left terminal. Thereafter one (shown in
solid red) traces a C+C−L path 2, emerging at the lower
terminal while the other (shown in dashed green) traces
a C−C+L path, emerging at the upper terminal. It is
not hard to confirm that all admissible traversals must
make a turn of length at least π on a circle tangent

2We denote by C+, resp., C− a clockwise (resp., counter-
clockwise) oriented unit circular arc.

∆w

w

1
2

1
2

Figure 3: Wide Beam Splitter detail.

to the right boundary followed, not necessarily immedi-
ately, by a turn, of similar length but opposite direction,
on a circle tangent to the left boundary.3 Since any
(even locally) shortest admissible path must have Du-
bins form between obstacle contacts, it follows directly
that every shortest admissible traversal must have form
LCLCL, where the C-segments are doubly supported
by obstacles and the middle L-segment may have zero
length.

Now, if we focus on admissible paths of form LCLCL
joining a point a on vertical line L1 to a point b on a
vertical line L2 (see Figure 4(i)), it is easily confirmed
that in any shortest such path the middle L-segment
must have length zero, provided that w, the separation
of L1 and L2, is less than 2 and the vertical separation
of a and b is at least ∆w/2 (otherwise, fixing one of the
turning circles while moving the other so that the mid-
dle L segment degenerates to zero, shortens the path).
Among all such LCCL-transitions joining points a and
b we can show that the shortest transition has the sym-
metric form illustrated in Figure 4(ii), independent of
the directions at a and b. Furthermore, the shortest
such transition, over all pairs of points a and b with
vertical separation at least ∆w/2 (again independent of
the directions at a and b), is the one shown in Figure
4(iii) in which a and b have vertical separation exactly
∆w/2.

These minimality results are proved by reference to
Figure 5. The LC-transition from p to q has length
λ = d1 + d2 + (π/2 − θ) = (w − 1 + sin θ)/ cos θ +
(π/2 − θ) and its y-projection has length λy = y1 +
y2 = ((w − 1) sin θ + 1)/ cos θ. It is straightforward to
confirm that (i) the derivative, with respect to θ, of
λ is ((w − 1) sin θ)/cos2θ and (ii) the derivative, with
respect to θ, of λy is ((w − 1) + sin θ)/cos2θ. It follows
that not only is λ minimized, over configurations with
θ ≥ 0, when θ = 0, but so also is the derivative of λ

3A skeptical reader may in fact see alternative traversals of our
Wide Beam Splitter, as illustrated. We note that such alterna-
tives can be eliminated, at a sacrifice in clarity of the figure, by
narrowing all of the internal corridors sufficiently.

CCCG 2011, Toronto ON, August 10–12, 2011

29

23rd Canadian Conference on Computational Geometry, 2011

b

a

a

b

θ

θ

aa

b

a

w w w

∆w/2

(i) (ii) (iii)

Figure 4: (i) Generic LCLCL transition, (ii) minimum
length transition between two specified points, and (iii)
minimum length transition between two parallel lines.

with respect to λy.

p

q

y1

y2

d1

d2

θ

w − 1

Figure 5: Generic LC transition joining points p and q.

2.3 Other remarks on the proof

Despite the comparative simplicity of our NP-hardness
construction, the reader may object that we have traded
one type of degeneracy in the construction (namely pin-
hole gaps between obstacles) for another (vertical obsta-
cles spaced at distance exactly two, giving no horizontal
freedom for turns in their midst). In fact, this property
of our construction is imposed solely to simplify the ar-
gument; a very similar splitter construction is possible
even if such degeneracies are forbidden.

Although this observation is not a distinguishing fea-
ture of our construction, it is worth noting that the
hardness result remains intact even if we restrict our
attention to shortest admissible paths of bounded intri-
cacy.

2.4 Extensions

One of the advantages of introducing a simpler proof
of the NP-hardness of finding shortest curvature-
constrained paths in R2 is the potential this raises for
establishing the hardness of other related path-planning
problems. As an example, we point out that our re-
sults for standard curvature-constrained paths are easily

modified to apply to polygonal (piecewise linear) paths
that satisfy a novel parameterized notion of discrete
bounded curvature [23] that coincides with the standard
notion in the limit. A wide beam splitter designed for
discrete bounded curvature paths is illustrated in Figure
6.

Figure 6: Beam Splitter gadget for discrete bounded-
curvature paths.

3 Staying simple is hard

We prove that deciding existence of a simple admissible
path in a polygonal domain is NP-hard by a reduction
from planar 3SAT. Recall that the graph of a 3SAT
instance has a vertex for each variable and a vertex for
each clause. The graph edges connect clause-variable
pairs whenever the variable belongs to the clause. In
addition, the graph contains the cycle through variables
(Fig. 7). 3SAT is hard even when restricted to instances
with planar graphs [27]. We identify a 3SAT instance
with its graph.

We transform the graph I of a planar 3SAT instance
to an instance of the path finding problem, follow-
ing the steps analogous to those used to show hard-
ness of finding a simple thick wire in a polygonal do-

Cj

Cm

C1

C2

C3

vn

vi

v1

v2
v3

Figure 7: (Graph of) an instance I of 3SAT. Variables
are shaded circles, clauses are hollow circles.

23rd Canadian Conference on Computational Geometry, 2011

30

CCCG 2011, Toronto ON, August 10–12, 2011

C1

vn

vi

v1

v2
v3

C2

Cj

Cm

C3

Figure 8: I augmented with parent-child edges, sibling
edges, and with variable-clause edges duplicated.

2

4
19

15
16 17

18

20
21

22

23
24 93 94

95
96

97

98 99
100

101

102

103

104

3

5
6

1

7

8
9

10
11

12 13

14

105
106

107

108

109

110
111

112

113
114115116117

118

119

120
121

122

123

124125
126

127128

37

82 81

80

79 78 77
76 75

74

72

71

70
69

6867
66

65

64
63

62
61

60

53

59
58

57
56

55 54
52

51 49
48

47

46

45 44
43

42
41

40

39
38

Cin

Cout

b a

c d

50 73

25

2627
28

29

30

31

32 33 34

35

36
83

84
85

86

87

88

89

90
91

92

Figure 9: The closed spanning walk W; the numbers
indicate the order in which edges are traversed.

main [24]: First, augment I with “parent-child” and
”sibling” edges between clauses, and duplicate variable-
clause edges (Fig. 8). Define a DFS-walk W in the aug-
mented I: the walk goes through orphan clauses, recurs-
ing to children clauses, then to variables and to sibling
clauses (Fig. 9). Replace vertices of I by variable and
clause gadgets (Figs. 10, 11). Finally, turn edges of I
into corridors connecting clause and variable gadgets.

The crucial ingredients of the proof are the following
properties: (1) an admissible path must follow the walk
W (the only flexibility is what clause-variable channel
to use in each clause); (2) a variable gadget can be tra-
versed in one of the two ways (setting the truth assign-
ment); (3) for any clause gadget, one of the channels
leading to a variable must be used by the path; (4) a
variable-clause channel may be used only if the variable
satisfies the clause (Fig. 12). Thus, there exists a simple
admissible path in the instance iff in each clause there
is a channel that can be used by a path to the variable
satisfying the clause.

Figure 10: A variable gadget.

from
parent/
sibling
clause

to
parent/
sibling
clause

to/from
variable xi

to/from
children clauses

to/from
variable xj

to/from
variable xk

to/from
children clauses

Figure 11: When a clause gadget is traversed, from left
to right, one of the channels leading to variables must
be used. Otherwise, 3 subpaths go through the top of
the gadget leading to a self-intersection.

to/from
children
clauses

to/from
children
clauses

from
parent/
sibling
clause

to
parent/
sibling
clause

Figure 12: If a variable does not satisfy a clause the
channel between them cannot be used by simple path.

CCCG 2011, Toronto ON, August 10–12, 2011

31

23rd Canadian Conference on Computational Geometry, 2011

References

[1] P. K. Agarwal, T. Biedl, S. Lazard, S. Robbins, S. Suri,
and S. Whitesides. Curvature-constrained shortest
paths in a convex polygon. SoCG’98.

[2] P. K. Agarwal, P. Raghavan, and H. Tamaki. Motion
planning for a steering-constrained robot through mod-
erate obstacles. SToC’95.

[3] T. Asano, D. G. Kirkpatrick, and C.-K. Yap. Minimiz-
ing the trace length of a rod endpoint in the presence
of polygonal obstacles is np-hard. CCCG’03.

[4] J. Backer and D. Kirkpatrick. Finding curvature-
constrained paths that avoid polygonal obstacles.
SoCG’07.

[5] J. Backer and D. Kirkpatrick. A complete approxima-
tion algorithm for shortest bounded-curvature paths.
ISAAC’08.

[6] S. Bereg and D. Kirkpatrick. Curvature-bounded
traversals of narrow corridors. SoCG’05.

[7] S. Bitner, Y. K. Cheung, A. F. Cook, O. Daescu,
A. Kurdia, and C. Wenk. Visiting a sequence of points
with a bevel-tip needle. LATIN’10.

[8] J.-D. Boissonnat and X.-N. Bui. Accessibility region
for a car that only moves forwards along optimal paths.
Research Report 2181, INRIA Sophia-Antipolis, 1994.

[9] X.-N. Bui, P. Souères, J.-D. Boissonnat, and J.-P. Lau-
mond. Shortest path synthesis for Dubins nonholo-
nomic robot. ICRA’94.

[10] J. Canny and J. H. Reif. New lower bound techniques
for robot motion planning problems. FoCS’87.

[11] H. Chitsaz and S. LaValle. Time-optimal paths for a
Dubins airplane. Conf. Dec. and Cont., 2007.

[12] H. Chitsaz, S. M. Lavalle, D. J. Balkcom, and M. T.
Mason. Minimum wheel-rotation paths for differential-
drive mobile robots. Int. J. Rob. Res., 28:66–80, 2009.

[13] H. R. Chitsaz. Geodesic problems for mobile robots.
PhD thesis, 2008.

[14] K. Djath, A. Siadet, M. Dufaut, and D. Wolf. Naviga-
tion of a mobile robot by locally optimal trajectories.
Robotica, 17:553–562, 1999.

[15] L. E. Dubins. On curves of minimal length with a con-
straint on average curvature and with prescribed initial
and terminal positions and tangents. Amer. J. Math.,
79:497–516, 1957.

[16] V. Duindam, X. Jijie, R. Alterovitz, S. Sastry, and
K. Goldberg. Three-dimensional motion planning al-
gorithms for steerable needles using inverse kinematics.
Int. J. Rob. Res., 29:789–800, June 2010.

[17] E. Edison and T. Shima. Integrated task assign-
ment and path optimization for cooperating uninhab-
ited aerial vehicles using genetic algorithms. Comput.
Oper. Res., 38:340–356, January 2011.

[18] S. Foldes. Decomposition of planar motions into reflec-
tions and rotations with distance constraints. CCG’04.

[19] S. Fortune and G. Wilfong. Planning constrained mo-
tion. Annals of Math. and AI, 3:21–82, 1991.

[20] A. A. Furtuna and D. J. Balkcom. Generalizing Dubins
curves: Minimum-time sequences of body-fixed rota-
tions and translations in the plane. Int. J. Rob. Res.,
29:703–726, May 2010.

[21] P. R. Giordano and M. Vendittelli. Shortest paths to
obstacles for a polygonal dubins car. IEEE Transactions
on Robotics, 25(5):1184–1191, 2009.

[22] P. Jacobs and J. Canny. Planning smooth paths for mo-
bile robots. In Nonholonomic Motion Planning, 1992.

[23] D. Kirkpatrick and V. Polishchuk. Polygonal paths of
bounded curvature. In preparation, 2011.

[24] I. Kostitsyna and V. Polishchuk. Simple wriggling is
hard unless you are a fat hippo. FUN’10.

[25] J.-C. Latombe. Robot Motion Planning. Kluwer, 1991.

[26] Z. Li and J. F. Canny, editors. Nonholonomic Motion
Planning. Kluwer, 1992.

[27] D. Lichtenstein. Planar formulae and their uses. SIAM
Journal on Computing, 11(2):329–343, 1982.

[28] X. Ma and D. A. Castacyn. Receding horizon planning
for Dubins traveling salesman problems. Conf. Dec. and
Contr., 2006.

[29] A. A. Markov. Some examples of the solution of a spe-
cial kind of problem on greatest and least quantities.
Soobshch, Kharkovsk. Mat Obshch, 1:250-276, 1887 (in
Russian).

[30] F. Morbidi, F. Bullo, and D. Prattichizzo. On visi-
bility maintenance via controlled invariance for leader-
follower dubins-like vehicles. Conf. Dec. and Contr.,
2008.

[31] J. Reif and H. Wang. Non-uniform discretization
for kinodynamic motion planning and its applications.
WAFR’96.

[32] J. Reif and H. Wang. The complexity of 2d curvature-
constrained shortest-path problem. WAFR’98.

[33] P. Robuffo Giordano and M. Vendittelli. The minimum-
time crashing problem for the Dubins car. SYROCO’06.

[34] K. Savla, E. Frazzoli, and F. Bullo. On the Dubins
traveling salesperson problems: Novel approximation
algorithms. Robotics: Science and Systems II, 2006.

[35] J. Sellen. Approximation and decision algorithms for
curvature-constrained path planning: A state-space ap-
proach. WAFR’98.

[36] M. Sigalotti and Y. Chitour. Dubins’ problem on sur-
faces ii: Nonpositive curvature. SIAM J. Control and
Optimization, 45(2):457–482, 2006.

[37] H. J. Sussman. Shortest 3-d paths with a prescribed
curvature bound. Conf. Dec. and Contr., 1995.

[38] H. Wang and P. K. Agarwal. Approximation algorithms
for curvature constrained shortest paths. SoDA’96.

[39] G. Wilfong. Motion planning for an autonomous vehi-
cle. ICRA’98.

[40] G. Wilfong. Shortest paths for autonomous vehicles.
ICRA’89.

23rd Canadian Conference on Computational Geometry, 2011

32

CCCG 2011, Toronto ON, August 10–12, 2011

Optimizing Budget Allocation in Graphs

Boaz Ben-Moshe∗ Michael Elkin† Eran Omri‡

Abstract

In a classical facility location problem we consider a
graph G with fixed weights on the edges of G. The
goal is then to find an optimal positioning for a set of
facilities on the graph with respect to some objective
function. We consider a new model for facility location
problems, where the weights on the graph edges are not
fixed, but rather should be assigned. The goal is to find
the valid assignment for which the resulting weighted
graph optimizes the facility location objective function.

We present algorithms for finding the optimal budget
allocation for the center point problem and for the me-
dian point problem on trees. Our algorithms work in
linear time, both for the case that a candidate vertex is
given as part of the input, and for the case where find-
ing a vertex that optimizes the solution is part of the
problem. We also present an O(log2(n)) approximation
algorithm for the center point problem over general met-
ric spaces.

1 Introduction

A typical facility location problem has the following
structure: the input includes a weighted set D of de-
mand locations, a set F of feasible facility locations, and
a distance function d that measures the cost of travel
between a pair of locations. For each F � ⊆ F , the qual-
ity of F � is determined by some underlying objective
function (obj). The goal is to find a subset of facili-
ties F � ⊆ F , such that obj(F �) is optimized (maximized
or minimized). One important class of facility location
problems is the center point, in which the goal is to find
one facility in F , that minimizes the maximum distance
between a demand point and the facility. Henceforth,
we refer to this distance as graph radius. In another
important class of problems, graph median, the goal is
to find the facility in F that minimizes the average dis-
tance (i.e., the sum of the distances) between a demand
point and the facility. In this paper we consider a new

∗Department of Computer Science, Ariel University Center of
Samaria, Ariel 40700, Israel, benmo@g.ariel.ac.il

†Department of Computer Science, Ben-Gurion University of
the Negev, Beer-Sheva 84105, Israel, elkinm@cs.bgu.ac.il
This research has been supported by the Binational Science Foun-
dation, grant No. 2008390.

‡Department of Computer Science, Bar-Ilan University,
Ramat-Gan, 52900, Israel, omrier@gmail.com

model for facility location on graphs, for which both
problems are addressed.

1.1 The New Model

This paper suggests a new model for budget allocation
problems on weighted graphs. The new model addresses
optimization problems of allocating a fixed budget onto
the graph edges where the goal is to find a subgraph that
optimizes some objective function (e.g., minimizing the
graph radius). Problems such as center point and me-
dian point on trees and graphs have been studied exten-
sively [4, 6, 8, 9]. Yet, in most cases the input for such
problems consists of a given (fixed) graph. Motivated by
well-known budget optimization problems [1, 3, 5, 10]
raised in the context of communication networks, we
consider the graph to be a communication graph, where
the weight of each edge (link) corresponds to the delay
time of transferring a (fixed length) message over the
link. We suggest a Quality of Service model for which
the weight of each edge in the graph depends on the
budget assigned to it. In other words, paying more for
a communication link decreases its delay time.

More formally, we consider the following model: Let
G =< V, E > be an undirected graph induced by some
length function �(e) for each e ∈ E. Let B be a positive
budget value. Allocating a budget B(e) to edge e ∈ E
with length �(e) implies that the resulting weight of e

is �(e)
B(e) . Given this weight function and a special node

(root) r ∈ V , the rooted budget radius problem can be
defined as follows: Divide B among the edges of E in
a way that the radius of (G,ω) with respect to r is
minimized, where the weight function ω(e) is given by
�(e)
B(e) , for B(e) > 0, such that

�
e∈E B(e) = B. In the

unrooted budget radius problem the goal is to divide the
budget B among the edges of E in a way that the radius
of (G,ω) with respect to some vertex r is minimized,

where ω(e) = �(e)
B(e) , B(e) > 0, and

�
e∈E B(e) = B.

Analogously, one can ask to minimize the diameter
of (G,ω), defined as the maximum distance between a
pair of vertices in (G,ω).

We also define the median radius of the graph
(G,ω) with respect to a designated vertex r, de-
noted MR((G,ω), r), as the average distance 1

n ·�
v∈V DIST(G,ω)(r, v) between r and other vertices of

the graph (DIST(G,ω)(r, v) represents the distance be-
tween vertices r and v in the graph (G,ω)). The vertex

CCCG 2011, Toronto ON, August 10–12, 2011

33

23d Canadian Conference on Computational Geometry, 2011

r with the smallest median radius, i.e., MR((G,ω), r) =
minv∈V MR((G,ω), v) is called the median of (G,ω).
The budget median radius of (G, �) with respect to a des-
ignated vertex r and budget B, denoted BMR(G, r), is
the minimum median radius of (G,ω = �

B) with respect
to r, taken over all possible budget allocations B(·). The
budget median radius of (G, �) with respect to budget B
is the minimal budget median radius of (G, �) with re-
spect to some vertex v and budget B. Finally, the vertex
r that realizes the budget median radius, i.e., such that
BMR((G, �), r) = minv∈V BMR((G, �), v) is called the
budget median of the graph (G, �).

1.2 Motivation

We were motivated by communication optimization
problems in which for a fixed ’budget’ one needs to
design the ’best’ network layout. The quality of ser-
vice (QoS) of a link between two nodes depends on two
main factors: i) The distance between the nodes. ii)
The infra-structure of the link (between the two nodes).
While the location of the nodes is often fixed and cannot
be changed, the infra-structure type and service can be
upgraded - it is a price-dependent service.

Quality of service is related to different parameters
like, bandwidth, delay time, jitter, packet error rate and
many others. Given a network graph, the desired objec-
tive is to have the best QoS for a given (fixed) budget.
In this paper we focus on minimizing the maximum and
the average delay time using a fixed budget.

1.3 Related Work

The problems of Center Point, Median Point on graphs
(networks) have been studied extensively, see [4, 8] for
a detailed surveys on facility location. There are vari-
ous optimization problems dealing with finding the best
graph; A typical graph or network improvement prob-
lem considers a graph which needs to be improved by
adding the smallest number of edges in order to satisfy
some constraint (e.g., maximal radius), see [1, 2, 5, 10].
Spanner graph problems [7] consider what can be seen
as the inverse case of network improvement problems.
In a typical spanner problem we would like to keep the
smallest subset of edges from the original graph while
maintaining some constraint. See [7] for a detailed sur-
vey on spanners. Observe that both network improve-
ment and spanner graph problems can be modeled as a
discrete version of our suggested new model.

1.4 Our Results

In this paper we present linear time algorithms for
rooted and unrooted budget radius and budget median
problems on trees. We also devise an O(log2(n)) ap-
proximation algorithm for the budget radius problem

on general metric spaces.

1.5 Definitions

Let G =< V, E > be a graph with some length �(e) for
each edge e ∈ E. We next introduce some definitions
and notations to define the setting of the budget radius
problem on graphs. We consider both the case where a
candidate center node to the graph is given and an op-
timal budget allocation is sought, and the more general
case where finding the center node yielding an optimal
solution is part of the problem (as well as seeking an
optimal budget allocation given such a center node).
To simplify our notation we omit G from the notation
whenever it is clear from the context.

Let E = {e1, . . . , e|E|}. A valid budget allocation
B(·) to E is a non-negative real function, such that�

e∈E B(e) = 1 (here and in the rest of the paper we
assume that the total budget B equals 1; this is with-
out loss of generality since an optimal solution with
budget of 1 is easily scaled to any budget B). We

denote bi
def
= B(ei), and for every E� ⊆ E we denote

B(E�) =
�

ei∈E� bi. Given a valid budget allocation B
to E, the weight of an edge e ∈ E, denoted ωB(e), is
a function of �(e) and B(e). Throughout this paper we

consider the case where ωB(e)
def
= �(e)

B(e) .

The weighted distance between two vertices u, v ∈ V ,
denoted δB(u, v), is the minimum weight of a sim-

ple path between u and v. Namely, δB(u, v)
def
=

min({�e∈P ωB(e) : P is a simple path from u to v}).
Table 1 includes the notations used in this paper.

Notation Explanation
G =< V, E > a general undirected graph

(induced by some metric space)
�(e) the (a priori) length of an edge e ∈ E.
B(e) the budget fraction allocated to e ∈ E.

B={b1, ...b|E|} an alternative notation for the function B.

ω(e) =
�(e)
B(e)

the (budget implied) weight of e ∈ E.

G(B) the budget-graph implied by an allocation B
δB(u, v) the distance between two vertices in G(B).

Table 1: Notations that are used throughout the paper
to present the new budget graph model.

Given a valid budget allocation B to E and a vertex
r ∈ V , the weighted radius of G with respect to r is

defined as wrB(r) = wrB(G, r)
def
= maxv∈V (δB(r, v)).

Given a graph G =< V, E > (induced by some
metric) and a node r ∈ V , we define the following:
An optimal allocation for (G, r): a valid allocation
for which the weighted radius from r is minimized.
There may be several optimal allocations. We denote
an arbitrary optimal allocation by B∗r = B∗r (G) and
refer to it as the optimal allocation for (G, r).
The budget radius of G with center r: denoted

23rd Canadian Conference on Computational Geometry, 2011

34

CCCG 2011, Toronto ON, August 10–12, 2011

BR(r) = BR(G, r), is the weighted radius of G with
center r with the optimal allocation for G and r, i.e.,
BR(r) = wrB∗

r
(G, r).

The budget radius of G: BR = BR(G)
def
=

minv∈V BR(G, v).
An optimal allocation for G: a pair (B∗, r∗),
where B∗ is a valid allocation to E and r∗ ∈ V is the
vertex with the smallest corresponding radius, i.e.,
wrB∗(r∗) = BR.

We demonstrate the above definitions using the fol-
lowing toy-example in Figure 1.5.

c

d

b

a

1− 2x

x

x

Figure 1: A simple example of a budget graph problem
on a tree with a given center (a). Assume that each edge
e has length �(e) = 1, and let x denote the fraction of
the budget assigned to each of the edges (b, c) and (b, d).
Observe that in order to have a valid budget allocation,
it must hold that 0 < x < 1

2 . The optimal solution
minimizes the following function: f(x) = 1

1−2·x + 1
x .

Note that in cases where x equals 1
3 or 1

4 the radius is 6,
while the optimal allocation of x is approximately 0.293,
and the radius is approximately 5.828.

Due to space limitations some of the proofs are omit-
ted from this extended abstract and will appear in the
full version of the paper.

2 The Budget Radius Problem for Trees

Given a connected graph G =< V, E > with a length
function on E, one may consider any subgraph G� of G,
induced by some subset E� ⊆ E and look for an optimal
budget allocation for G� (i.e., BR(G�)). In particular,
the class of trees is an important set of such subgraphs.

Lemma 1 An optimal budget allocation (with respect
to the budget radius problem) (B∗, r∗) for G, has the
property that G(B∗) =< V, EB∗ >, where EB∗ = {ei ∈
E : b∗i > 0} is a tree spanning G.

Proof. Clearly, all vertices are connected to r∗ in
G(B∗). Assume towards a contradiction that G(B∗)
contains a cycle. Let TD be the tree of shortest paths
obtained by invoking the Dijkstra algorithm on G(B∗)
and r∗. Hence, there is a an edge ei ∈ EB∗ (i.e., b∗i > 0)
such that e does not appear in any shortest path from
r∗ to any vertex in V . Thus, we can obtain a better
budget allocation by (say, equally) dividing the budget

portion allocated to ei among all edges in TD. This is a
contradiction to the optimality of B∗. �
We note that the above is not true for the problem of
the minimum budget diameter of a graph (see figure 2).

x

y

z x

y

z x

y

z

1
2

1
2

1
3

1
3

1
3

(a) (b) (c)

Figure 2: (a) Three points in the plane: x, y, z are the
nodes of a unite equilateral triangle. (b) Tree: optimal
radius (2), non optimal diameter (4). (c) Cycle graph:
non-optimal radius (3), optimal diameter (3).

The above lemma suggests that it is interesting to
consider the Budget Radius problem for the subclass of
trees. In the sequel, we present an algorithm solving this
problem. We first consider the case where a designated
center node r is given as a part of the input, and an
optimal budget allocation B∗ is sought. We use the
standard terminology and refer to r as the root of the
tree (rather than, the center). Thereafter, we consider
the general case in trees, where the problem is to find a
pair (B∗, r∗) minimizing the budget radius of the tree.

2.1 The Budget Radius for a Rooted Tree

We next consider two possible structures for rooted trees
that will later be the basis for our recursive construction
of an optimal valid budget allocation to the edges of a
given tree. First, we consider a tree in which the root
has only a single child.

Lemma 2 Let T be a tree rooted at r, with some length
function � on the edges of T . Assume r has a single child
r� (the root of the subtree T �), and let R� = BR(T �, r�)
and d1 = �(r, r�). Then, an optimal budget allocation B∗
assigns to the edge e1 = (r, r�) a fraction b∗1 =

√
d1√

R�+
√

d1
.

It follows that BR(T, r) = d1

b∗1
+ R�

1−b∗1
.

Proof. Let E be the set of edges in T and E� = E\ {e1}
be the set of edges of T � (see Figure 2.1-a). Given any
valid budget allocation B to E, let B� be the scaling of

the restriction of B to E�, defined by B�(e�) = B(e�)
1−B(e1)

for every e� ∈ E�. Note that with this scaling, B� is a
valid budget allocation to E�, i.e.,

�
e�∈E� B�(e�) = 1.

Since any path from r to any leaf of T must start with
the edge e1 = (r, r�), it follows that

wrB(r) =
d1

b1
+

wrB�(r�)
1− b1

.

CCCG 2011, Toronto ON, August 10–12, 2011

35

23d Canadian Conference on Computational Geometry, 2011

Hence, for B to be optimal for T with root r, we must
have B� be optimal for T � and r�. In addition, given
R� = BR(T �, r�), the budget radius of T with root
r is obtained by finding b1 that minimizes the func-
tion wrB(r) = d1

b1
+ R�

1−b1
. Therefore, it follows that

BR(T, r) = d1

b1
+ R�

1−b1
for b1 =

√
d1√

R�+
√

d1
. �

We next consider a more general tree structure (Fig-
ure 2.1-b). Let T = (V, E) be a tree, rooted at r, such
that r has k children r1, r2, . . . , rk, where ri is the root of
the subtree Ti = (Vi, Ei). Denote by T �i = (V �i , E�i) the
subtree of T , rooted at r and containing Ti. Formally,
V �i = Vi∪{r}, and E�i = Ei∪{(r, ri)}. Clearly, the edges
sets E�is are disjoint. Given a valid budget allocation B
to E, for each index i ∈ {1, 2, .., k} denote by li ∈ Vi the
leaf l for which δB(r, l) is the largest within T �i . Recall
that the weighted radius wrB(r) is determined by the
maximum weighted distance to some li. In other words,
wrB(r) = max1≤i≤k(δB(r, li)). Next, we show that in
any optimal budget allocation B∗ for such T , the frac-
tion of the budget assigned to the edges of each subtree
T �i is directly correlated to its relative weighted radius.

r
r

r�

T �

T

r1 r2 r3 rk

(a) (b)

d1 e1 = (r, r�)

Figure 3: (a) The case that r has only a single child.
(b) The general case.

Lemma 3 Let T = (V, E) be a tree rooted at r, with
some length function � on the edges of T . Assume that
r has k children r1, r2, . . . , rk where ri is the root of the
subtree Ti = (Vi, Ei), and let B∗ be an optimal budget
allocation to E. For each 1 ≤ i ≤ k, let T �i and li be as
in the foregoing discussion (i.e., li is maximal in T �i with
respect to δB∗(r, ·)). It then holds for all 1 ≤ i, j ≤ k
that δB∗(r, li) = δB∗(r, lj).

Proof. Assume that for some 1 ≤ i, j ≤ k, it holds that
δB∗(r, li) > δB∗(r, lj). We show that it is then possible
to present a better budget allocation for T , which, in

turn, leads to a contradiction. Let ρ =
δB∗ (r,lj)
δB∗ (r,li)

and

consider an alternative budget allocation in which each
edge e in E�j were assigned a ρ fraction of its current
budget, i.e. ρ·B∗(e) (while assignment to all other edges
stays the same as before). The length of each path from
r to a leaf in T �j would be multiplied by 1/ρ. Hence, the
maximum distance from r to any leaf in the T �j would be
at most δB∗(r, li). This allocation is therefore as good
as B∗ (with respect to the weighted radius) although

the sum of assigned values is not 1, but rather, 1− (1−
ρ) · B∗(E�j). Turning it into a valid budget allocation
by dividing the remaining (1−ρ)B∗(E�j) budget equally
among all edges in E, we obtain a better valid budget
allocation to E. That is, we fix a new allocation B� by

setting B�(e) = ρ · B∗(e) +
(1−ρ)B∗(E�

j)

|E| if e ∈ E�j , and

B�(e) = B∗(e) +
(1−ρ)B∗(E�

j)

|E| otherwise. We note that

B� may not be an optimal allocation, however it is a
contradiction to the optimality of B∗. �

The following corollary describes how any optimal
valid budget allocation must divide the budget among
the disjoint sets of edges of the subtrees T �i .

Corollary 4 Let T be a tree as above. Then in any
optimal budget allocation B∗ to E it holds that B∗(E�i) =

BR(T �
i ,r)�k

j=1 BR(T �
j ,r)

. Thus, an optimal solution in this case is

given by BR(T, r) =
�k

j=1 BR(T �j , r).

Theorem 5 Given a tree T rooted at r, it is possible to
find an optimal valid budget allocation for T and r, in
linear time in the size of T .

Proof. T is a rooted tree, thus an inductive construc-
tion is only natural. First, assume T is a single node
r. In this case, no budget is needed and BR(T, r) = 0.
Assume T is rooted at r, such that r has k children
r1, r2, . . . , rk. Denote by Ti the subtree of T rooted at
ri, and containing all vertices (and edges) of the sub-
tree rooted at ri (and only these vertices). Denote by
T �i = (V �i , E�i) the subtree of T rooted at r, induced by
adding the edge (r, ri) to Ti. Formally, V �i = Vi ∪ {r},
and E�i = Ei ∪ {(r, ri)}. Thus, each T �i is a rooted tree
where the root (r) has a single child, and no T �i , T

�
j for

i �= j share any vertex other than r and E�i, E
�
j are dis-

joint for all i �= j.
By Corollary 4, if we know BR(T �i , r) for all 1 ≤ i ≤ k,

we can derive an optimal valid budget allocation for
T, r. In order to obtain a BR(T �i , r), it suffices to have
an optimal solution for the subtree of ri, which, by the
induction hypothesis can be done (using Lemma 2).

Note, that we evaluate the optimal solution for every
subtree of every vertex in T exactly once and thus the
procedure requires in linear time. �

The following lemma proves helpful in the sequel, but
is interesting in its own right. It captures some of the
tricky nature of the budget radius problem, as it shows
the connection between two seemingly unrelated quanti-
ties. The first is the weight of a minimum spanning tree
(MST) of a given graph and the second is the optimal
solution for the budget radius problem for that graph.

Lemma 6 Given a tree T = (V, E) rooted at r, with
some length function � on E, the budget radius of T
is at least the sum of lengths of the edges of T , i.e.,
BR(T, r) ≥�e∈E �(e).

23rd Canadian Conference on Computational Geometry, 2011

36

CCCG 2011, Toronto ON, August 10–12, 2011

Proof. We prove the above lemma by induction. If
T has no edges, then both values are 0. If r has
only one child r� (the root of the subtree T �), then
by Lemma 2, since any optimal allocation B∗ must as-
sign B∗((r, r�)) > 0, we have BR(T, r) > �((r, r�)) +
BR(T �, r�), which, by the induction hypothesis is at
least

�
e∈E �(e). Otherwise, assume r has k children

(r1 . . . rk) and denote Ti the subtree induced by r and
the vertices of the subtree of ri. By Corollary 4
BR(T, r) =

�k
i=1 BR(Ti, r). Hence, by the induction

hypothesis, the lemma follows. �

2.2 The Budget Radius for Unrooted Trees

In this section we consider the budget radius problem
for unrooted trees, i.e., where the root of the tree is
not given as part of the input. Clearly, one can invoke
the algorithm from Theorem 5 with every vertex v as
a candidate center vertex r, and select the vertex v for
which BR(T, v) is minimal as the ultimate center. How-
ever, this naive algorithm requires O(n2) time. We next
show how to construct a linear time algorithm for this
problem (indeed, for a tree T , our algorithm computes
BR(T, v) for every v in T). Intuitively, this protocol
uses the fact that given BR(T, r) and the partial com-
putations made by algorithm of Theorem 5, applied to
the T and r, it possible to compute in constant time
BR(T, v) for every neighbor v of r. This intuition is
formalized in Lemma 7.

Lemma 7 Let T = (V, E) be a tree rooted at r, with
some length function � on E. Let v ∈ V be a neighbor
(a child) of r. Denote by Tv = (Vv, Ev) the subtree of
v, and denote by T �v the subtree of v augmented by the
edge e = (r, v) (i.e., T �v = (Vv ∪ r, Ev ∪ e)). It is possible
to compute, in constant time, BR(T, v) given BR(T, r),
BR(Tv, v), and BR(T �v, r), see Figure 2.2.

Proof. Denote by T̂ the tree obtained by omitting Tv

from T , formally, T̂ = (V̂ , Ê), where V̂ = V \(Vv\ {v})
and Ê = E\Ev. In addition, denote by T̂ � the tree
obtained by omitting the edge e = (r, v) from T̂ , i.e.,
T̂ � = (V̂ \ {v} , Ê\ {e}).

It can be easily derived from Corollary 4 that
BR(T, v) = BR(Tv, v)+BR(T̂ , v). By Lemma 2, we can
compute BR(T̂ , v) from BR(T̂ �, r) and �(e), in constant
time. Finally, we compute BR(T̂ �, v), using Corollary 4
again, to obtain BR(T̂ �, r) = BR(T, r)− BR(T �v, r). �

Roughly, our algorithm will traverse the tree twice.
First, we traverse the tree, computing the algorithm of
Theorem 5 for an arbitrary root r (say, r = v1). Recall
that this algorithm traverses the tree in a bottom-up
fashion, i.e., from the leaves to the root, and that an
optimal solution for each vertex is calculated, with re-
spect to the subtree below it. Thereafter, we traverse
the tree in a top-down fashion, while for each vertex

r

v

T

Tv

v

T �v
δ

Tv

r

(b)(a) (c)

r

v

T̂

Figure 4: (a) The original tree rooted at r. (b) Consid-
ering v as the root of T �v. (c) The tree T̂ .

r

v

Tv

v

Tv
r

δ

(a) (b)

Figure 5: (a) The original tree rooted at r. (b) Con-
sidering v as the root of the tree. Computation of an
optimal budget allocation for the tree rooted at v can
be done in constant time, given an optimal budget allo-
cation for the tree rooted at r.

v that is a child of v�, we compute an optimal budget
radius for the tree with root v, given an optimal bud-
get radius for the tree with root v� and the information
stored in v from the first traversal.

Theorem 8 Given a tree T = (V, E) with some length
function � on E, it is possible to compute an opti-
mal allocation for T , i.e., a pair (B∗, r∗), such that
wrB∗(r∗) = BR(T). Furthermore, this can be done in
linear time in the size of T .

3 Budget Radius – The General Case

In this section we consider the general case problem of
optimizing the budget radius for a complete graph over
n vertices, induced by some metric space M = (V, d).
We present an O(log2(n)) approximation algorithm for
this problem. We start by showing that a naive Min-
imum Spanning Tree (MST) heuristic may lead to an
O(n0.5) approximation factor. Assume we have n points
on a square uniform grid. Its MST may have a path
like shape, with Ω(n) radius. Hence its budget radius is
Ω(n2). On the other hand, each of the n points may be
connected to the center with a path of length O(n0.5).
Hence, the budget radius of this metric is O(n1.5).

3.1 The Special Case of a Line

We first consider a setup in which M is defined by some
n points all residing on the interval [0, 1], where for any
two points p1, p2 within this interval, d(p1, p2) is the
Euclidean distance between p1 and p2. Let G = (V, E)
be the complete graph induced by M . We present a

CCCG 2011, Toronto ON, August 10–12, 2011

37

23d Canadian Conference on Computational Geometry, 2011

(a) (b) (c)

Figure 6: Using an MST-like heuristic may lead to an
O(n0.5) approximation ratio with respect to the center
point problem (minimum radius). (a) A grid based set
of points. (b) A path-like MST. (c) A solution with
radius O(n0.5).

valid budget allocation B to E with budget radius at
most log2 n and such that the graph induced by {e :
B(e) > 0} is a tree spanning V .

Lemma 9 Let G = (V, E) be the complete graph de-
scribed above, then BR(G) ≤ log2 n.

3.2 General Complete (Metric) Graphs

We next define an approximation algorithm A, such
that given a complete graph G = (V, E), induced by
some metric space M = (V, d), approximates the Bud-
get Radius problem for G by a factor of O(log2 n). As-
sume that a minimum spanning tree for G has a total
weight LB, we proceed as follows:

1. Find an Hamiltonian path (HP) visiting all nodes
with weight no more than 2 · LB.

2. Let G� be the result of unfolding HP to a straight
line, i.e., G� is defined by n points, situated on an
interval, such that, the distance between every two
points is the length of the path between them on
the Hamiltonian path HP (specifically, the length
of the whole interval is exactly the length of HP).

3. Scale the above (HP) interval length to 1.

4. Build a balanced binary search tree (BT) over G�.

5. Apply the algorithm of Theorem 5 to BT. Assign
the appropriate budget to all edges in BT and 0 to
all other edges in E.

Theorem 10 Let G = (V, E) be a complete graph in-
duced by some metric space M = (V, d). Then, algo-
rithm A results in a valid budget allocation to the edges
of E that approximates BR(G) by a 2 log2(n) factor.

Proof. First note that finding an Hamiltonian path
(HP) with weight no more than 2·LB is feasible using an
MST for G. More importantly, note that by Lemma 6,

it holds that LB is a lower bound on the optimal so-
lution (i.e., on BR(G)). This is true since an optimal
budget allocation defines a tree (see Lemma 1), which
has a total weight of at least LB (by the minimality of
an MST). Thus, algorithm A yields an optimal budget
allocation for BT, which by Lemma 9 yields a budget
radius of at most 2·LB · log2(n) ≤ 2·BR(G)·log2(n). �

4 Conclusion and Future Work

The paper introduces a new model for optimization
problems on graphs. The suggested budget model was
used to define facility location problems such as center
and median point. For the tree case, optimal algorithms
are presented for both aforementioned problems. For
the general metric center point problem, an O(log2(n))
approximation algorithm is presented. The new model
raises a set of open problems e.g.,: i) Hardness: is
the budget center point problem on general graphs NP-
hard1. ii) Facility location: Find approximation algo-
rithms for the k-center, k-median, and 1-median on gen-
eral graphs. iii) Graph optimization: minimizing the
diameter of the graph.

References

[1] A. M. Campbell, T. J. Lowe, and L. Zhang. Upgrading
arcs to minimize the maximum travel time in a network.
Netw., 47(2):72–80, 2006.

[2] V. Chepoi, H. Noltemeier, and Y. Vaxès. Upgrading
trees under diameter and budget constraints. Networks,
41(1):24–35, 2003.

[3] Victor Chepoi and Yann Vaxès. Augmenting trees to
meet biconnectivity and diameter constraints. Algorith-
mica, 33(2):243–262, 2002.

[4] M. S. Daskin. Network and Discrete Location: Models,
Algorithms, and Applications. Wiley-Interscience, 1995.

[5] S. T. McCormick Li, C. L. and D. Simchi-Levi. On the
minimum-cost-bounded diameter and the fixed-budget-
minimum-diameter edge addition problems. Operations
Research Letters, 11:303–308, 1992.

[6] N. Megiddo. The weighted Euclidean 1-center problem.
Math. Oper. Res., 8(4):498–504, 1983.

[7] G. Narasimhan and M. Smid. Geometric Spanner Net-
works. Cambridge University Press, 2007.

[8] S. Nickel and J. Puerto. Location Theory: A Unified
Approach. Springer, 2005.

[9] A. Tamir. Improved complexity bounds for center loca-
tion problems on networks by using dynamic data struc-
tures. SIAM J. Discret. Math., 1(3):377–396, 1988.

[10] J. Z. Zhang, X. G. Yang, and M. C. Cai. A network
improvement problem under different norms. Comput.
Optim. Appl., 27(3):305–319, 2004.

1The discrete version of the center point budget problem is
weakly NP-complete even on a path like graph (reduced to perfect
partition problem).

23rd Canadian Conference on Computational Geometry, 2011

38

CCCG 2011, Toronto ON, August 10–12, 2011

Bottleneck Steiner Tree with Bounded Number of Steiner Vertices

A. Karim Abu-Affash∗ Paz Carmi† Matthew J. Katz‡

Abstract

Given a complete graph G = (V,E), where each vertex
is labeled either terminal or Steiner, a distance function
d : E → R+, and a positive integer k, we study the
problem of finding a Steiner tree T spanning all termi-
nals and at most k Steiner vertices, such that the length
of the longest edge is minimized. We first show that this
problem is NP-hard and cannot be approximated within
a factor 2− ε, for any ε > 0, unless P = NP . Then, we
present a polynomial-time 2-approximation algorithm
for this problem.

1 Introduction

Given an arbitrary weighted graph G = (V,E) with a
distinguished subset R ⊆ V of vertices, a Steiner tree
is an acyclic subgraph of G spanning all vertices of R.
The vertices ofR are usually referred to as terminals and
the vertices of V \ R as Steiner vertices. The Steiner
tree (ST) problem is to find a Steiner tree T such that
the total length of the edges of T is minimized. This
problem has been shown to be NP-complete [4, 10], even
in the Euclidean or rectilinear version [11]. Arora [3]
gave a PTAS for the Euclidean and rectilinear versions
of the ST problem. For arbitrary weighted graphs, many
approximation algorithms have been proposed [6, 7, 12,
15, 17, 18].

The bottleneck Steiner tree (BST) problem is to find a
Steiner tree T such that the bottleneck (i.e., the length
of the longest edge) of T is minimized. Unlike the
ST problem, the BST problem can be solved exactly
in polynomial time [19]. Both the ST and BST prob-
lems have many important applications in VLSI design,

∗Department of Computer Science, Ben-Gurion University of
the Negev, Beer-Sheva 84105, Israel, abuaffas@cs.bgu.ac.il.
Partially supported by the Lynn and William Frankel Center for
Computer Sciences, by the Robert H. Arnow Center for Bedouin
Studies and Development, by a fellowship for outstanding doctoral
students from the Planning & Budgeting Committee of the Israel
Council for Higher Education, and by a scholarship for advanced
studies from the Israel Ministry of Science and Technology.

†Department of Computer Science, Ben-Gurion University of
the Negev, Beer-Sheva 84105, Israel, carmip@cs.bgu.ac.il. Par-
tially supported by a grant from the German-Israeli Foundation.

‡Department of Computer Science, Ben-Gurion University of
the Negev, Beer-Sheva 84105, Israel, matya@cs.bgu.ac.il. Par-
tially supported by grant 1045/10 from the Israel Science Foun-
dation, and by the Israel Ministry of Industry, Trade and Labor
(consortium CORNET).

transportation and other networks, and computational
biology [8, 9, 13, 14].

The k-Bottleneck Steiner Tree (k-BST) problem is a
restricted version of the BST problem, in which there
is a limit on the number of Steiner vertices that may
be used in the constructed tree. More precisely, given a
graph G = (V,E) and a subset R ⊆ V of terminals, a
distance function d : E → R+, and a positive integer k,
one has to find a Steiner tree T with at most k Steiner
vertices such that the bottleneck of T is minimized.

A geometric version of the k-BST problem has been
studied in [20]. In this version, we are given a set P
of n terminals in the plane and an integer k > 0, and
we are asked to place at most k Steiner points, such
that the obtained Steiner tree has bottleneck as small as
possible. Wang and Du [20] showed that the problem is
NP-hard to approximate within a factor of

√
2. The best

known approximation ratio is 1.866 [21]. Bae et al. [5]
presented an O(n log n)-time algorithm for the problem
for k = 1 and an O(n2)-time algorithm for k = 2. Li et
al. [16] presented a (

√
2 + ε)-approximation algorithm

with inapproximability within
√

2 for a special case of
the problem where edges between two Steiner points are
not allowed.

Recently, Abu-Affash [1] studied the k-BST problem
with the additional requirement that all terminals in the
computed Steiner tree must be leaves. He presented a
hardness result for the problem, as well as a polynomial-
time approximation algorithm with performance ratio
4. In [2], the authors considered the following related
problem. Given a set P of n points in the plane and
two points s, t ∈ P , locate k Steiner points, so as to
minimize the bottleneck of a bottleneck path between s
and t. They showed how to solve this problem optimally
in time O(n log2 n).

In this paper, we show that the k-BST problem is
NP-hard and that it cannot be approximated to within
a factor of 2 − ε. We also present a polynomial-time
2-approximation algorithm for the problem.

2 Hardness Result

Given a complete graph G = (V,E) with a distinguished
subset R ⊆ V of terminals, a distance function d : E →
R+, and a positive integer k, the goal in the k-BST
problem is to find a Steiner tree with at most k Steiner
vertices and bottleneck as small as possible. In this
section we prove a lower bound on the approximation

CCCG 2011, Toronto ON, August 10–12, 2011

39

23d Canadian Conference on Computational Geometry, 2011

ratio of polynomial-time approximation algorithms for
the problem.

Theorem 1 It is NP-hard to approximate the k-BST
problem within a factor 2− ε, for any ε > 0.

Proof. We present a reduction from connected ver-
tex cover in planar graphs, which is known to be NP-
complete [11].
Connected vertex cover in planar graphs: Given
a planar graph G = (V,E) and an integer k, does there
exist a vertex cover V ∗ of G, such that |V ∗| ≤ k and
the subgraph of G induced by V ∗ is connected?

Given a planar graph G = (V,E) and an integer k,
we construct a complete graph G′ = (V ′, E′) with an
appropriate distance function and appropriate integer
k′, such that G has a connected vertex cover of size at
most k if and only if there exists a Steiner tree T in G′

with at most k′ Steiner vertices and bottleneck at most
(2− ε), for some ε > 0.

Let V = {v1, v2, . . . , vn} and let E = {e1, e2, . . . , em}.
For each edge e = (vi, vj) ∈ E, we add a vertex ti,j
(e.g., at the middle of e) and connect it to both vi
and vj . Let R = {ti,j : (vi, vj) ∈ E} and let E′1 =
{(vi, ti,j), (ti,j , vj) : (vi, vj) ∈ E}. We set V ′ = V ∪ R,
where V is the set of Steiner vertices and R is the set of
terminals; see Figure 1. Let G′ = (V ′, E′) be the com-
plete graph over V ′. For each edge e ∈ E′, we assign
length d(e) = 1, if e ∈ E′1, and d(e) = 2, otherwise.
Finally, we set k′ = k.

(a)

(b)

Figure 1: (a) A planar graph G = (V,E), and (b) the
vertices of G′: circles indicate Steiner vertices and grey
squares indicate terminals.

Now, we prove the correctness of the reduction.
Clearly, if G has a connected vertex cover V ∗ with
|V ∗| ≤ k, then, by selecting the Steiner vertices of V ′

corresponding to the vertices in V ∗, we can construct

a Steiner tree T with at most k′ = k Steiner vertices,
such that the length of each edge in T is exactly 1.

Conversely, suppose that there exists a Steiner tree T
in G′ with at most k′ Steiner vertices and bottleneck at
most 2 − ε. Let V ∗ be the subset of vertices of V that
belong to T . By the construction, any two terminals
are connected in E′ by an edge of length 2. Thus, we
deduce that each terminal is connected in T to a Steiner
vertex in V ∗. Since T is connected and each edge in E
corresponds to one terminal in V ′, we conclude that V ∗

is a connected vertex cover of G, and its size is at most
k = k′. �

3 2-Approximation Algorithm

In this section, we design a polynomial-time approxi-
mation algorithm for computing a Steiner tree with at
most k Steiner vertices (k-ST for short), such that its
bottleneck is at most twice the bottleneck of an optimal
(minimum-bottleneck) k-ST.

Let G = (V,E) be the complete graph with n vertices,
let R ⊆ V be the set of terminals, and let d : E →
R+ be a distance function. Let e1, e2, . . . , em, where
m =

(
n
2

)
, be the edges of G sorted by length, that is,

d(e1) ≤ d(e2) ≤ · · · ≤ d(em). Clearly, the bottleneck
of an optimal k-ST is the length of an edge in E. For
an edge ei ∈ E, let Gi = (V,Ei) be the graph obtained
from G by deleting all edges of length greater than d(ei),
that is, Ei = {ej ∈ E : d(ej) ≤ d(ei)}.

The idea behind our algorithm is to devise a proce-
dure that, for a given edge ei ∈ E, does one of the
following:

(i) It either constructs a k-ST in G with bottleneck at
most 2d(ei), or

(ii) it returns the information that Gi does not contain
a k-ST.

Let ei ∈ E. For two terminals p, q ∈ R, let δi(p, q) be
a path between p and q in Gi with minimum number
of Steiner vertices. Let GR = (R,ER) be the complete
graph over R. For each edge (p, q) ∈ ER, we assign a
weight w(p, q) equal to the number of Steiner vertices in
δi(p, q). Let T be a minimum spanning tree of GR un-
der w, and put C(T) =

∑
e∈T bw(e)/2c. The following

observation follows from Lemma 3 in [20].

Observation 1 For any spanning tree T ′ of GR,
C(T) ≤ C(T ′).

Lemma 2 If Gi contains a k-ST, then C(T) ≤ k.

Proof. Let T ∗ be a k-ST in Gi. A Steiner tree is full if
all its terminals are leaves. It is well known that every
Steiner tree can be decomposed into a collection of full
Steiner trees, by splitting each of the non-leaf terminals.

23rd Canadian Conference on Computational Geometry, 2011

40

CCCG 2011, Toronto ON, August 10–12, 2011

We begin by decomposing T ∗ into a collection of full
Steiner trees. Next, for each full Steiner tree T ∗j in the
collection, we construct in GR a spanning tree T ′j of the
terminals of T ∗j , such that the union of these trees is
a spanning tree T ′ of GR and C(T ′) ≤ k. Finally, by
Observation 1, we conclude that C(T) ≤ k.

We now describe how to construct T ′j from T ∗j . Ar-
bitrarily select one of the Steiner vertices as the root of
T ∗j ; see Figure 2(a). The construction of T ′j is done by
an iterative process applied to T ∗j . In each iteration, we
select a deepest terminal p, among the terminals of the
current rooted tree that have not yet been processed.
From p we move up the tree until we reach a Steiner
vertex s that has terminal descendants other than p.
Let q, q 6= p, be a terminal descendant of s that is clos-
est to s. We connect p to q by an edge of weight equal
to the number of Steiner vertices between p and q in T ∗j ,
and remove the Steiner vertices between p and s (not
including s). After processing all terminals but one, we
remove all remaining Steiner vertices.

3

a

b

c d

2

3

(a)

(b)

s1

s2 s3

terminals

Steiners

h

1

s4

Figure 2: (a) The rooted tree T ∗j , and (b) the construc-
tion of T ′j .

In the example in Figure 2(b), we first select terminal
a, which is the deepest one, connect it to terminal b by
an edge of weight 3, and remove the vertices s1 and s2.
Next, we select terminal c, connect it to terminal d by an
edge of weight 1, and do not remove any Steiner vertex.
Next, we select terminal d, connect it to terminal h by
an edge of weight 2, and remove the vertex s3. In the

last iteration, we select terminal b, connect it to terminal
h by an edge of weight 3 and remove the vertex s4. We
can now remove all of the remaining Steiner vertices.

Clearly, the union T ′ of the trees T ′j is a spanning
tree of GR. We show below that C(T ′) ≤ k. Notice
that in each iteration during the construction of T ′j , if
the weight of the added edge e is w(e), then we re-
move at least bw(e)/2c Steiner vertices from T ∗j . This
implies that C(T ′j) =

∑
e∈T ′

j
bw(e)/2c ≤ kj , where kj

is the number of Steiner vertices in T ∗j , and, therefore,
C(T ′) =

∑
j C(T ′j) ≤ k. �

We now present our 2-approximation algorithm. We
consider the edges of E, one by one, by non-decreasing
length. For each edge ei ∈ E, we construct a minimum
spanning tree T of GR = (R,ER), using the weight
function w induced by Gi, and check whether C(T) ≤ k.
If so, we construct a k-ST in G with bottleneck at most
2d(ei), otherwise, we proceed to the next edge ei+1.

Algorithm 1 BST (G = (V,E), R, k)

1: Let e1, e2, . . . , em be the edges of E sorted by non-
decreasing length

2: GR = (R,ER)← the complete graph over R
3: C(T)←∞
4: i← 0
5: while C(T) > k do
6: i← i+ 1
7: construct the graph Gi
8: for each edge (p, q) ∈ ER do
9: w(p, q) ← the number of Steiner vertices in

δi(p, q)
10: construct a minimum spanning tree T of GR un-

der w
11: C(T)←∑

e∈T bw(e)/2c
12: Construct-k-ST (T,Gi)

The construction of a k-ST (line 12 in the algorithm
above) is done as follows. For each edge e = (p, q) ∈ T ,
we select at most bw(e)/2c Steiner vertices from the
path δi(p, q), to obtain a path connecting between p
and q with at most this number of Steiner vertices and
bottleneck at most 2d(ei); see Figure 3. Clearly, the
obtained Steiner tree contains at most k Steiner vertices
and its bottleneck is at most 2d(ei).

Lemma 3 The algorithm above constructs a k-ST in G
with bottleneck at most twice the bottleneck of an optimal
k-ST.

Proof. Let ei be the first edge satisfying the condition
C(T) ≤ k. Then, by Lemma 2, the bottleneck of any k-
ST in G is at least d(ei), and, therefore, the constructed
k-ST has a bottleneck at most twice the bottleneck of
an optimal k-ST. �

CCCG 2011, Toronto ON, August 10–12, 2011

41

23d Canadian Conference on Computational Geometry, 2011

qp

Figure 3: The constructed k-ST consists of the squares,
solid circles and dotted edges.

The following theorem summarizes the main result of
this section.

Theorem 4 There exists a polynomial-time 2-
approximation algorithm for the k-BST problem.

References

[1] A.K. Abu-Affash. On the Euclidean bottleneck
full Steiner tree problem. In Proceedings of the
27th ACM Symposium on Computational Geome-
try (SoCG ’11), pages 433–439, 2011.

[2] A.K. Abu-Affash, P. Carmi, M.J. Katz, and M. Se-
gal. The Euclidean bottleneck Steiner path prob-
lem. In Proceedings of the 27th ACM Symposium
on Computational Geometry (SoCG ’11), pages
440–447, 2011.

[3] S. Arora. Polynomial time approximation schemes
for Euclidean TSP and other geometric problems.
Journal of the ACM, 45:735–782, 1998.

[4] S. Arora, C. Lund, R. Motwani, M. Sudan, and
M. Szegedy. Proof verification and hardness of ap-
proximation problems. In Proceedings of the 33rd
Annual Symposium on Foundations of Computer
Science (FOCS ’92), pages 14–23, 1992.

[5] S.W. Bae, C. Lee, and S. Choi. On exact solutions
to the Euclidean bottleneck Steiner tree problem.
Information Processing Letters, 110:672–678, 2010.

[6] P. Berman and V. Ramaiyer. Improved approx-
imation for the Steiner tree problem. Journal of
Algorithms, 17:381–408, 1994.

[7] A. Borchers and D.Z. Du. The k-Steiner ratio in
graphs. SIAM Journal on Computing, 26:857–869,
1997.

[8] X. Cheng and D.Z. Du. Steiner Tree in Industry.
Kluwer Academic Publishers, Dordrecht, Nether-
lands, 2001.

[9] D.Z. Du, J.M. Smith, and J.H. Rubinstein. Ad-
vances in Steiner Tree. Kluwer Academic Publish-
ers, Dordrecht, Netherlands, 2000.

[10] M.R. Garey, R.L. Graham, and D.S. Johnson. The
complexity of computing Steiner minimal trees.
SIAM Journal of Applied Mathematics, 32(4):835–
859, 1977.

[11] M.R. Garey and D.S. Johnson. The rectilinear
Steiner tree problem is NP-complete. SIAM Jour-
nal of Applied Mathematics, 32(4):826–834, 1977.

[12] S. Hougardy and H.J. Prömel. A 1.598 approxima-
tion algorithm for the Steiner problem in graphs. In
Proceedings of the 10th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA ’00), pages
448–453, 1999.

[13] F.K. Hwang, D.S. Richards, and P. Winter. The
Steiner Tree Problem. Annals of Discrete Mathe-
matics, Amsterdam, 1992.

[14] A.B. Kahng and G. Robins. On Optimal Intercon-
nection for VLSI. Kluwer Academic Publishers,
Dordrecht, Netherlands, 1995.

[15] M. Karpinski and A. Zelikovsky. New approxi-
mation algorithms for the Steiner tree problem.
Journal of Combinatorial Optimization, 1(1):47–
65, 1997.

[16] Z.-M. Li, D.-M. Zhu, and S.-H. Ma. Approximation
algorithm for bottleneck Steiner tree problem in the
Euclidean plane. Journal of Computer Science and
Technology, 19(6):791–794, 2004.

[17] H.J. Prömel and A. Steger. A new approximation
algorithm for the Steiner tree problem with perfor-
mance ratio 5/3. Journal of Algorithms, 36(1):89–
101, 2000.

[18] G. Robbins and A. Zelikovsky. Tighter bounds for
graph Steiner tree approximation. SIAM Journal
on Discrete Mathematics, 19(1):122–134, 2005.

[19] M. Sarrafzadeh and C.K. Wong. Bottleneck Steiner
trees in the plane. IEEE Transactions on Comput-
ers, 41(3):370–374, 1992.

[20] L. Wang and D.-Z. Du. Approximations for a bot-
tleneck Steiner tree problem. Algorithmica, 32:554–
561, 2002.

[21] L. Wang and Z.-M. Li. Approximation algorithm
for a bottleneck k-Steiner tree problem in the
Euclidean plane. Information Processing Letters,
81:151–156, 2002.

23rd Canadian Conference on Computational Geometry, 2011

42

CCCG 2011, Toronto ON, August 10–12, 2011

Connecting Two Trees with Optimal Routing Cost ∗

Mong-Jen Kao¶ Bastian Katz§ Marcus Krug§ D.T. Lee¶† Martin Nöllenburg§‡ Ignaz Rutter§

Dorothea Wagner§

Abstract

We study the problem of finding the optimal connection
between two disconnected vertex-weighted trees. We
are given a distance function on the vertices and seek
to minimize the routing cost of the tree resulting from
adding one single edge between the two trees. The rout-
ing cost is defined as the sum of the weighted distances
between all pairs of vertices in the induced tree-metric.
The problem arises when augmenting and/or repairing
communication networks or infrastructure networks.

We present an asymptotically optimal quadratic-time
algorithm for the general case and show that the prob-
lem can be solved more efficiently for the Euclidean met-
ric, when vertices are mapped to points in the plane, as
well as for compactly representable graph metrics.

1 Introduction

In the construction of communication and infrastructure
networks we often have to find a reasonable balance be-
tween the cost for establishing the links between the ver-
tices in the network and the performance of the network
in terms of various quality measures, such as routing
cost, connectivity and diameter. While the cost should
be minimized and increases with each established link,
the performance of the network should be maximized
and typically improves when more links are added. This
tradeoff can be formalized in different ways. However,
motivated by practical applications of this problem it
is quite common to assume that we are given a lim-
ited budget for the construction cost and wish to op-
timize the performance of the network subject to this
constraint.

The Optimal Network Problem, which has been intro-
duced by Scott [8], addresses the problem of optimizing

∗Supported by NSC-DFG Projects NSC98-2221-E-001-007-
MY3 and WA 654/18.
†Also supported by the Institute of Information Science,

Academia Sinica, Taiwan.
‡Supported by the Concept for the Future of KIT under project

YIG 10-209 within the framework of the German Excellence Ini-
tiative
§Faculty of Informatics, Karlsruhe Institute of Technology

(KIT), firstname.lastname@kit.edu
¶Dep. of Computer Science and Information Engineering,

National Taiwan University, Taiwan, d97021@csie.ntu.edu.tw,

dtlee@csie.ntu.edu.tw

the routing cost of a network, defined by the sum of
the shortest paths between all pairs of vertices in the
graph. Due to its importance for communication net-
works, this problem has received considerable attention,
among others by Dionne and Florian [1] and Wong [10].

If the budget for establishing the links in a network
is rather tight, a tree is often the only affordable infras-
tructure. However, Johnson et al. [6] prove that the op-
timal network problem is NP-complete, even if all edges
have the same length and the network must be a tree.
This problem is also called the Minimum Routing Cost
Spanning Tree Problem (MRCST). More recently, Wu et
al. presented an FPTAS for this problem [11] and Fis-
chetti et al. [3] studied exact algorithms for computing
the minimum routing cost spanning tree.

We consider the related problem of connecting a dis-
connected tree-network by adding a missing edge or re-
pairing a broken network by removing the broken edge
and establishing a new link.

1.1 Problem Definition

More formally, we consider the following problem. We
are given a set of vertices V as well as some distance
function d on V such that d(v, v) = 0 and d(u, v) =
d(v, u) ≥ 0 for all vertices u, v ∈ V . Further, we are
given a partition of V = V1 ∪ V2 and two disjoint trees
T1 = (V1, E1) and T2 = (V2, E2) on V1 and V2, respec-
tively. We write n = |V |, m = |E|, ni = |Vi| and
mi = |Ei| for i ∈ {1, 2}. For each tree T on a subset
V ′ ⊆ V , we consider the tree metric dT , which is de-
fined on V ′ such that the distance between u, v ∈ V ′ is
equal to the sum of the distances on the uniquely de-
fined path between u and v. Further, we assume each
vertex v ∈ V has some non-negative demand c(v). For
V ′ ⊆ V we write c(V ′) :=

∑
v∈V ′ c(v) as a shorthand.

We define the weighted routing cost of T as

rc(T) =
∑

(u,v)∈V×V
c(u) · c(v) · dT (u, v) .

The demands can be considered to be an indicator
for the importance of the vertices in the network. The
amount of traffic between two vertices in the network
is scaled by the product of the demands modeling the
fact that important vertices are usually involved in more
traffic than less important vertices and that the traffic

CCCG 2011, Toronto ON, August 10–12, 2011

43

23d Canadian Conference on Computational Geometry, 2011

Figure 1: Two vertex-weighted trees and best connec-
tion (dashed).

between two important vertices is usually larger than
that between an important and a less important vertex.

The Optimal Routing Cost Augmentation Problem is
to find vertices u ∈ V1 and v ∈ V2 such that the routing
cost of the tree Tuv = (V,E1 ∪E2 ∪{uv}) is minimized;
see Figure 1 for an example.

For the Optimal Routing Cost Replacement Problem
we are additionally given a pair of vertices u ∈ V1 and
v ∈ V2 that should be excluded from the solution (since
the corresponding edge must be replaced). We can solve
this problem by simultaneously computing the best and
second-best solution. If the best solution coincides with
uv, then we return the second-best solution.

1.2 Contribution

In Section 2 we consider general distance functions. We
show that both the optimal routing cost augmentation
problem and the optimal routing cost replacement prob-
lem can be solved in Θ(n1 · n2) time, which is optimal.
In Section 3 we assume that vertices are points in the
plane and that the distance between points is equal to
the Euclidean distance. We show that both the aug-
mentation problem and the replacement problem can
be solved more efficiently in O(n log min{n1, n2}) time
by querying the additively weighted Voronoi diagram
of a suitably chosen set of points. We adapt this idea
to general graph metrics by computing the additively
weighted Voronoi diagram on graphs in Section 4. This
yields an O(n log n)-time algorithm for compactly rep-
resentable metrics, i.e., metrics that are representable
as sparse graphs. We conclude with some remarks and
open problems in Section 5.

2 An optimal algorithm for the general case

In this section, we consider general distance functions
on the vertex set. We show that the problem can be
solved in Θ(n1 · n2) time, which is optimal. For ease
of notation we write C1 = c(V1) and C2 = c(V2) for
the total demand in T1 and T2, respectively. Given two

vertices u ∈ V1 and v ∈ V2, the routing cost of the tree
Tuv resulting from joining T1 and T2 by the edge uv is
given by

rc(Tuv) = rc(T1) + rc(T2)

+ C2 ·
∑

u′∈V1

c(u′) · dT1(u′, u)

+ C1 ·
∑

v′∈V2

c(v′) · dT2
(v, v′)

+ C1 · C2 · d(u, v) .

(1)

It is composed of the routing cost inside the subtrees T1
and T2 of Tuv, respectively, and the routing cost effected
by the shortest paths using the edge uv between the two
trees. Since the total sum of demands for these paths
equals C1 · C2, the edge uv contributes a total amount
of C1 ·C2 ·d(u, v) to the routing cost. Furthermore, each
shortest path starting at u′ in T1 and ending at u can be
extended to a shortest path ending at some vertex v′ in
T2. Hence, each shortest path of this kind contributes
its length, weighted by its demand c(u′) and the total
sum of the demands C2 in T2, to the routing cost. The
situation is symmetrical for the paths starting in T2 and
ending at v.

Since the routing costs of T1 and T2 do not depend on
the choice of the link between the two trees, our problem
is equivalent to minimizing the remaining summands in
equation (1).

We define the weight of a vertex u ∈ V1, denoted
by w(u), as the sum of lengths of all shortest paths
starting at u′ ∈ V1 and ending at u, weighted by the
demand of u′, i.e.,

w(u) =
∑

u′∈V1

c(u′) · dT1
(u′, u) .

We define the weight of a vertex v ∈ V2, denoted by
w(v), analogously. Hence, we seek to minimize the term

rc′(Tuv) = C2w(u) + C1w(v) + C1 · C2 · d(u, v) (2)

over all possible combinations of u ∈ V1 and v ∈ V2.
The weights of the trees can be computed in linear

time as follows. First we compute the total demands in
T1 and T2, respectively. We compute the weights in T1
by rooting the tree in some vertex r and performing one
bottom-up pass over the tree, followed by a top-down
pass. For a vertex u in T1 we denote the subtree rooted
in u by Tu.

In the bottom-up pass, we compute two values for
each vertex u ∈ V1: the total demand γ(u) of the ver-
tices in Tu, and the sum λ(u) of the shortest paths start-
ing at some vertex u′ in Tu and ending at u, weighted
by the demand of u′, i.e.,

γ(u) =
∑

u′∈V (Tu)

c(u′)

23rd Canadian Conference on Computational Geometry, 2011

44

CCCG 2011, Toronto ON, August 10–12, 2011

and

λ(u) =
∑

u′∈V (Tu)

c(u′)d(u′, u) .

For a vertex u with children u1, . . . , uk these values can
be computed in linear time as

γ(u) = c(u) +

k∑

i=1

γ(ui)

and

λ(u) =
k∑

i=1

(
λ(ui) + γ(ui) · d(ui, u)

)
,

respectively. In the top-down pass, we compute the
weight for each vertex v ∈ V1. For the root r this weight
is equal to λ(r). For a vertex v with father u ∈ V1 the
weight can be computed by

w(v) = w(u) + (C1 − 2γ(v))d(u, v) .

This equation is due to the fact that the weight of v is
obtained from the weight of u by removing the demand
γ(v) in the subtree of v from the edge uv and adding
the remaining demand C1−γ(v) to the edge uv. For T2
we proceed analogously.

Having this, we can compute the best and second-
best connection between the two trees by enumerating
all possible pairs uv such that u ∈ V1 and v ∈ V2, which
yields a total running time of O(n1 · n2). Note, that
the described algorithm only finds the best or second-
best solution, but does not compute the routing cost of
this solution. If we have no restriction on the distance
between the vertices, however, the algorithm is optimal.

Theorem 1 The optimal routing cost augmentation
problem and the optimal routing cost replacement prob-
lem can be solved in O(n1 ·n2) time for general distance
function. This is optimal in the algebraic decision tree
model.

Proof. We have already outlined the algorithm and ar-
gued why it runs within the stated time complexity. It
remains to show the lower bound on the running time.
For this, we assume that we are given a set of inte-
gers a1, . . . , aN . We construct an instance of the opti-
mal routing cost augmentation problem such that find-
ing the minimum routing cost connection between the
two trees is equivalent to the minimum of the numbers
a1, . . . , aN . For this problem, we need at least N − 1
comparisons in the algebraic decision tree model of com-
putation.

Let N = n1n2 be any factorization of N and let V be
a set of n1 + n2 vertices. Further, let V1, V2 ⊆ V be a

partition of V such that |V1| = n1 and |V2| = n2 and let
T1 and T2 be two arbitrary trees on V1 and V2, respec-
tively. We set the distance between two vertices in the
same tree equal to one. Let x : V1 × V2 → {a1, . . . , aN}
be a bijective mapping between the pairs of vertices in
V1 and V2 and the numbers ai. Then we choose the
remaining distances as follows. Let W1 and W2 be the
maximum weights of the vertices in T1 and T2, respec-
tively. For u ∈ V1 and v ∈ V2 we define

d0(u, v) = C2W1 + C1W2 − C2w(u) + C1w(v) .

Further, we set

d(u, v) =
d0(u, v) + x(u, v)

C1C2
.

Then rc′(Tuv) = C2W1 + C1W2 + x(u, v). For both the
augmentation and the replacement problem we need to
compute the minimum routing cost solution. However,
minimizing the routing cost for the given instance is
equivalent to computing the minimum over the values
x(u, v) for u ∈ V1 and v ∈ V2. Hence, in the algebraic
decision tree model of computation, we need at least
n1 ·n2− 1 comparisons, which completes the proof. �

3 An Efficient Algorithm for the Euclidean Metric

The proof for the lower bound in the previous section
crucially exploits the fact that we can choose distances
between the vertices in an arbitrary fashion. If this is
not the case, we can come up with more efficient algo-
rithms.

In this section we consider the case that vertices are
points in the plane and that the considered metric d
is the Euclidean metric. In this case, we can com-
pute the best connection between two trees in O((n1 +
n2) log min{n1, n2}) time. Throughout the section, we
do not distinguish between vertices and points.

Theorem 2 The optimal augmentation problem for
the Euclidean metric can be solved in O((n1 +
n2) log min{n1, n2}) time.

Proof. Without loss of generality we may assume that
n2 ≤ n1. Let σ : R2 → R2 be an isotropic scaling with
scale factor s = C1 · C2, i.e., σ scales distances by a
factor s and we thus have

d(σu, σv) = C1 · C2 · d(u, v) . (3)

Let σV1 and σV2 denote the scaled sets of points.
For x ∈ R2 and ṽ ∈ σV2 we define a new distance

function, defined by d+(x, ṽ) := d(x, ṽ)+C1·w(v), where
w is defined as in the previous section. The additively
weighted Voronoi cell of ṽ is the locus of points

{x ∈ R2 | ∀ũ ∈ σV2 \ {ṽ} : d+(x, ṽ) < d+(x, ũ)} (4)

CCCG 2011, Toronto ON, August 10–12, 2011

45

23d Canadian Conference on Computational Geometry, 2011

The additively weighted Voronoi diagram V defined
by d+ consists of the additively weighted Voronoi cells of
the points in σV2 and can be computed in O(n2 log n2)
time [4].

For each point u ∈ V1, we locate the nearest neighbor
σv of σu in V using an algorithm with O(log n2) query
time described by Kirkpatrick [7]. Then σv satisfies

d+(σu, σv) = min
v′∈V2

d+(σu, σv′) (5)

and we have

d+(σu, σv) = d(σu, σv) + C1 · w(v) (6)

= C1 · C2 · d(u, v) + C1 · w(v) . (7)

Hence, v ∈ V2 is the best endpoint of an edge starting
at u ∈ V1 with respect to routing cost. Minimizing
C2 ·w(u)+d+(σu, σv) over all vertices σu ∈ V1 and their
respective nearest neighbor σv ∈ V2 will thus minimize
the overall routing cost. The resulting overall running
time is O(n1 log n2 + n2 log n2). �

In order to solve the replacement problem, we also
need to compute the second-best solution. We can do
this as follows. Let u∗ ∈ V1 and v∗ ∈ V2 be the best solu-
tion computed by the algorithm above. This algorithm
can trivially be modified to simultaneously compute

min
u∈V1\{u∗},v∈V2

rc′(Tuv)

in the same time complexity. By additionally computing
the Voronoi diagram only for the points in V2 \{v∗} and
repeating the algorithm on this instance, we can also
compute

min
u∈V1,v∈V2\{v∗}

rc′(Tuv) .

Clearly, the second-best solution is either of the two.
Hence, we have the following corollary.

Corollary 1 The optimal routing cost replacement
problem for the Euclidean metric can be solved in time
O((n1 + n2) log n2).

Note that the same approach can also be used in a
planar setting, i.e., when the newly introduced edge con-
necting the two trees may not intersect any other edge
of the two trees. In this case we compute an additively
weighted constrained Voronoi diagram, which can be
done by adapting Fortune’s sweepline algorithm [4] with
O(n log n) running time. In a constrained Voronoi di-
agram, we are given an additional set of line segments
representing obstacles. Whenever the straight line con-
necting two points intersects one of the obstacles, the
distance between the two points is assumed to be infin-
ity, otherwise, it is equal to the (weighted) Euclidean

distance between the points. In our application each
edge defined by one of the trees is one such obstacle.
Seidel shows how to adapt Fortune’s algorithm to com-
pute the constrained Voronoi diagram [9]. The adap-
tion to additively weighted sites has been sketched in
Fortune’s original paper [4].

Corollary 2 The planar augmentation problem for the
Euclidean metric can be solved in O((n1 + n2) log n2)
time.

4 General Metrics

Every finite metric d can be encoded by a finite graph
M = (V,D) where each edge e ∈ D has some length
`(e) and the distance d between two vertices in V is
equal to the sum of the lengths of the shortest path
between the vertices in the graph in terms of the edge
lengths. We can directly translate our idea from the pre-
vious section to this setting by computing the additively
weighted Voronoi diagram in M instead. Although the
computation of various Voronoi diagrams on graphs has
been considered by Hurtado et al. [5], among them a
multiplicatively weighted Voronoi diagram, we are not
aware of any investigation of the additively weighted
Voronoi diagram on graphs. The following theorem is
similar to the results by Hurtado et al. [5]. We assume
that the additively weighted Voronoi diagram of a a set
of sites S ⊆ V on a metric graph G = (V,E) is com-
pletely known if every vertex v ∈ V \S knows its nearest
neighbor in S and we know the bisector point for each
edge, if it exists.

Theorem 3 The additively weighted Voronoi diagram
of a set of sites S ⊆ V on a graph G = (V,E) has
complexity Θ(m) and can be computed in time O(m +
n log n).

Proof. Each edge of the graph contains at most one
bisector point, since moving along the edge will alter
the additively weighted distances by the same amount—
either increasing or decreasing—for all distances. Hence
we have at most m bisector points. On the other
hand, we can have exactly m bisectors by setting V ′ =
V . Hence, the complexity of the additively weighted
Voronoi diagram is Θ(m).

To compute the additively weighted Voronoi diagram
in G we use the parallel Dijkstra algorithm proposed by
Erwig [2] with running time O(m+n log n). To compute
the diagram, we run Dijkstra’s algorithm in parallel us-
ing the vertices in S as starting points. For a vertex
v ∈ V \S and some vertex s ∈ S the distance between v
and s is ds(v, s) = dG(v, s) + w(s). Whenever a vertex
v ∈ V \S is settled, we update its closest neighbor in S.
The bisector points can be computed in O(m) time from
this information. �

23rd Canadian Conference on Computational Geometry, 2011

46

CCCG 2011, Toronto ON, August 10–12, 2011

Using this result, we can almost directly translate the
technique for the Euclidean case to the general metric
case studied in this section.

Theorem 4 The optimal routing cost augmentation
problem for general metrics can be solved in time O(m+
n log n) if the metric is given by a graph M = (V,D)
with edge length function `.

Proof. Instead of scaling the point set as in the Eu-
clidean case, we scale the lengths of the edges in G by
a factor C1C2, i.e., instead of using ` to assess the dis-
tance between two vertices in M , we use C1C2`. The
rest of the proof is completely analogous. We compute
the additively weighted Voronoi diagram on M for the
set of sites V2. Then we locate the vertex u ∈ V1 that
minimizes C2 · w(u) + d+(u, v) where d+(u, v) is the
scaled and additively weighted distance between u and
its closest neighbor v. The resulting time complexity is
O(m+ n log n). �

Again we can proceed as in the Euclidean case in
order to compute the second-best connection between
the two trees.

Corollary 3 The optimal routing cost replacement
problem for general metrics can be solved in time O(m+
n log n) if the metric is given by a graph M = (V,D)
with edge length function `.

Although this result does not provide an asymptotic
improvement in the worst-case, it does show that we
can efficiently solve the augmentation problem for com-
pactly representable metrics. If the graph representing
the metric is sparse, then the above theorem states that
we can solve the augmentation problem in O(n log n) as
in the Euclidean case.

5 Comments and Open Problems

We have studied a special class of augmentation prob-
lems, where the goal is to find the best connection be-
tween two disconnected trees in terms of routing cost.
Although the problem can not be solved in subquadratic
time for general distance functions in the algebraic de-
cision tree model, it can be solved in O(n log n) time for
the Euclidean metric and sparse graph metrics.

It is an open question, for which graph metrics the
problem can be solved in sub-quadratic time. Also,
there are some interesting variants of the problem, for
instance, when there are more than two disconnected
trees. This problem arises, when a vertex of the net-
work fails to work. Additionally, we could consider a
Steiner-variant of the problem, in which we are allowed
to introduce an additional vertex to which the discon-
nected components must be connected.

References

[1] R. Dionne and M. Florian. Exact and approximate
algorithms for optimal network design. Networks,
9:37–60, 1979.

[2] Martin Erwig. The graph Voronoi diagram with
applications. Networks, 36(3):156–163, 2000.

[3] Matteo Fischetti, Giuseppe Lancia, and Paolo Ser-
afini. Exact algorithms for minimum routing cost
trees. Networks, 39(3):161–173, 2002.

[4] Steven Fortune. A sweepline algorithm for Voronoi
diagrams. Algorithmica, 2:153–174, 1987.

[5] Ferran Hurtado, Rolf Klein, Elmar Langetepe,
and Vera Sacristán. The weighted farthest color
Voronoi diagram on trees and graphs. Computa-
tional Geometry, 27(1):13 – 26, 2004.

[6] D. S. Johnson, J. K. Lenstra, and A. H. G. Rin-
nooy Kan. The complexity of the network design
problem. Networks, 8(4):279–285, 1978.

[7] David Kirkpatrick. Optimal search in planar subdi-
visions. SIAM Journal on Computing, 12(1):28–35,
1983.

[8] A. J. Scott. The optimal network problem: Some
computational procedures. Transportation Re-
search, 3(2):201–210, 1969.

[9] R. Seidel. Constrained Delaunay triangulations
and Voronoi diagrams with obstacles. Technical
Report 260, IIG-TU Graz, Austria, 1988.

[10] Richard T. Wong. Worst-case analysis of network
design problem heuristics. SIAM Journal on Alge-
braic and Discrete Methods, 1(1):51–63, 1980.

[11] Bang Ye Wu, Giuseppe Lancia, Vineet Bafna, Kun-
Mao Chao, R. Ravi, and Chuan Yi Tang. A
polynomial-time approximation scheme for mini-
mum routing cost spanning trees. SIAM J. Com-
put., 29:761–778, 1999.

CCCG 2011, Toronto ON, August 10–12, 2011

47

23rd Canadian Conference on Computational Geometry, 2011

48

CCCG 2011, Toronto ON, August 10–12, 2011

Minimum Many-to-Many Matchings for Computing the Distance Between
Two Sequences

Mustafa Mohamad ∗ David Rappaport † Godfried Toussaint ‡

Abstract

Motivated by a problem in music theory of measuring
the distance between chords and scales we consider algo-
rithms for obtaining a minimum-weight many-to-many
matching between two sets of points on the real line.
Given sets A and B, we want to find the best rigid
translation of B and a many-to-many matching that
minimizes the sum of the squares of the distances be-
tween matched points. We provide a discrete algorithm
that solves this continuous optimization problem, and
discuss other related matters.

1 Introduction

Measuring the similarity between two sequences is a
problem that arises in many fields including: com-
putational biology [1], computational music theory
[11],[12], [13] computer vision [5], and natural language
processing [2]. There is a variety of ways to measure
the distance between two sequences depending on
the specific field of study. Let A = {a1, a2, . . . , am}
denote points on a line, such that ai < ai+1 for all
i, 1 ≤ i ≤ m − 1. Similarly we use B = {b1, b2, . . . , bn}
to denote a sorted set of distinct points on a line. A
many-to-many matching pairs one point in A to at
least one point in B and vice versa. Given a cost
function d(a, b) defined on each matched pair, the cost
of the matching is the sum of the costs of all matched
pairs. A minimum-weight many-to many matching is
one that minimizes cost. We can use the value of the
cost of the minimum-weight many-to-many matching
to measure the distance between A and B, which we
denote by d(A,B).

Our result. We tackle this problem with two different
cost measures for d(a, b). The first is the absolute value

∗School of Computing, Queen’s University, Kingston, ON
mustafa@cs.queensu.ca.
†School of Computing, Queen’s University, Kingston, ON

Research supported by NSERC Discovery Grant 388-329.
daver@cs.queensu.ca
‡Department of Music, Harvard University, Cambridge, MA,

Department of Computer Science, Tufts University, Medford, MA,
School of Computer Science, McGill University, Montreal, QC.
godfried@cs.mcgill.ca

of the difference:

d1(a, b) = |a− b| (1)

The second is the square of the difference:

d2(a, b) = d21 (2)

We review algorithms for computing these measures
to characterize their differences.

A more difficult version of this problem considers sim-
ilarity measures between A and B allowing rigid trans-
lation. That is, we define Bt = {b1 + t, b2 + t, ..., bn + t}
as a rigid translation of B by the amount t. We
present algorithms for computing the minimum-weight
many-to-many matching between A and B under such
rigid translations. We provide an O(mn) algorithm for
computing the minimum d1(A,Bt) and an O(3mn) for
computing the minimum d2(A,Bt). The theoretical
upper bound for our algorithm for minimizing d2(A,Bt)
is useful to show that our algorithm is guaranteed to
terminate. We also provide experimental results that
exhibits polynomial running time of our algorithm on
random data.

Preliminaries. In what follows we use N to denote the
size of the input. Previous work by Karp and Li [7] and
Werman et al. [14] propose an O(N logN) algorithm
for computing the minimum weight one-to-one match-
ing for two equal cardinality point set. The minimum-
weight one-to-one matching in this case is the identity
matching which is computed by first sorting the points
and then mapping a point ai to a point bi. Karp and Li
[7] also solve the case where |A| 6= |B| in O(N logN).
Colannino et al. [3] extended the work of Karp and Li [7]
to compute the minimum-weight many-to-one matching
on the real line in O(N logN). All these results are for
the d1 measure.

The minimum-weight many-to-many matching has
also been studied extensively. In a graph theoretic set-
ting, this is equivalent to finding a minimum-weight
edge cover of a complete bipartite graph. For an
arbitrary bipartite graph, the minimum-weight edge
cover can be computed by reducing the problem to the
the minimum-weight perfect matching problem [6], [10]
which can be computed in O(N3) time using the Hun-
garian Algorithm proposed by Kuhn [8]. There is an

CCCG 2011, Toronto ON, August 10–12, 2011

49

23d Canadian Conference on Computational Geometry, 2011

O(Nω) algorithm for optimal weighted matching in bi-
partite graphs due to Mucha and Sankowski [9], where
ω is the exponent in the best matrix multiplication algo-
rithm (currently ω = 2.38). For the special case where
A and B are points on the real line and using the d1
weight, Colannino et al. [4] provide an O(N logN) al-
gorithm.

2 Computing a Minimum-Weight Many-to-Many
Matching

We review the O(N logN) algorithm for solving the
minimum-weight many-to-many matching problem us-
ing the d1 measure due to Colannino et al. [4], and
then show why properties that are used to gain efficien-
cies do not hold when using the d2 measure. Without
loss of generality, the set A is assumed to have the left-
most element in A ∪ B. The algorithm partitions the
set of sorted points into P0, P1, P2, ... subsets such that
all points in Pi are less than all points in Pi+1, where
P0 is a maximal subset of consecutive points in A, P1 is
a maximal subset of consecutive points in B, and so on
(see Figure 1).

Figure 1: Partitioning of the set A ∪B

We use the term consecutive partitions to refer to two
neighbouring partitions such as P0 and P1. The match-
ing is computed using an optimized dynamic program-
ming approach that uses special properties of the struc-
ture of the optimal matching to reduce the complexity
of the dynamic program from O(mn) to O(N) for sorted
point sets. One of the d1 properties that allows for an
efficient algorithm is the fact that the optimal way to
match s consecutive points in two consecutive partitions
is to use the identity matching where ai is paired with
bi for i = 1...s. However, this property does not hold
for the d2 measure (see Figure 2). With the d2 measure
all possibilities of matching two subsets of s points in
two consecutive partitions must be checked.

In order to compute the many-to-many matching that
minimizes d2(A,B) we use a dynamic programming al-
gorithm. (Note: A similar dynamic programming algo-
rithm has been described by Tymoczko [13]). The algo-

3 4 5

321

3 4 5

321

A

B

Figure 2: The identity matching on the left is optimal
for d1 with d1(A,B) = 6. However it is not optimal for
d2 where d2(A,B) = 12. The matching on the right is
optimal for d2 with d2(A,B) = 10. As can be seen the
edge (2, 4) is only optimal for d2 if ε >

√
2 or ε < −

√
2

rithm stores the optimal solutions to each subproblem in
a table, W , of dimension m× n. The entry wij in table
W stores the optimal matching, d2(Ai, Bj), of Ai and
Bj , where Ai = {a1, a2, ..., ai} and Bj = {b1, b2, ..., bj}.
Therefore, the entry wmn will store the weight of the
minimum weight many-to-many matching. Refer to Al-
gorithm 1 for the pseudocode. The following lemma
proves our claim that wmn stores the minimum weight.

Lemma 1 The optimal value of Wij is given by W ∗ +
d(ai, bj) where W ∗ = min(Wi−1,j ,Wi,j−1,Wi−1,j−1)

Proof. Suppose we have a many-to-many matching M
of Ai and Bj such that {ai, bj} /∈ M . Therefore ai
is matched with a b` ∈ Bj such that b` < bj and bj
is matched with an ak ∈ Ai with ak < ai. Observe
that the cost of this matching can be lowered by replac-
ing {ai, b`} and {ak, bj} by {ai, bj} and {ak, b`}, be-
cause (bj − ak)2 + (ai − b`)2 − (ak − b`)2 − (ai − bj)2 =
(ai − ak)(2bj − 2b`) is positive. This implies that the
edge {ai, bj}must be part of the minimal many-to-many
matching of Ai and Bj . Furthermore, the edge {ai, bj}
is connected to a minimum cost many-to-many match-
ing of Ai−1 and Bj or Ai and Bj−1 or Ai−1 and Bj−1.
Since the best subproblem is chosen, Wij must be opti-
mal. �

Once table W is computed, the actual matching can
be extracted from it in O(mn) time. The idea is to
traverse table W from the entry Wm,n backwards until
the entry W1,1 is reached. At each step in the traver-
sal, there are three choices to make and the one with
the minimum weight is chosen. Clearly the combined
complexity of both algorithms is bounded by the size of
table W , therefore the total complexity of finding the
minimum-weight matching is O(mn).

3 Finding the Minimum-Weight Many-to-Many
Matching under Translations

Given sets of points on a line A and B, a coincident pair
is a point a ∈ A and a point b ∈ B such that a = b.
When using the d1 measure we show that there is always

23rd Canadian Conference on Computational Geometry, 2011

50

CCCG 2011, Toronto ON, August 10–12, 2011

Algorithm 1 Dynamic programming algorithm to
compute the minimum weight many-to-many matching
using the d2 measure

{Initialization}
W1,1 ← d(a1, b1)
for i = 2 to m do
Wi,1 ←Wi−1,1 + d(ai, b1)

end for
for j = 2 to n do
W1,j ←W1,j−1 + d(a1, bj)

end for
{Main Loop}
for i = 2 to m do
for j = 2 to n do
W ∗ ← min(Wi−1,j ,Wi,j−1,Wi−1,j−1)
Wi,j ←W ∗ + d(ai, bj)

end for
end for
{Wmn stores the weight of the optimal many-to-many
matching}
return Wmn

an instance of the optimal many-to-many matching un-
der translation with a coincident pair.

Lemma 2 LetM be a many-to-many matching of point
sets A and B. Then there exists a rigid translation t of
the point set B yielding at least one coincident pair such
that:

∑

{ai,bj}∈M
|ai − bj − t| ≤

∑

{ai,bj}∈M
|ai − bj |. (3)

Proof. If a point from A coincides with a point from
B then we are done. For a ∈ A, b ∈ B, and {a, b} ∈M
an edge is a left edge if a < b and a right edge if a > b.
Since none of the points coincide, we don’t have the case
where a = b. If the number of left edges is greater than
the number of right edges we set t for a rigid translation
that moves the points B to the right to encounter the
first coincident pair, and if the number of right edges is
greater than or equal to the number of left edges we set
t for a rigid translation that moves the points B to the
left to encounter the first coincident pair. In either case
it is easy to verify that we get the desired inequality. �

Lemma 2 implies that an optimal many-to-many min-
imum weight matching allowing translations can be
found in O(mn) time by applying the algorithm due
to Colannino et al. [4] to each alignment of A and B
that realizes a coincident pair.

The same argument cannot be extended to the d2
measure. To see this, suppose A = (a1 = 2, a2 = 4, a3 =
6), B = (b1 = 2, b2 = 4). Aligning any element of
A with any element of B results in a d2(A,B) = 4.

On the other hand, if we translate B by t = 1, we get
d2(A,B1) = 3. In fact, this is still not optimal. The op-
timal value is t = 1.33, where d2(A,B1.33) = 2.667. To
the best of our knowledge, currently, there does not ex-
ist an ”easy” way of computing the optimal translation,
toptimal, that would lead to minimizing d2(A,Bt).

We have developed an algorithm that uses a finite
number of steps to find toptimal. Let M be the match-
ing for d2(A,B). In table W in Algorithm 1, Wi,j =∑
{ai,bj}∈M (ai − bj)2. We now add the translation vari-

able, t, to every entry of the table W . The modified en-
try is Wi,j =

∑
{ai,bj}∈M (ai − bj − t)2. Therefore the

cost of a matching is captured by the function:

f(t) =
∑

{ai,bj}∈M
(ai − bj − t)2 (4)

In order to find the t value that optimizes f(t) we
take the first derivative of f(t) and set it to zero to get

t =

∑

{ai,bj}∈M
(ai − bj)

|M | . (5)

Our approach is to iteratively translate the point set
B by a positive amount a finite number of times, ensur-
ing that we do not pass over an optimal location for B.
Recall that to compute the value ofWi,j , the cost of edge
{ai, bj} is summed to one of the following three subprob-
lems: Wi−1,j ,Wi,j−1,Wi−1,j−1. Therefore a change in
W happens when one of the non-chosen subproblems
becomes a better choice than the currently chosen sub-
problem. Graphically, each subproblem is represented
by a parabola, therefore it is easy to determine where
a change might happen by computing the intersection
of the parabola representing the current choice with the
parabolas representing the two other choices. Using this
idea we formulate an algorithm for finding the optimal
translation, toptimal. We start with the set B all the
way to the left of A and compute W . Next, we find all
intersections between each chosen subproblem (i.e part
of the matching) and the two non-chosen subproblems
related to it. Out of all intersections, we pick the one
with the smallest positive t value. We translate B by
this t value and repeat the process until B is translated
all the way to the right of A. We store the minimum cost
for the matchings as B is being translated. This process
guarantees that at least one of the iterations finds the
best many-to-many matching. Once B has been trans-
lated all the way to the right of A, we pick the smallest
value out of all stored values.(Refer to Algorithm 2).

To bound the number of iterations that the algorithm
uses and to show that it terminates we define a table, F ,
that stores the choice of the subproblem made for each
entryWij inW . Entries in the table store the values 1 or
2 or 3 depending on whether Wi−1,j−1,Wi−1,j ,Wi,j−1 is
the optimal subproblem for Wij . We use Fk to represent

CCCG 2011, Toronto ON, August 10–12, 2011

51

23d Canadian Conference on Computational Geometry, 2011

Algorithm 2 Algorithm for computing d2(A,Bt)

{Initialization}
results← an empty list
{Shift B to the left of A (i.e. bn = a1)}
t← 0
limit ← am {Used to stop the loop when all of B is
the right of A (i.e. b1 = am)}
while b1 ≤ limit do

Compute optimal matching M for (A,Bt) using Al-
gorithm 1
Compute the minimum cost R for M using equa-
tion 5
Add (R,M) to results
for i from 2 to m do
for j from 2 to n do
intersects[i, j]← positive intersections of cur-
rent subproblem with the other two subprob-
lems for Wi,j

end for
end for
nexTrans← min(intersects[i, j])
Bt ← Bt + nextTrans
t← t+ nextTrans

end while
index = min(first column of results)
bestMatching ← results[index, 2]
return bestMatching

the state of table F at the end of iteration k of the
algorithm.

Theorem 1 Algorithm 2 terminates after O(3mn) iter-
ations.

Proof. There are three possible values for every entry
in the m× n table F , so O(3mn) is an upper bound on
the total number of distinctly different instances of F .
We argue that no two instances of F , Fk , and F` at
iterations k and ` respectively, are identical. Assume
for the sake of contradiction that such a pair of tables
exist. Thus, the algorithm will iterate forever in a cycle
between these instances. Recall that at each iteration of
the algorithm we translate the pointsB by some positive
t. Therefore, at iteration ` the location of the points B,
call it B`, are to the right of the points at iteration
k, Bk. Since we are in a cyclic pattern we have F`+1

identical to Fk+1, and so on as the cycle repeats. This
implies that there are a pair of parabolas, p and q that
have infinitely many intersection points, a contradiction.
Thus, Algorithm 2 cannot cycle, and must terminate
after O(3mn) iterations. �

Theorem 2 Algorithm 2 computes d2(A,Bt)

Proof. Assume there is a translation, t, of the set
B for which a minimal d2(A,Bt) is realized. Clearly,

a1 − bn ≤ t ≤ am − b1. Therefore, t must correspond
to a matching in which B falls within the above range.
Algorithm 2 considers all possible matchings between
A and B that occur as B is being translated within
(a1−bn, am−b1). It does so by recomputing the match-
ing every time one of the subproblems becomes a better
choice than any other subproblem anywhere in table
W . Therefore, the matching that corresponds to t must
be found by Algorithm 2. For every matching consid-
ered, the algorithm finds the translation that optimizes
it. This translation must be equal to t since t is opti-
mal. �

3.1 Experimental Results for Algorithm 2

The upper bound that we provide for Algorithm 2 does
not appear to be tight. We have not been able to
construct an example that requires a super-polynomial
number of steps. We ran various experiments to gain
a better understanding of the true running time of the
algorithm. We know that for each translation that the
algorithm makes it takes O(mn) time to compute the
distance using dynamic programming. What concerns
us is the number of translations that Algorithm 2 makes
before finding the optimal translation. Therefore, the
number of translations determines whether the algo-
rithm has a polynomial running time or not. We com-
pare the total number of translations to the the product
of the cardinalities mn. We defined a ratio, R, by the
following equation:

R =
number of translations

mn

The first experiment was to randomly generate the
sets A and B with specific cardinalities, m and n. For
the cardinalities chosen, A and B were randomly gener-
ated 5 times. The pair that caused the largest number
of translations is reported in Table 1. It can be seen that
the number of translations of the algorithm is much less
than the theoretical upper bound of O(3mn). However,
the ratio R seems to be slowly increasing and therefore
we cannot experimentally bound the number of itera-
tions by mn. Testing the conjecture that the number of
translations is poly-logarithmic, we define a new ratio
R2 as:

R2 =
number of translations

mn× log(mn)

Referring to Table 1, it can be seen that R2 increases
at first and then continues to decrease. This appears to
indicate that the running time of Algorithm 2 cannot be
larger than a constant×mn log(mn). Our experimental
results indicate that the constant should not be greater
than 2.

In our second experiment, A and B were two ran-
domly generated sets of 10 points where A and B are

23rd Canadian Conference on Computational Geometry, 2011

52

CCCG 2011, Toronto ON, August 10–12, 2011

Table 1: Experimental Results of running Algorithm 2

m n Number of Translations R R2

5 5 63 2.52 0.78
8 10 247 3.09 0.70
15 11 589 3.57 0.70
16 20 1182 3.69 0.64
21 20 1556 3.70 0.61
25 28 2655 3.79 0.62
30 30 3520 3.91 0.62
30 20 2379 3.96 0.58
15 31 1758 3.78 0.57
40 45 7038 3.91 0.52
50 55 10990 4.00 0.54
60 61 14769 4.01 0.51
25 80 8151 4.08 0.49
90 100 37176 4.13 0.45

the same set. We compressed B by dividing the ele-
ments of B by an ever increasing factor and ran the
algorithm. Overall, R2, first increased as B was further
compressed by dividing by a larger number. However,
the trend reached a peak, and as B was compressed
further R2 started to continuously decrease. Table 2
summarizes our results.

Table 2: Experimental Results of running Algorithm 2
on Compressed B datasets where m = n = 10

Divisor Number of Translations R R2

1 180 1.80 0.39
2 110 1.10 0.24
4 207 2.07 0.45
6 225 2.25 0.49
10 282 2.82 0.61
102 540 5.40 1.17
103 560 5.60 1.22
104 426 4.26 0.93
105 367 2.67 0.80
106 223 2.23 0.48
107 224 2.24 0.49
108 116 1.16 0.25
109 66 0.66 0.14

Picking the largest number of translations in this
dataset, we can see that the value of R2 seems to be
slightly higher than the random data set of Table 1.
Namely, 1.22 versus 0.78. We performed the same ex-
periment with different cardinalities. The same pattern
was noticed. R2 increased at first and then continuously
decreased. In this case, the peak R2 is 1.54. For each
cardinality, Table 3 shows the results of the compres-
sion that caused the largest number of translations and
therefore the largest R2. The R2 values are generally
higher than all previous results, however, we note that

Table 3: Experimental Results of running Algorithm 2
on Compressed B datasets of different cardinalities

m = n m× n Number of Translations R R2

15 225 1817 8.07 1.49
20 400 2680 6.70 1.18
25 625 4266 6.83 1.06
30 900 9402 10.45 1.54
35 1225 10822 8.83 1.24
40 1600 13741 8.59 1.16
45 2025 14761 7.29 0.96

the largest R2 value of 1.54 is still less than 2. Similar
results were obtained for A 6= B.

Another possibility for a data set that might not have
been well captured by generating points randomly, is to
have configurations that contain clusters of contiguous
points. We generated different cluster configurations for
m = 15 and n = 11. In Table 4, a configuration of (3,2)
indicates the set A is composed of 3 clusters of points
separated by some distance, and likewise the set B is
composed of 2 clusters. Each cluster is composed of a
fixed number of points that fall within a specific range.
The cluster points are generated randomly within the
specified range for each cluster. For each cluster config-
uration, the experiment was run 10 times and the trial
with the largest number of translations is shown in Ta-
ble 4. It can be seen in Table 4 that the largest value
for R2 is 0.80 which is still less than 2.

Table 4: Experimental Results of running Algorithm 2
on different clustered configuration where |A| = 15 and
|B| = 11

Configuration Number of Translations R R2

(3,3) 615 3.73 0.73
(3,2) 676 4.10 0.80
(4,4) 616 3.73 0.73
(4,2) 644 3.90 0.77
(4,1) 678 4.11 0.80

Figure 3 shows that the function f(mn) =
2mn log(mn) is an upper bound for all our experimen-
tal results. Given these results, we conclude that for
the data that we have generated Algorithm 2 exhibits a
polynomial running time.

4 Conclusion

We have presented an iterative algorithm to solve a con-
tinuous optimization problem, that appears to be effi-
cient when applied to randomly generated instances. To
date, we have not been able to determine a means to
analyze the method to obtain reasonable bounds on the
worst case running time of the algorithm. Therefore, we

CCCG 2011, Toronto ON, August 10–12, 2011

53

23d Canadian Conference on Computational Geometry, 2011

0 2000 4000 6000 8000

0
50

00
0

10
00

00
15

00
00

2m
nlo

g(
m

n)

●●●●●●●● ●
● ●

●
●

●

●● ● ●

● ●
● ●

Experimental Complexity

mn

N
um

be
r

of
 T

ra
ns

la
tio

ns

Experiment 1
Experiment 2
Experiment 3

●●●●●

Figure 3: Summary of experimental results shows that
all our data fall under the curve 2mn log(mn)

leave open the issue of obtaining a better bound on the
number of iterations used by this algorithm. It may be
that some modifications could be made to the existing
algorithm so that it would be easier to analyze. It may
also be the case that an entirely different approach could
be used to solve the problem in polynomial time. Alter-
nately, perhaps it can be shown that this optimization
problem is NP-hard.

5 Acknowledgements

This work was initiated at the 2nd Bellairs Winter
Workshop on Mathematics and Music, co-organized
by Dmitri Tymoczko and Godfried Toussaint, held on
February 6-12, 2010. We thank the other participants
of that workshop, Fernando Benadon, Adrian Childs,
Richard Cohn, Rachel Hall , John Halle, Jay Rahn, Bill
Sethares, and Steve Taylor, for providing a stimulating
research environment.

References

[1] A. Ben-Dor, R. M. Karp, B. Schwikowski, and
R. Shamir. The restriction scaffold problem. Journal
of Computational Biology, 10(2):385–398, 2003.

[2] S. R. Buss and P. N. Yianilos. A bipartite matching
approach to approximate string comparison and search.
Technical report, NEC Research Institute, 1995.

[3] J. Colannino, M. Damian, F. Hurtado, J. Iacono,
H. Meijer, S. Ramaswami, and G. Toussaint. An

O(n logn) time algorithm for the restriction scaffold as-
signment problem. Journal of Computational Biology,
13(4):979–989, 2006.

[4] J. Colannino, M. Damian, F. Hurtado, S. Langerman,
H. Meijer, S. Ramaswami, D. Souvaine, and G. Tous-
saint. Efficient many-to-many point matching in one di-
mension. Graphs and Combinatorics, 23:169–178, 2007.

[5] M. F. Demirci, A. Shokoufandeh, Y. Keselman, L. Bret-
zner, and S. Dickinson. Object recognition as many-to-
many feature matching. International Journal of Com-
puter Vision, 69(2):203–222, 2006.

[6] T. Eiter and H. Mannila. Distance measures for
point sets and their computation. Acta Informatica,
34(2):109–133, February 1997.

[7] R. M. Karp and S.-Y. R. Li. Two special cases of the as-
signment problem. Discrete Mathematics, 13:129–142,
1975.

[8] H. W. Kuhn. The Hungarian method for the assignment
problem. Naval Research Logistics, 2:83–97, 1955.

[9] M. Mucha and P. Sankowski. Maximum matchings via
Gaussian elimination. In Foundations of Computer Sci-
ence, 2004. Proceedings. 45th Annual IEEE Symposium
on, pages 248 – 255, oct. 2004.

[10] A. Schrijver. Combinatorial Optimization:Polyhedra
and Efficiency. Springer-Verlag Berlin Heidelberg,
2003.

[11] G. Toussaint. A comparison of rhythmic similarity mea-
sures. In Proceedings of the 5th International Confer-
ence on Music Information Retrieval, pages 242–245,
2004.

[12] G. Toussaint. The geometry of musical rhythm. In Se-
lected Papers of the Japanese Conference on Discrete
and Computational Geometry, J. Akiyama et al., ed-
itors,volume 3742 of LNCS, pages 198–212. Springer-
Verlag, Berlin, Heidelberg, 2005.

[13] D. Tymoczko. The geometry of musical chords. Science,
313(5783):72 – 74, July 2006.

[14] M. Werman, S. Peleg, R. Melter, and T. Y. Kong. Bi-
partite graph matching for points on a line or a circle.
Journal of Algorithms, 7:277–284, 1986.

23rd Canadian Conference on Computational Geometry, 2011

54

CCCG 2011, Toronto ON, August 10–12, 2011

Staying Close to a Curve∗

Anil Maheshwari Jörg-Rüdiger Sack Kaveh Shahbaz Hamid Zarrabi-Zadeh

Abstract

Given a point set S and a polygonal curve P in Rd, we
study the problem of finding a polygonal curve through
S, which has minimum Fréchet distance to P . We
present an efficient algorithm to solve the decision ver-
sion of this problem in O(nk2) time, where n and k
represent the sizes of P and S, respectively. A curve
minimizing the Fréchet distance can be computed in
O(nk2 log(nk)) time. As a by-product, we improve the
map matching algorithm of Alt et al. by an O(log k)
factor for the case when the map is a complete graph.

1 Introduction

Matching two geometric patterns is a fundamental prob-
lem in pattern recognition, protein structure predic-
tion, computer vision, geographic information systems,
etc. Usually these patterns consist of line segments and
polygonal curves.

One of the most popular ways to measure the simi-
larity of two curves is to use the Fréchet distance. An
intuitive way to illustrate the Fréchet distance is as fol-
lows. Imagine a person walking his/her dog, where the
person and the dog, each travels a pre-specified curve,
from beginning to the end, without ever letting go of the
leash or backtracking. The Fréchet distance between
the two curves is the minimum length of a leash which
is necessary. The leash length determines how similar
the two curves are to each other: a short leash means
the curves are similar, and a long leash means that the
curves are different from each other.

Two problem instances naturally arise: decision and
optimization. In the decision problem, one wants to de-
cide whether two polygonal curves P and Q are within ε
Fréchet distance to each other. In the optimization prob-
lem, one wishes to determine the minimum such ε. Alt
and Godau [2] presented an O(n2)-time algorithm for
the decision problem, where n denotes the total number
of segments in the curves. They also solved the corre-
sponding optimization problem in O(n2 log n) time.

In this paper, we address the following variant of the

∗Research supported by NSERC, HPCVL, and SUN Microsys-
tems. Authors’ affiliation: School of Computer Science, Car-
leton University, Ottawa, Ontario K1S 5B6, Canada. Email:
{anil,sack,kshahbaz,zarrabi}@scs.carleton.ca. Fourth au-
thor’s affiliation: Department of Computer Engineering, Sharif
University of Technology, Tehran, Iran, zarrabi@ce.sharif.edu.

P

ε

Figure 1: A problem instance.

Fréchet distance problem. Given a point set S and a
polygonal curve P in Rd (d > 2), find a polygonal curve
Q, with its vertices chosen from S, such that the Fréchet
distance between P and Q is minimum. Note that each
point of S can be used more than once in Q. In the
decision version of the problem, we want to decide if
there is polygonal curve Q through S whose Fréchet
distance to P is at most ε, for a given ε > 0. An instance
of the decision problem is illustrated in Figure 1.

One can use the map matching algorithm of Alt
et al. [1] to solve the decision version of this problem
by constructing a complete graph G on top of S, and
then running Alt et al.’s algorithm on G and P . If n
and k represent the sizes of P and S, respectively, this
leads to a running time of O(nk2 log k) for solving the
decision problem.

In this paper, we present a simple algorithm to solve
the decision version of the above problem in O(nk2)
time. This improves upon the algorithm of Alt et al. [1]
by a O(log k) factor for the case when a curve is matched
in a complete graph. Our approach is different from and
simpler than the approach taken by Alt et al. which is
a mixture of line sweep, dynamic programming, and
Dijkstra’s algorithm.

2 Preliminaries

Let ε > 0 be a real number, and d > 2 be a fixed
integer. For any point p ∈ Rd, we define B(p, ε) ≡ {q ∈
Rd : ‖pq‖ 6 ε} to be a ball of radius ε centered at p,
where ‖ · ‖ denotes the Euclidean distance. Given a line
segment L ⊂ Rd, we define C(L, ε) ≡ ∪p∈LB(p, ε) to be
a cylinder of radius ε around L (see Figure 2).

A curve in Rd can be represented as a continuous
function P : [0, 1]→ Rd. Given two points u, v ∈ P , we
write u ≺ v, if u is located before v on P . The relation �

CCCG 2011, Toronto ON, August 10–12, 2011

55

23rd Canadian Conference on Computational Geometry, 2011

ε

L

Figure 2: A cylinder of radius ε around segment L.

is defined analogously. For a subcurveR ⊆ P , we denote
by left(R) and right(R) the first and the last point of R
along P , respectively.

Given two curves α, β : [0, 1] → Rd, the Fréchet
distance between α and β is defined as δF (α, β) =
infσ,τ maxt∈[0,1] ‖α(σ(t)), β(τ(t))‖, where σ, τ : [0, 1] →
[0, 1] range over all continuous non-decreasing surjective
functions. The following two observations are immedi-
ate.

Observation 1 Given four points a, b, c, d ∈ Rd, if

‖ab‖ 6 ε and ‖cd‖ 6 ε, then δF (−→ac,−→bd) 6 ε.

Observation 2 Let α1, α2, β1, and β2 be four curves
such that δF (α1, β1) 6 ε and δF (α2, β2) 6 ε. If the
ending point of α1 (resp., β1), is the same as the starting
point of α2 (resp., β2), then δF (α1 + α2, β1 + β2) 6 ε,
where + denotes the concatenation of two curves.

3 The Decision Algorithm

Let P be a polygonal curve composed of n line segments
P1, . . . , Pn, and let S be a set of k points in Rd. In this
section, we provide an algorithm to decide whether there
exists a polygonal curve Q whose vertices are chosen
from S, such that δF (P,Q) 6 ε, for a given ε > 0.

We denote by s and t the starting and the ending
point of P , respectively. For each segment Pi of P , we
denote by Ci the cylinder C(Pi, ε), and by Si the set
S ∩ Ci. Furthermore, for each point u ∈ Ci, we denote
by Pi[u] the line segment Pi ∩B(u, ε).

We call a polygonal curve Q feasible if all its vertices
are from S, and δF (Q,P ′) 6 ε for a subcurve P ′ ⊆ P
starting at s. If Q ends at a point v ∈ S and P ′ ends at
a point p ∈ P , we call the pair (v, p) a feasible pair. A
point v ∈ Si is called reachable (at cylinder Ci) if there
is a feasible curve ending at v in Ci.

Consider a feasible curve Q starting at a point u ∈ S1

and ending at a point v ∈ Si. Since no backtracking
is allowed in the definition of Fréchet distance, Q tra-
verses all cylinders C1 to Ci in order, until it reaches v.
Moreover, by our definition of reachability, each vertex
of Q is reachable at some cylinder Cj , 1 6 j 6 i.

Our approach for solving the decision problem is to
process the cylinders one by one from C1 to Cn, and
identify at each cylinder Ci all points of S which are

reachable at Ci. The decision problem will be then re-
duced (by Observation 2) to checking whether there is
a reachable point in the ball B(t, ε).

To propagate the reachability information through
the cylinders, we need a primitive operation described
below. Let u ∈ Si be a point reachable at cylinder Ci,
and let Q be a feasible curve ending at u. For each
point v ∈ S, we denote by ri(u, v) the index of the fur-
thest cylinder we can reach by the curve Q + −→uv. In
other words, ri(u, v) is the largest index ` > i such that
v ∈ S` is reachable via u ∈ Si. If Q+−→uv is not feasible,
we set ri(u, v) = 0. The following lemma is a direct
corollary of a similar one proved in [1] (Lemma 3) for
computing the so-called right pointers.

Lemma 1 ([1]) Given two points u, v ∈ S, we can
compute ri(u, v) for all 1 6 i 6 n in O(n) total time.

We use the following lemma in our algorithm.

Lemma 2 Let ri(u, v) = `. For all i 6 j 6 `, if v ∈ Sj,
then v is reachable at Cj.

Proof. Let Q be a feasible curve starting at a point
w ∈ S ∩ B(s, ε) and ending at u, and let Q′ = Q + −→uv.
Since v is reachable at C` via Q′, there is a subcurve
P ′ of P starting at s and ending at a point p ∈ P`[v]
(see Figure 3). Consider two point objects OP and OQ
traversing P ′ and Q′, respectively, from beginning to
the end, while keeping ε distance to each other. Since
v is reachable via u ∈ Si, OP is at a point a ∈ Pi when
OQ is at u. Fix a cylinder Cj , i < j 6 `, such that
v ∈ Cj . When OP reaches the point b = left(Pj [v]),
OQ is at a point x ∈ uv such that ‖bx‖ 6 ε. The
subcurve of Q′ from w to x has Fréchet distance at most
ε to the subcurve of P from s to b, and the segment
xv has Fréchet distance at most ε to the point b by
Observation 1. Therefore, by Observation 2, the whole
curve Q′ has Fréchet distance at most ε to the subcurve
P ′ from s to b, meaning that v is reachable at Cj . �

The above proof, not only shows that v is reachable
at Cj , but it also shows that the pair (v, left(Pj [v])) is
feasible. The following lemma is therefore immediate.

Lemma 3 If ri(u, v) = ` and v ∈ Sj, i < j 6 `, then
(v, left(Pj [v])) is a feasible pair.

Pj

w

s

u

v

p

x

b
a

P`Pi

Figure 3: Proof of Lemma 2

23rd Canadian Conference on Computational Geometry, 2011

56

CCCG 2011, Toronto ON, August 10–12, 2011

The Algorithm Our algorithm for solving the decision
problem is provided in Algorithm 1. It maintains, for
each cylinder Ci, a set Ri of all points in Si which are
reachable at Ci. To handle the base case more easily, we
assume, w.l.o.g., that the curve P starts with a segment
P0 consisting of a single point {s}. Every point of S in-
side the cylinder C0 = B(s, ε) is reachable by definition.
Therefore, we initially set R0 = S ∩B(s, ε) (in line 4).

For each point v ∈ S, the algorithm maintains an
index `v, whose value at the beginning of each iteration
i is the following: `v = max06j<i,u∈Rj

rj(u, v). In other
words, `v points to the largest index ` for which v is
reachable at C` via a reachable point u in some earlier
cylinder Cj , j < i. Initially, we set `v = 1 for all points
in R0, because all points in R0 are also reachable in C1,
as C0 ⊆ C1. For all other points, `v is set to 0 in the
initialization step. The following invariant holds during
the execution of the algorithm.

Lemma 4 After the i-th iteration of Algorithm 1, the
set Ri consists of all points in Si which are reachable at
cylinder Ci.

Proof. We prove the lemma by induction on i. The
base case i = 0 trivially holds. Suppose by induction
that, for each 0 6 j < i, the set Ri is computed cor-
rectly. In the i-th iteration, we first add to Ri (in line 7)
all points in Si which are reachable through a point in
a set Rj , for 1 6 j < i. We call these points entry
points of cylinder Ci. We then add to Ri in lines 8–11
all points in Si which are reachable through the entry
points of Ci (see Figure 4 for an example).

We first show that all points added toRi are reachable
at Ci. For each point v ∈ Si added to Ri in line 7, we
have `v > i. It means that there is a point u ∈ Rj , for
some j < i, such that rj(u, v) > i. Therefore, Lemma 2

Algorithm 1 Decision(S, P, ε)

1: Initialize:

2: compute ri(u, v) for all u, v ∈ S and 1 6 i 6 n
3: set `v = 0 for all v ∈ S
4: let R0 = S ∩B(s, ε)

5: set `v = 1 for all v ∈ R0

6: for i = 1 to n do

7: let Ri = {v ∈ Si : `v > i}
8: let q = minv∈Ri

left(Pi[v])

9: for all v ∈ Si \ Ri do
10: if q � right(Pi[v]) then

11: add v to Ri

12: for all (u, v) ∈ Ri × S do

13: `v ← max {`v, ri(u, v)}
14: return yes if Rn ∩B(t, ε) 6= ∅

Ci
u

v

Figure 4: Point v is an entry point of Ci.

implies that v is reachable at Ci. Now, consider a point
v added to Ri in line 11. According to the condition
in line 10, there is an entry point w in Ci such that
left(Pi[w]) � right(Pi[v]). By Observation 1, the seg-
ment −→wv is within ε Fréchet distance to the line segment
from left(Pi[w]) to right(Pi[v]). Moreover, by Lemma 3,
(w, left(Pi[w]) is a feasible pair. Therefore, by Observa-
tion 2, v is reachable.

Next, we show that any reachable point at Ci is added
to Ri by the algorithm. Suppose that there is a point
v ∈ Si which is reachable at Ci, but is not added to Ri.
Let Q be a feasible curve ending at v, and w be the first
point on Q which is reachable at Ci. By our definition,
w is an entry point of Ci. If w = v, then v must be added
to Ri in line 7, which is a contradiction. If w is before
v on Q, then we have left(Pi[w]) � right(Pi[v]). Now,
by our selection of q in line 8, we have q � left(Pi[w]) �
right(Pi[v]), and hence, v is added to Ri in line 11, which
is again a contradiction. �

Theorem 5 Given a polygonal curve P of n segments
and a set S of k points in Rd, we can decide in O(nk2)
time whether there is a polygonal curve Q through S
such that δF (P,Q) 6 ε, for a given ε > 0. A polygo-
nal curve Q through S of size O(min {n, k}) minimizing
δF (P,Q) can be computed in O(nk2 log(nk)) time.

Proof. The correctness of the decision algorithm (Al-
gorithm 1) directly follows from Lemma 4. Line 2 of
the algorithm takes O(nk2) time by Lemma 1. The
other three lines in the initialization step (lines 3–5)
take only O(k) time. In the main loop, lines 7–11 take
O(k) time, and lines 12–13 require O(k2) time. There-
fore, the whole loop takes O(nk2) time in total.

Once the algorithm finds a reachable point v ∈ Sn ∩
B(t, ε), we can construct a feasible curve Q ending at
v by keeping, for each reachable point u at a cylinder
Ci, a back pointer to a reachable point w at Cj , j 6 i,
from which u is reachable. The feasible curve Q can be
then constructed by following the back pointers from
v to a point in S1 ∩ B(s, ε). Since at most two points
from each cylinder are selected in this process, the curve
Q has O(min {n, k}) segments. For the optimization
problem, we use parametric search as in [1, 2], to find
a curve minimizing δF (P,Q) by an extra log(nk)-factor
in O(nk2 log(nk)) time. �

CCCG 2011, Toronto ON, August 10–12, 2011

57

23rd Canadian Conference on Computational Geometry, 2011

4 Conclusions

In this paper, we presented a simple efficient algorithm
for finding a polygonal curve through a given point set
S in Rd such that its Fréchet distance to a given polyg-
onal curve P is minimized. Several interesting problems
remain open. For a fixed ε, one can easily modify the
algorithm provided in this paper to find a curve with a
minimum number of segments, having Fréchet distance
at most ε to P . It can be done by keeping reachable
points in a priority queue, and propagating the reacha-
bility information in a Dijkstra-like manner. However,
we cannot see any easy adaptation of our algorithm to
find a curve passing through a maximum number of
points for a fixed ε. Another major open problem is
whether an efficient algorithm exists for computing a
curve passing through “all” points of S with a mini-
mum Fréchet distance to P .

The algorithm presented in this paper improves the
map matching algorithm of Alt et al. [1] for the case
of matching a curve in a complete graph. The cur-
rent lower bound available for the problem is Ω((n +
k) log(n + k)) due to Buchin et al. [3]. It is therefore
open whether a better algorithm is available, or whether
the algorithm obtained in this paper is optimal.

References

[1] H. Alt, A. Efrat, G. Rote, and C. Wenk. Matching planar
maps. J. Algorithms, 49(2):262–283, 2003.

[2] H. Alt and M. Godau. Computing the Fréchet distance
between two polygonal curves. Int. J. of Comput. Geom.
Appl., 5:75–91, 1995.

[3] K. Buchin, M. Buchin, C. Knauer, G. Rote, and
C. Wenk. How difficult is it to walk the dog? In Proc.
23rd European Workshop Comput. Geom., pages 170–
173, 2007.

23rd Canadian Conference on Computational Geometry, 2011

58

CCCG 2011, Toronto ON, August 10–12, 2011

Isotopic Fréchet Distance

Erin W. Chambers∗ Tao Ju† David Letscher‡ Lu Liu§

Abstract

We present a variant of the Fréchet distance (as well
as geodesic and homotopic Fréchet distance) which
forces the motion between the input objects to fol-
low an ambient isotopy. This provides a measure of
how much you need to continuously deform one shape
into another while maintaining topologically equiva-
lently shapes throughout the deformation.

1 Introduction

We are interested in defining a distance measure be-
tween two (homeomorphic) shapes. This measure has a
number of potential applications in computer graphics
and vision, such as assessing the error when approxi-
mating a continuous function by a discrete one, or eval-
uating the similarity between two shapes. We propose
a new distance measure which intuitively is the least
effort of morphing a source shape into a target shape,
such that each intermediate shape during the morph is
homeomorphic to the source. For a given morph, this
“effort” is measured as the maximum distance traveled
by any point on the source shape.

Our measure is closely related to Fréchet distance,
which can be defined as the least travel distance among
all possible deformations between the two shapes. Ho-
motopic Fréchet distance [4] further restricts the defor-
mations to be continuous, particularly in the presence of
obstacles. However, the intermediate shapes during the
deformation may not be homeomorphic to the source
shape. For example, they may have self-intersections
even though the source shape is intersection-free. Our
measure, called isotopic Fréchet Distance, enforces the
deformation of the source shape to induce a continuous
deformation of the ambient space.

Two other distance measures similar to ours, in the
special case of curves, were geodesic width [6] and min-
imum deformation area [10]. Geodesic width considers
a class of deformations between two planar curves that
is more restricted than what we consider in this work,

∗Department of Mathematics and Computer Science, Saint
Louis University, echambe5@slu.edu

†Department of Computer Science, Washington University in
St. Louis, taoju@cse.wustl.edu

‡Department of Mathematics and Computer Science, Saint
Louis University, letscher@slu.edu

§Department of Computer Science, Washington University in
St. Louis, ll10@cse.wustl.edu

in that no two intermediate curves during the deforma-
tion can intersect. Note that this restriction means that
geodesic width is applicable only to non-intersecting
curves. The deformation area is defined between two
curves lying on any 2-manifold, and considers a similar
class of deformations as in our work. The key difference
is that the deformation area evaluates the “effort” of
morphing as the area swept by the deformation, while
the isotropic Fréchet Distance considers the longest dis-
tance traveled. Practical work on this problem has also
been done, although with no real guarantee of optimal-
ity [9].

In this paper, we formulate isotropic Fréchet Distance
and compare it with homotopic Fréchet distance. In
particular, we give an example in 2D where this new
measure better characterizes the dissimilarity between
two curves. We also briefly touch on the challenges in
computing the measure and its potential applications.

2 Definitions

Consider two homeomorphic subsets A and B of a met-
ric space M . Often M will be Euclidean space or Eu-
clidean space with obstacles removed from it. There
are a variety of ways to measure how “close” A and
B are. These include Hausdorff distance, Fréchet dis-
tance, geodesic Fréchet distance and homotopic Fréchet
distance. Hausdorff distance measures how large of a
neighborhood of A is needed to contain B and vice-
versa.

Definition 1 Given A, B ⊂ M , the Hausdorff distance
between them is

H(A, B) = max{sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)}

However, Hausdorff distance is solely based on geom-
etry and ignores the topology of both A and B. Fréchet
distance considers all possible homeomorphic pairings
between points in A and B and how far away paired
points are. The distance is defined to be the minimum
over all homeomorphisms between A and B of the max-
imum distance between any pair identified points. In
many applications, Fréchet distance is only defined for
curves; this definition generalizes this for arbitrary A
and B, see [3] for a similar definition. Unless otherwise
specified, all maps are assumed to be continuous.

CCCG 2011, Toronto ON, August 10–12, 2011

59

23rd Canadian Conference on Computational Geometry, 2011

Definition 2 Given A, B ⊂ M with X ∼= A ∼= B, the
Fréchet distance between them is

F(A, B) = inf
f, g : X → M

f(X) = A, g(X) = B

sup
x∈X

d(f(x), g(x))

Following geodesic paths between identified pairs of
points (and around any obstacles) gives a way to de-
form one shape to another, yielding the geodesic Fréchet
distance [5]. However, under either geodesic or stan-
dard Fréchet distance, nearby points do not follow sim-
ilar paths when obstacles are present in the underlying
space. For example, if A and B are curves and the
geodesics are thought of as the traditional “dog leash”
connecting the curves, the leash might jump discontin-
uously over any obstacles in the space.

Homotopic Fréchet distance [4] restricts Fréchet dis-
tance still further and only considers continuous defor-
mations of one shape to another. For these definitions
we must assume that M has a Riemannian metric or
some other structure that allows the measurement of
the length of curves.

Note that in the following definition, we consider X
to be an abstract representation of A and B (which are
homeomorphic), allowing us to match different pairs of
points in A and B by fitting them to points in the refer-
ence shape X . In previous work, this distance was only
defined if A and B were curves, and it was assumed that
the parametrizations of the curves were non-decreasing.
However, if only monotonic parametrizations are con-
sidered then the infimum does not change. Notice that
monotonic parametrizations are homeomorphisms, so
the following definition does generalize the definition of
homotopic Fréchet distance to general spaces.

Definition 3 Given A, B ⊂ M with X ∼= A ∼= B, the
homotopic Fréchet distance between them is

F(A, B) = inf
h : X × [0, 1] → M

h(X, 0) = A, h(X, 1) = B

max
x∈X

len h(x, ·)

Continuous deformations of one space to another can
change the topology along the way. If we want to ensure
that all intermediate spaces are identical and are embed-
ded into Euclidean space then we replace homotopies by
ambient isotopies. In essence, isotopic Fréchet distance
treats the intermediate curves or shapes themselves as
obstacles during deformations.

Definition 4 Given A, B ⊂ M with X ∼= A ∼= B, the
(ambiently) isotopic Fréchet distance between them is

I(A, B) = inf
h : M × I → M

h(·, t) homeomorphism
h(x, 0) = x ∀x ∈ X

h(A, 1) = B

max
x∈X

len h(x, ·)

Figure 1: (a) Two curves with significantly different
Hausdorff and Fréchet distances. (b) With an obstacle
between them the homotopic Fréchet distance is larger
than the Fréchet distance.

Ambient isotopies continuously deform both the shape
and the space containing it to another shape. For ex-
ample, any pair of knots in R3 are homotopic, but dis-
tinct knots are not ambiently isotopic, since we can-
not continuously morph between them without any self-
intersection along the way. This means that there are
homeomorphic subsets of R3 that have infinite isotopic
Fréchet distance.

Any ambient isotopy also defines a homotopy between
A and B, so isotopic Fréchet distances is at least as large
as homotopic Fréchet distance. In fact, we have

H(A, B) ≤ F(A, B) ≤ F(A, B) ≤ I(A, B)

Figure 1 shows examples where Fréchet distance is
strictly larger than Hausdorff distance and homotopic
Fréchet distance is strictly larger than geodesic Fréchet
distance. In section 5 we will give an example where
homotopic and isotopic Fréchet distance differ.

Before examining any examples, we will demonstrate
that it is appropriate to consider isotopic Fréchet dis-
tance a “distance”.

Lemma 1 Given any subset X ⊂ M , isotopic Fréchet
distance is a metric on the space of all embeddings X →
M .

Proof. Since isotopic Fréchet distance is defined as an
infimum of a set of lengths of curves, it is clearly non-
negative. And if the isotopic Fréchet distance is zero,
then in the limit, points are moved a distance of 0. Thus
I(A, B) = 0 implies that A and B are equal.

If h : M × I → M is a isotopy from A to B then
define h′ : M × I → M by

h′(x, t) = h(g−1(x), 1 − t)

23rd Canadian Conference on Computational Geometry, 2011

60

CCCG 2011, Toronto ON, August 10–12, 2011

where g(x) = h(x, 1). Clearly for any t, h(·, t) is a home-
omorphism and

h′(x, 0) = h(g−1(x), 1) = g(g−1(x)) = x

h′(B, 1) = h(g−1(B), 0) = h(A, 0) = A

This shows that h′ is an ambient isotopy from B to A.
The lengths of these two isotopies are identical so the
infimum over all possible isotopies for A to B and B
to A, respectively must be the same. This shows that
isotopic Fréchet distance is symmetric.

Finally, we need to show that Fréchet distance satis-
fies the triangle inequality. Assume that X ∼= A ∼= B ∼=
C. It is enough to show that for any ǫ > 0 there exists
an isotopy h : M × I → M from A to C such that

max
x∈X

len h(x, ·) ≤ I(A, B) + I(B, C) + ǫ

Chose any ǫ > 0. By definition of isotopic Fréchet dis-
tance there exists an isotopy h1 : M × I → M from A
to B such that

max
x∈X

len h1(x, ·) ≤ I(A, B) + ǫ/2

and an isotopy h2 : M × I → M from A to B such that

max
x∈X

len h2(x, ·) ≤ I(B, C) + ǫ/2

Define the isotopy h : M × I → M by

h(x, t) =

{
h1(x, 2t) if t ≤ 1

2

h2(h1(x, 1), 2t − 1) if t > 1
2

h is continuous since both functions agree when t = 1
2 .

Furthermore, we see that

h(x, 0) = h1(x, 0) = x

h(x, 1) = h2(h1(A, 1), 1)

= h2(B, 1) = C

Thus for any ǫ > 0 we have

I(A, C) ≤ max
x∈X

len h(x, ·)

≤ max
x∈X

len h1(x, ·) + max
x∈X

len h2(x, ·)

≤ I(A, B) + ǫ/2 + I(B, C) + ǫ/2

= I(A, B) + I(B, C) + ǫ

which completes the proof. �

3 An Extra Constraint on the Isotopy

All of the distance measures between shapes which we
have discussed are determined only by a single max-
imal distance, and many homotopies realize this dis-
tance. We can expand upon these definitions to con-
sider the lengths of all leashes, with our end goal being

to somehow minimize the distance any point travels in
the homotopy realizing the minimum isotopic Fréchet
distance. For any point x, the curves h(x, ·) will be
referred to as the trajectories of the point under the ho-
motopy; this is also sometimes referred to as the set of
leashes.

For a homotopy h : X × I → M (possibly induced by
an isotopy), its length function L : X → R+ is defined
by L(x) = len h(x, ·). Homotopic Fréchet and isotopic
Fréchet distances focus on minimizing the maximum of
L(x) over the space of homotopies and isotopies, respec-
tively. There are other measures of complexity, however,
For example we could minimize the area or L2 norm

of these homotopies, which is equal to
√∫

X
(L(x))2 dx,

similar to what is done in [10], or we could consider

some other Lp norm
(∫

X (L(x))
p
dx)

)1/p
. However, ho-

motopies and isotopies minimizing these norms will not
realize homotopic and isotopic Fréchet distance, respec-
tively.

If there were only finitely many lengths to consider
then we could sort them in decreasing order and then
compare them. The lexicographic minimum would not
only minimize the maximum of L(x), but also mini-
mize the length of the second longest leash length among
homotopies minimizing the maximum. Similarly state-
ments hold for the third longest curve and so on. How-
ever, this comparison process would only work for dis-
crete sets. This notion can be generalized to the con-
tinuous case by consider the set of trajectories lengths
for points that are local maximi of the function L(x).
When these sets of lengths are minimized lexicograph-
ically not only is the length of the longest curve mini-
mized but the next largest local maximum in lengths is
also minimized and so on. This yields a complexity mea-
sure on homotopies that not only realizes homotopic or
Fréchet distances (depending on the space the infimum
is taken over) but also moves other points as little as
possible. In fact, algorithms used to compute Fréchet,
geodesic Fréchet and homotopic Fréchet distances all
produce pairs that minimize these more general com-
plexities.

In 3 dimensions, minimal isotopies can be used to
morph between homeomorphic shapes. Isotopies that
minimize complexity would, in some sense, be minimal
morphs between the two shapes. If an efficient algo-
rithm could be found to minimize this complexity then
it would yield morphs with some quality guarantees.

4 An Example

Consider the spiral curve in figure 2 compared to a
straight line segment. In the minimal homotopy be-
tween them, most of the spiral collapses to a single
point. This is not an ambient isotopy because at time
1 in the homotopy there is an instantaneous change in

CCCG 2011, Toronto ON, August 10–12, 2011

61

23rd Canadian Conference on Computational Geometry, 2011

Minimal homotopy “Obvious” isotopy

Figure 2: Comparing a spiral to a straight line. The
minimal homotopy of a spiral to a line collapse the spi-
ral to a point and the “obvious” isotopy of the spiral
unravels it (note: this is not minimal).

the topology of small neighborhoods of this collapsing
point.

This means that this minimal homotopy does not
come from an isotopy. A natural possibility for an iso-
topy between the two curves is also shown in figure 2.
This isotopy unravels the spiral until it flattens out com-
pletely. It is conceivable that this “obvious” isotopy
realizes isotopic Fréchet distance.

In fact, for this spiral curve the isotopic Fréchet dis-
tance is equal to the Fréchet distance. To see this notice
that the homotopy that realizes Fréchet distance is an
isotopy arbitrarily close to time t = 1. So this homotopy
can be followed until the spiral is as small as desired and
then unwrapped. This will result in an isotopy whose
longest trajectory is arbitrarily close to the Fréchet dis-
tance. This gives a sequence of isotopies whose longest
trajectory length limits to the Fréchet distance proving
that the two distance measures are (somewhat surpris-
ingly) the same in this particular instance.

L

s

s+

s−

t

t+

t−

ǫ

Figure 3: Two curves with Fréchet distance ǫ, but iso-
topic Fréchet distance at least 2

9L. (Conjecturally the

isotopic Fréchet distance is
√

L2 + ǫ2.)

5 Isotopic Fréchet 6= Homotopic Fréchet

The pair of oppositely oriented “zig-zag” curves in fig-
ure 3 give an example where the curves are very close in
terms of Fréchet distance but very far apart in isotopic
Fréchet distance. The minimal homotopy between these
curves is shown in figure 4. The homotopy preserves x
coordinates of all of the points. It narrows the zig-zag
until it flattens out and then expands it in the opposite
direction. This is not an isotopy, and unlike the previous
example, it cannot be modified to yield an isotopy. In
fact, we will show that we can achieve arbitrarily large
isotopic Fréchet distance relative to Fréchet distance by
modifying the width and height of this figure.

Proposition 2 For any L > 0 and ǫ ∈ (0, L/2), there
exists a pair of curves C1, C2 ⊂ R2 with

F(C1, C2) = H(C1, C2) = ǫ

I(C1, C2) ≥ 2

9
L

Proof. Consider the two curves in Figure 3, where
the vertices are the points s = (0, 0), s+ = (0, ǫ/2),
s− = (0, −ǫ/2), t = (L, 0), t+ = (L, ǫ/2) and t− =
(L, −ǫ/2). The first curve, C1, consists of line segments
s → t+ → s− → t and the second, C2, travels from
s → t− → s+ → t. An easy exercise in calculating
Fréchet distance shows that F(C1, C2) = ǫ. Further-
more, the maximum distances are realized by identify-
ing t+ to t− and s+ to s−. (Note that since there are
no obstacles, the Fréchet distance between these curves
is the same as the homotopic Fréchet distance.)

Assume h : M ×I → M is a minimal isotopy between
C1 and C2 and that it moves each point in C1 along a
curve whose length is at most 2

9L. So we may assume
that the points t+ and s− are moved a distance at most
2
9L by the isotopy. Let p be the point (4

9L, − 2
9ǫ) on the

curve C1. Assume that after the isotopy p is sent to
p′ = h(p, 1). If p′ is not on the line segment from s+ to
t to the left of the line x = 2

3L then some point on C1

between p and t is moved a distance greater than 2
9L, a

23rd Canadian Conference on Computational Geometry, 2011

62

CCCG 2011, Toronto ON, August 10–12, 2011

contradiction. So, we will assume that p′ is on the line
segment from s+ to t with x coordinate at most 2

3L.

p′

s− p

x = 2
9L

t

t+s+

x = 7
9L

Let l be the line segment from s− to t+. The point p
is below l and the isotopy takes p to p′ which is above
l. Both the line and point move during the isotopy, but
they cannot cross. The furthest we are allowing s− to
move under the isotopy is 2

9L, so the x coordinate never
exceeds 2

9L. Similarly, the x coordinate of t+ never
drops under 7

9L as the point moves. Hence, during it’s
path in the isotopy p must have it’s x-coordinate either
go below 2

9L or above 7
9L. So the length that p moves

is at least L. This implies that any isotopy must move
some point a distance of at least 2

9L, providing the lower
bound on isotopic Fréchet distance. �

In figure 4, a few intermediate curves of an isotopy
between the two curves are shown. This isotopy leaves
s and t fixed, s+ is sent to t− at unit speed and s− is
sent to t+ at unit speed. The line segments are sent
to straight lines connecting these points as they move.
The corners are the points that move furthest, and they
move a distance of

√
L2 + ǫ2. We conjecture that this

is the isotopic Fréchet distance between the two curves.
Note that in this isotopy, the trajectories of every point
follows a straight line, but this will not be not true in
general.

6 Calculating Isotopic Fréchet Distance

For curves in the plane, Fréchet distance can be calcu-
lated in quadratic time [1], and when polygonal obsta-
cles are present, homotopic Fréchet distance can also
be calculated in polynomial time [4]. These algorithms
rely on the fact that trajectories on any point or leash
must be a straight line if no obstacles are present and
a geodesic in general. However, for isotopies trajecto-
ries, we must avoid other intermediate points, and so
the trajectories will typically be piecewise linear. Also,
isotopies do not need to proceed monotonically; in fact,
they may have to back-track multiple times in the course
of a minimal isotopy.

For piecewise-linear curves or surfaces, isotopic
Fréchet distance can be approximated by turning it into
a high dimensional motion planning problem. This ap-
proach would work for both 2 and 3 dimensional shapes.
While it might yield good approximations to isotopic
Fréchet distance, we would not expect these algorithms
to be particularly fast.

It is also possible that previous approaches to mor-
phing, such as [9], may yield computations that would
realize the isotopic Fréchet distance, although the con-
nection is not clear.

7 Applications

As shown above, the isotropic Fréchet distance more
faithfully captures the effort of deforming one shape into
another when compared to the homotopic Fréchet dis-
tance, particularly between undulating shapes. Hence
it can serve as a better similarity measure between such
shapes, which occur in many relevant settings such as
human cortical surfaces which contain numerous folds
(sulci and gyri). It could also yield a similarity mea-
sure between different structures for the same protein.
Moreover, the algorithm for finding the isotropic Fréchet
distance would also yield an optimal morphing sequence
where each intermediate shape is free of intersections.
Such intersection-free morphing is highly desirable for
computer graphics applications such as animation, yet
computational methods are scarce [7, 8, 9].

8 Future Work

Obviously, the most interesting open problem remain-
ing is to determine an algorithm to compute isotopic
Fréchet distance. The main challenge here is that we
cannot fix obstacles in this measure, as is done in both
geodesic and homotopic Fréchet distance, since the ob-
stacles are the curves themselves as they change over
time, so the problem seems harder than computing
Fréchet distance between curves.

In more general spaces, not much is known beyond
the fact that computing Fréchet distance between sur-
faces is upper semi-computable [3] and hard for some
cases [2], so it is perhaps more reasonable to look for
approximation algorithms to compute isotopic Fréchet
distance in settings such as this.

References

[1] H. Alt and M. Godau. Computing the Fréchet distance
between two polygonal curves. IJCGA, 5(1–2):75–91,
1995.

[2] K. Buchin, M. Buchin, and A. Schulz. Fréchet distance
of surfaces: some simple hard cases. In Proceedings
of the 18th annual European conference on Algorithms:
Part II, ESA’10, pages 63–74, 2010.

CCCG 2011, Toronto ON, August 10–12, 2011

63

23rd Canadian Conference on Computational Geometry, 2011

C1 C2

Figure 4: (a) A minimal homotopy between the curves C1 and C2. Note that this homotopy is not an isotopy. (b)
A conjectured minimal isotopy between the two curves C1 and C2, this isotopy gives an upper bound on isotopic
Fréchet distance of

√
L2 + ǫ2.

[3] M. Buchin. Semi-computability of the Fréchet distance
between surfaces. In In Proc. 21st European Workshop
on Computational Geometry, pages 45–48, 2005.

[4] E. W. Chambers, É. C. de Verdière, J. Erickson,
S. Lazard, F. Lazarus, and S. Thite. Homotopic Fréchet
distance between curves or, walking your dog in the
woods in polynomial time. Comput. Geom., 43(3), 2010.

[5] A. F. Cook, Iv, and C. Wenk. Geodesic Fréchet dis-
tance inside a simple polygon. In Proceedings of the
25th International Symposium on Theoretical Aspects
of Computer Science (STACS, pages 193–204, 2008.

[6] A. Efrat, L. J. Guibas, S. Har-Peled, J. S. B. Mitchell,
and T. M. Murali. New similarity measures between
polylines with applications to morphing and poly-
gon sweeping. Discrete & Computational Geometry,
28(4):535–569, 2002.

[7] C. Erten, S. G. Kobourov, and A. Pitta. Intersection-
free morphing of planar graphs. In In Proc. GD 2003,
LNCS 2912, pages 320–331. Springer, 2003.

[8] C. Gotsman and V. Surazhsky. Guaranteed
intersection-free polygon morphing. Computers &
Graphics, 25(1):67–75, 2001.

[9] H. Iben, J. O’Brien, and E. Demaine. Refolding pla-
nar polygons. Discrete and Computational Geometry,
41:444–460, 2009.

[10] Y. Wang. Measuring similarity between curves on 2-
manifolds via minimum deformation area, 2008.

23rd Canadian Conference on Computational Geometry, 2011

64

CCCG 2011, Toronto ON, August 10–12, 2011

Edge Unfoldings of Platonic Solids Never Overlap

Takashi Horiyama∗ Wataru Shoji∗

Abstract

Is every edge unfolding of every Platonic solid overlap-
free? The answer is yes. In other words, if we develop
a Platonic solid by cutting along its edges, we always
obtain a flat nonoverlapping simple polygon.

We also give self-overlapping general unfoldings of
Platonic solids other than the tetrahedron (i.e., a cube,
an octahedron, a dodecahedron, and an icosahedron),
and edge unfoldings of some Archimedean solids: a
truncated icosahedron, a truncated dodecahedron, a
rhombicosidodecahedron, and a truncated icosidodec-
ahedron.

1 Introduction

“Does every convex polyhedron have a nonoverlapping
edge unfolding?” An unfolding (also called a general
unfolding) of a polyhedron is a simple polygon obtained
by cutting the surface of the polyhedron and unfold-
ing it into a plane. For an edge unfolding, only cutting
along the edges is allowed. The origin of unfoldings of a
polyhedron goes back to the 16th century: In 1525, Al-
brecht Dürer, a painter and a mathematician, published
a book entitled “Unterweysung der Messung mit dem
Zirkel un Richtscheyt in Linien Ebnen uhnd Gantzen
Corporen” [11]. In this book, he gave edge unfoldings
of Platonic solids (also called regular convex polyhedra)
and Archimedean solids (also called semi-regular convex
polyhedra). There is no evidence that Dürer was aware
of the question, but he seems to have some insight to the
question based on his unfoldings [10]. The first explicit
statement was given by Shephard in 1975 [25].

Although it was believed that every edge unfolding of
a convex polyhedron never overlaps, some unfortunate
cut may lead to overlapping unfoldings [9, 10, 20, 22].
If we relax the restriction of convexity, there exist non-
convex polyhedra whose every edge unfolding is self-
overlapping [4, 12]. If we allow general unfolding, there
are two techniques for unfolding any convex polyhedron
to a simple polygon [3, 21, 24], i.e., any convex poly-
hedron has at least one general unfolding. In [23], the
probability of overlap is investigated for a random un-
folding of a random polyhedron constructed using ran-
dom points on a sphere.

∗Graduate School of Science and Engineering, Saitama
University, horiyama@al.ics.saitama-u.ac.jp, s10mm309@mail

.saitama-u.ac.jp.

a
a

(a) (b) (c) (d)

Figure 1: Overlapping general unfoldings of a cube.

aa

a
a

a a

(a) (b) (c)

Figure 2: Overlapping general unfoldings of an octahe-
dron, a dodecahedron, and an icosahedron.

In this paper, we consider the problem from another
point of view. What happens if our polyhedron is more
restricted and has a regular structure? “Are there any
overlapping general unfoldings for Platonic solids?” Al-
though this seems to be a näıve question at a first glance,
we have the following two interesting observations with
slightly relaxed conditions.

First, let us consider the case with general unfold-
ing. As for a tetrahedron, any unfolding is a funda-
mental domain of tiling [2], i.e., any unfolding can tile
the plane. This statement implicitly says that any gen-
eral unfolding never overlaps. Surprisingly, for other
Platonic solids, we found overlapping unfoldings: Fig-
ures 1 (a) and (b) are unfoldings of a cube that overlap
in a point and a line, respectively. If we cut along the
dotted line in Figure 1 (c), and glue the edges labeled
a, we obtain an overlapping unfolding in Figure 1 (d).
(Gray hatch indicates the overlap.) We can find similar
overlapping unfoldings for an octahedron, a dodecahe-
dron, and an icosahedron, respectively, in Figure 2.

Next, let us consider the case with Archimedean
solids. It is known that a snub dodecahedron has an
overlapping edge unfolding [9]. We also found overlap-
ping edge unfoldings of a truncated icosahedron, a trun-
cated dodecahedron, a rhombicosidodecahedron, and a
truncated icosidodecahedron. By cutting along the bold
lines of the polyhedra in Figure 3, we obtain their over-
lapping edge unfoldings.

As a result of the above observations, we will focus on
the case for edge unfoldings: “Is every edge unfolding

CCCG 2011, Toronto ON, August 10–12, 2011

65

23rd Canadian Conference on Computational Geometry, 2011

of every Platonic solid overlap-free?” In other words,
“Are there any overlapping edge unfoldings for Platonic
solids?” As for a tetrahedron, a cube, and an octa-
hedron, they have 2, 11, and 11 edge unfoldings [15],
respectively, and we can check all of them are overlap-
free by drawing them one by one. For a long time, it
was believed that the same situation holds for a dodeca-
hedron and an icosahedron. We solve this problem and
say that it is correct.

Theorem 1 (Main result) If we unfold a Platonic
solid by cutting along its edges, we always obtain a flat
nonoverlapping simple polygon.

We solve the problem by enumerating all edge unfold-
ings, and check whether they are overlapping or not. It
is known that a dodecahedron and an icosahedron have
43,380 edge unfoldings [6, 13]. Note that they are dual
to each other. Our contribution is to strengthen this
result by making a catalogue of edge unfoldings for Pla-
tonic solids. For each pair of non-neighboring faces in
the unfoldings, we check whether their circumscribed
circles overlap or not. Since there are no overlap, we
confirm the claim that has been believed for a long time.

Our contribution also includes a proposal of enumera-
tion algorithms by binary decision diagrams (BDDs) [1,
7] for solving problems in computational geometry. A
BDD is a directed acyclic graph representing a Boolean
function, and can be considered as a variant of a deci-
sion tree. By restricting the order of variable appear-
ance and by sharing isomorphic subgraphs, BDDs have
the following useful properties: (1) When an ordering
of variables is specified, a BDD has the unique reduced
canonical form for each Boolean function. (2) Many
Boolean functions appearing in practice can be com-
pactly represented. (3) When a BDD is given, satisfia-
bility and tautology of the represented function can be
easily checked in constant time. (4) There are efficient
algorithms for many other Boolean operations on BDDs.
As a result of these properties, BDDs (and its variants)
are used for various practical applications, especially in
computer-aided design and verification of digital sys-
tems (see e.g., [8, 17, 26]). Recently, BDDs are widely
used in various fields (see e.g., [14, 19]). Knuth devoted
notable space in “The Art of Computer Programming”
with BDDs [16]. BDDs are regarded as a succinct data
structure with efficient manipulation algorithms.

The rest of this paper is organized as follows. The
next section gives fundamental concepts on BDDs. We
propose algorithms for enumerating edge unfoldings and
checking whether they are overlap-free or not in Sec-
tion 3, and their results are given in Sections 4.

2 Binary Decision Diagrams

A binary decision diagram (BDD) is a directed acyclic
graph that represents a Boolean function. It has two

(a) (b) (c) (d)

Figure 3: Overlapping unfoldings of a truncated icosa-
hedron, a truncated dodecahedron, a rhombicosidodec-
ahedron, and a truncated icosidodecahedron.

sink nodes 0 and 1, called the 0-node and the 1-node,
respectively (which are together called the constant
nodes). Other nodes are called variable nodes, and
each variable node v is labeled by one of the variables
x1, x2, . . . , xn. Let var (v) denote the label of node v.
Each variable node has exactly two outgoing edges,
called 0-edge and 1-edge, respectively. One of the vari-
able nodes becomes the unique source node, which is
called the root node. Let X = {x1, x2, . . . , xn} de-
note the set of n variables. A variable ordering is a to-
tal ordering (xπ(n), xπ(n−1), . . . , xπ(1)), associated with
each BDD, where π is a permutation {1, 2, . . . , n} →
{1, 2, . . . , n}. The level of a variable xπ(i) is defined to
be i. Similarly, the level of a node v is defined by its
label; if node v has label xπ(i), its level is defined to
be i. That is, the root node is in level n and has label
xπ(n), the nodes in level n− 1 have label xπ(n−1) and so
on. The level of the constant nodes is defined to be 0.
On every path from the root node to a constant node
in an BDD, each variable appears at most once in the
decreasing order of their levels. The size of a BDD is
the number of nodes in it.

Every node v of a BDD represents a Boolean function
fv, defined by the subgraph consisting of those edges
and nodes reachable from v. If node v is a constant
node, fv equals to its label. If node v is a variable
node, fv is defined as var (v)f0-succ(v) ∨ var (v)f1-succ(v)

by Shannon’s expansion, where 0-succ(v) and 1-succ(v),
respectively, denote the nodes pointed by the 0-edge and
the 1-edge from node v. The function f represented by
a BDD is the one represented by the root node. When
two nodes u and v in a BDD represent the same func-
tion, and their levels are the same, they are called equiv-
alent. A node whose 0-edge and 1-edge both point to
the same node is called redundant. A BDD which has
no mutually equivalent nodes and no redundant nodes
is reduced. In the following, we assume that all BDDs
are reduced.

An assignment to variables in X can be regarded as
a subset S ⊆ X , and a Boolean function f can be re-
garded as a family F ⊆ 2X . For example, an assign-
ment (x3, x2, x1) = (1, 1, 0) can be regarded as a set

23rd Canadian Conference on Computational Geometry, 2011

66

CCCG 2011, Toronto ON, August 10–12, 2011

{x3, x2}, and x1(x2x3 ∨x2x3) can be regarded as a fam-
ily {{x2, x1}, {x3, x1}}. By using BDDs for represent-
ing families of a set, we can use Boolean operations on
BDDs as a family algebra (see e.g., [16]), or set opera-
tions. Later in this paper, we identify a Boolean func-
tion with its corresponding family F , unless confusion
arises.

For solving a constraint satisfaction problem, all we
have to do is to interpret the restrictions of the problem
as a form of Boolean functions, and represent them by
BDDs. By applying AND operation to the BDDs, we
can obtain the BDD representing the solutions satisfy-
ing all of the restrictions. Once such BDD is obtained,
paths from the root node to the 1-node correspond to
satisfying assignments for its function. Thus, we can
enumerate all solutions by traversing the BDD.

3 Algorithms for Enumerating and Checking Edge
Unfoldings

By the following three steps, we enumerate edge un-
foldings of Platonic solids and check whether they are
overlap-free: (1) We represent the constraints for edge
unfoldings as BDDs. (2) We eliminate mutually equiva-
lent unfoldings. (3) We check whether they are overlap-
free or not. We propose algorithms for these subprob-
lems, which are applicable to any of the Platonic solids.
Later in this paper, we denote n and m as the number
of vertices and edges of a Platonic solid, respectively.

3.1 Enumeration of Edge Unfoldings

We start with the following lemma that gives a good
insight for edge unfoldings.

Lemma 2 (See [10, Lemma 22.1.1]) The cut edges
of an edge unfolding of a convex polyhedron form a span-
ning tree of the 1-skeleton (i.e., the graph formed by the
vertices and the edges) of the polyhedron.

This lemma implies two characterizations of edge un-
foldings, and we propose two algorithms according to
these characterizations. The first characterization is
that a set S of cut edges gives an edge unfolding if and
only if (1) S consists of exactly n − 1 edges and (2) no
edges in S form a cycle. For interpreting these con-
straints as Boolean functions, we use m Boolean vari-
ables x1, x2, . . . , xm representing whether edges are cut
or not: xi = 1 if its corresponding edge ei is cut, other-
wise xi = 0.

Condition (1) is represented as a Boolean function
that outputs 1 if and only if exactly n−1 out of m vari-
ables are 1’s. Such function is one of symmetric func-
tions, whose BDD is of size O(m2) [16]. Figure 4 shows
a BDD of a function that outputs 1 if and only if 3 out
of 6 variables are 1’s. The left-most column of the vari-
able nodes implies that no 1’s have been received yet.

Figure 4: A BDD representing that exactly 3 out of 6
variables are 1’s.

Similarly, the four columns in Figure 4 represent that
we have received no 1’s, one 1, two 1’s, and three 1’s,
respectively. We call this BDD construction procedure
as Choose(n − 1, m).

As for Condition (2), we first construct a BDD for a
set of cycles, and then construct a BDD for prohibiting
cycles. For constructing a BDD for cycles, we begin a
set of edges in a face. Then, we repeat adding a new
face and constructing cycle with the edges of the face.
Figure 5 is the detail of this idea, and Figure 6 illustrates
the first three iterations of Step 2.

In Procedure EnumerateCycles, we use fcycle to de-
note the obtained set of cycles. In Step 1, fcycle is set
to be empty. In the first iteration of Step 2, we pick
face F1, and add a cycle with its edges. (The cycle is
illustrated with a bold line in Figure 6 (a).) The cycle
(more precisely, the set of edges in the cycle) is set to f1.
f2 is empty since fcycle is empty. Now, the family fcycle

contains the cycle of face F1. In the second iteration,
we pick face F2, and its corresponding cycle is set to f1

(see Figure 6 (b)). By combining the edges of F2 with
the already obtained cycle (the cycle in Figure 6 (a)),
we can obtain a new cycle (i.e., the cycle contains the
edges of F1 and F2). More precisely, if edge xj of F2

is not in the already obtained cycle, the edge exists in
the new cycle. Otherwise, the edge does not exist in the
new cycle. By adding the above two cycles, fcycle be-
comes a family of the cycles in Figures 6 (a) and (b). In
the following iterations, Step 2-2 combines the edges of
Fi with already obtained cycles. (Although fcycle may
contain a set of edges that consists of two (or more)
cycles, there is no influence on the next procedure, i.e.,
the construction of a BDD for prohibiting cycles.) In
Step 3, we omit an empty set of edges from fcycle. Note
that the empty set is obtained as fempty :=

∧
xj∈X xj

and the set difference is obtained by fcycle ∧ fempty.
Now, we have a family of cycles and will construct a

BDD for prohibiting cycles. The complement of fcycle

is not sufficient for this task. We should prohibit a
set S (⊆ X) of edges if S is in the monotone exten-
sion [5] of fcycle, where the monotone extension of a
family F of sets is a family { T | there exists a set T ′ ∈
F satisfying T ′ ⊆ T }. Procedure MonotoneExten-
sion in Figure 7 construct a BDD of the monotone

CCCG 2011, Toronto ON, August 10–12, 2011

67

23rd Canadian Conference on Computational Geometry, 2011

Procedure EnumerateCycles

Input: A Polyhedron.
Output: A BDD representing a family of
cycles in the give Polyhedron.

Step 1 (initialize). fcycle := 0.
Step 2 (iterate). For each face Fi, apply
Steps 2-1, 2-2, and 2-3, where Fi has a
set of edges Ei = {xi1 , xi2 , . . . , xik

}.
Step 2-1. Construct a BDD of
f1 := (

∧
xj∈Ei

xj) ∧ (
∧

xj∈X\Ei
xj).

Step 2-2. Construct a BDD of f2 which is
obtained from the BDD of fcycle by ex-
changing the roles of 0-edges and 1-edges
of the variable nodes labeled by xj ∈ Ei.
Step 2-3. Construct a BDD of
fcycle := fcycle ∨ f1 ∨ f2.
Step 3. Construct a BDD of
fcycle ∧ (

∨
xj∈X xj), and output it.

Figure 5: Procedure EnumerateCycles to construct a
BDD representing the set of cycles in a polyhedron.

Figure 6: Example of the execution of Step 2 in Proce-
dure EnumerateCycles.

extension of a given BDD. By combining the above
procedures, we can obtain the BDD representing a
family of edge unfoldings: funfolding := Choose(n −
1, m) ∧ MonotoneExtension(EnumerateCycles), i.e., a
set difference Choose(n − 1, m) \ MonotoneExtension
(EnumerateCycles). We call this Algorithm 1-1.

Another characterization of edge unfoldings by
Lemma 2 is as follows: A set S of cut edges leads to
an edge unfolding if and only if (1) S consists of exactly
n − 1 edges and (2) all vertices are connected by the
edges in S. Condition (2) is obtained by a small mod-
ification of the procedure for constructing a BDD of
Hamiltonian cycles for traveling salesman problem [18].
We do not use the restriction that every vertex has ex-
actly two edges, but use the restriction that every vertex
has at least one edge. We call this Procedure Enumer-
ateConnected. By combining this procedure with Pro-

Procedure MonotoneExtension

Input: A BDD G representing f . (v is the
root node of G.)
Output: A BDD representing the monotone
extension of f .

Step 1 (termination). If f = 0 or f = 1,
return G.
Step 2 (recursion). Let G0 and G1 be the
BDDs whose root nodes are 0-succ(v)
and 1-succ(v), respectively. Construct
BDDs Gm0 and Gm1 of
fm0 := MonotoneExtension(G0) and
fm1 := MonotoneExtension(G1).
Step 3 (construction). Construct a BDD
Gm∗ of fm∗ := fm0 ∨ fm1. Then, con-
struct a BDD Gm whose root node vm is
labeled by the same variable with node
v, 0-succ(vm) and 1-succ(vm) are the
root nodes of Gm0 and Gm∗, respec-
tively. Output Gm.

Figure 7: Procedure MonotoneExtension to construct a
BDD representing the monotone extension of f .

cedure Choose, we can obtain the BDD representing a
family of edge unfoldings: funfolding := Choose(n−1, m)
∧ EnumerateConnected. We call this Algorithm 1-2.

The algorithms 1-1 and 1-2 enumerate sets of cut
edges. In this family, different sets of cut edges may give
the same edge unfolding. We omit mutually isomorphic
edge unfoldings by the lexicographic order. For exam-
ple, the two sets of cut edges in Figure 8 give the same
edge unfolding. The sets of cut edges in Figure 8 are
represented by assignments (a) 101101001011 and (b)
110100101101, respectively, where the most significant
(i.e., left most) bit corresponds to x12 and the least sig-
nificant (i.e., right most) bit corresponds to x1. As (b)
is lexicographically larger than (a), we omit (a). We can
implement this process by manipulating BDDs.

3.2 Overlapping Check of Edge Unfoldings

Now, we have a family of edge unfoldings. All we have
to do is to check whether each of them is overlapping-
free or not. As for a tetrahedron, a cube, an octahedron,

Figure 8: Isomorphic edge un-
foldings.

Figure 9: Neighbor-
ing faces.

23rd Canadian Conference on Computational Geometry, 2011

68

CCCG 2011, Toronto ON, August 10–12, 2011

and an icosahedron, the faces are equilateral triangles
or squares. Thus, we can place all faces of their edge un-
foldings on an equilateral triangular lattice or a square
lattice. Unfortunately, the faces of a dodecahedron are
pentagons, which cannot make a lattice. In this paper,
we propose an algorithm that can be applied to any
Platonic solid.

Given a set of cut edges, we can obtain the x-
y coordinates for the centers of the faces. For
example, an unfolding of a cube has the cen-
ters on (0, 0), (a cos(3

2π), a sin(3
2π)), (a cos 0, a sin 0),

(a cos 0 + a cos(1
2π), a sin 0 + a sin(1

2π)), (2a cos 0,
2a sin 0), (a cosπ, a sin π), where a is a distance between
the centers of two neighboring faces. That is, a =
2 sin

nf −2
2nf

π holds, where nf is the number of vertices

in a face. We assume that the circumscribed circle of a
face has radius 1. We check where the distances between
any two centers are larger than a by Mathematica.

For any pair of faces, we check whether their circum-
scribed circles overlap or not. We do not apply this
check to neighboring faces. We call this Algorithm 3.
We emphasize here that two faces may not overlap even
if their circumscribed circles overlaps. Nevertheless, as
shown in the next section, there exist no overlapping
circumscribed circles for any pair of the faces. In other
words, there are no overlapping faces except for neigh-
boring ones.

Figure 9 illustrates that edges e2, e3 and e6 meet on
a vertex in the original Platonic solid, and that x3 =
x6 = 1 (i.e., e3 and e6 are cut edges) and x2 = 0 (i.e.,
e2 is not a cut edge). If a vertex has k cut edges, its
surrounding faces are separated into k − 1 sets. (Recall
that we have at least one cut edge for every vertex.)
The faces in Figure 9 are separated into {F1, F2} and
{F3}. If two faces are in the same set, they are called
neighboring. In case k = 1, the surrounding faces are in
a set, and thus, any two faces of the set are neighboring.

4 Experimental Results

We implemented the algorithms in Section 3 in pro-
gramming language C. Table 1 gives a comparison be-
tween Algorithms 1-1 and 1-2. The computation time is
measured on Intel(R) Core(TM) 2 Duo E7300 2.66GHz,
2GB memory, Ubuntu 10.04. Both algorithms give the
same number of edge unfoldings: A cube and an octahe-
dron have 384 edge unfoldings, which corresponds to the
counting result in [15]. A dodecahedron and an icosahe-
dron have 5,184,000 edge unfoldings, which corresponds
to the counting result in [13]. Algorithm 1-1 runs faster
than Algorithm 1-2, while both give the same number
of unfoldings.

In Algorithm 1-2, we update the BDDs of F1, . . . , Fn

for n−1 times, and each update of Fi requires n−1 OR
operations. Thus, O(n3) OR operations are required

Table 1: Comparison between Algorithms 1-1 and 1-2.

Algorithm 1-1 Algorithm 1-2

#unfoldings Time
(sec)

#unfoldings Time
(sec)

Tetrahedron 16 0.01 16 0.01
Cube 384 0.01 384 0.01
Octahedron 384 0.01 384 0.01
Dodecahedron 5,184,000 0.01 5,184,000 0.61
Icosahedron 5,184,000 0.02 5,184,000 2.91

Figure 10: Partial list of edge unfoldings of a dodecahe-
dron and an icosahedron.

in total. This is why the computation time grows so
quickly for Algorithm 1-2. By omitting mutually iso-
morphic edge unfoldings, we obtain 2 unfoldings for a
tetrahedron, 11 unfoldings for a cube and an octahe-
dron, and 43,380 unfoldings for a dodecahedron and an
icosahedron, respectively. Figure 10 is a partial list of
enumerated edge unfoldings of a dodecahedron and an
icosahedron.

Table 2 gives the total and average computation time
of Algorithm 3. The average means the average com-
putation time for an edge unfolding. For each edge un-
folding, we have O(F 2) pairs of faces to check whether
they overlap or not, where F is the number of faces.
The results on average computation time are almost
same among all Platonic solids. Algorithm 3 says that,
in any edge unfolding, there is no pair of faces (ex-
cept for neighboring faces) that have overlapping cir-
cumscribed circles. In other words, edge unfoldings of
Platonic solids are simple and nonoverlapping. The list
of all cut-edges for Platonic solids, their corresponding
sets of inequalities in Mathematica format, and a cat-
alogue for edge unfoldings of Platonic solids are shown
in http://www.al.ics.saitama-u.ac.jp/horiyama/

research/unfolding/.

5 Conclusions

We have proposed algorithms making use of BDDs for
enumeration of edge unfoldings, and made a catalogue
of edge unfoldings for Platonic solids. We furthermore
proved that no edge unfolding of a Platonic solid over-
laps. Our algorithms are applicable to Archimedean
solids. It is also interesting to use ZDDs [16, 17] since
it is also suitable for handling sets and families. We

CCCG 2011, Toronto ON, August 10–12, 2011

69

23rd Canadian Conference on Computational Geometry, 2011

Table 2: Computation Time for Algorithm 3.

Total Time Average Time

Tetrahedron 0.51s 0.25s
Cube 2.70s 0.25s
Octahedron 2.67s 0.24s
Dodecahedron 198m 39.16s 0.27s
Icosahedron 200m 55.15s 0.28s

also emphasize here that our approach for making use
of BDDs is applicable to many other problems in com-
putational geometry.

References

[1] S. B. Akers, Binary decision diagrams, IEEE
Trans. Com., C-27:509–516, 1978.

[2] J. Akiyama, Tile-Makers and Semi-Tile-Makers,
Math. Assoc. America, 114:602–609, 2007.

[3] B. Aronov and J. O’Rourke, Nonoverlap of the star
unfolding, Disc. Comp. Geom., 8:219–250, 1992.

[4] T. Biedl, E. D. Demaine, M. L. Demaine, A. Lu-
biw, J. O’Rourke, M. Overmars, S. Robbins, and
S. Whitesides, Unfolding some classes of orthogo-
nal polyhedra, Proc. CCCG, 70–71, 1998.

[5] E. Boros, T. Ibaraki, and K. Makino, Monotone
extensions of Boolean data sets, Proc. ALT, LNCS
1316, 161–175, 1997.

[6] S. Bouzette, and F. Vandamme, The regular Do-
decahedron and Icosahedron unfold in 43380 ways,
Unpublished manuscript.

[7] R. E. Bryant, Graph-based algorithms for Boolean
function manipulation, IEEE Trans. Com., C-35:
677–691, 1986.

[8] J. R. Burch, E. M. Clarke, K. L. McMillan, and D.
L. Dill, Sequential circuit verification using sym-
bolic model checking, Proc. DAC, 46–51, 1990.

[9] H. T. Croft, K. J. Falconer, and R. K. Guy,
Unsolved Problems in Geometry, Springer-Verlag,
Reissue edition, 1995.

[10] E. D. Demaine and J. O’Rourke. Geometric Folding
Algorithms: Linkages, Origami, Polyhedra. Cam-
bridge University Press, 2007.

[11] A. Dürer, Unterweysung der Messung mit dem
Zirkel un Richtscheyt in Linien Ebnen uhnd
Gantzen Corporen, 1525.

[12] B. Grünbaum, Are your polyhedra the same as my
polyhedra?, In B. Aronov, et al. (eds.), Discrete
and Computational Geometry: The Goodman-
Pollack Festschrift, 461–488, Springer, 2003.

[13] C. Hippenmeyer, Die Anzahl der inkongruenten
ebenen Netze eines regulären Ikosaeders, Elem.
Math., 34:61–63, 1979.

[14] T. Horiyama and T. Ibaraki, Reasoning with or-
dered binary decision diagrams, Proc. ISAAC,
LNCS 1969, 120–131, 2000.

[15] M. Jeger, Über die Anzahl der inkongruenten ebe-
nen Netze des Würfels und des regulären Oktaed-
ers, Elemente der Mathematik, 30:73–83, 1975.

[16] D. E. Knuth, The art of computer programming,
vol. 4, fascicle 1, Bitwise tricks & techniques, Bi-
nary decision diagrams, Addison-Wesley, 2009.

[17] S. Minato, “Zero-Suppressed BDDs for Set Manip-
ulation in Combinatorial Problems,” Proc. DAC,
272–277, 1993.

[18] S. Minato, Arithmetic Boolean expression manip-
ulator using BDDs, Formal methods in system de-
sign, 10:221–242, Kluwer Academic, 1997.

[19] S. Minato and H. Arimura, Frequent Pattern
Mining and Knowledge Indexing Basedon Zero-
Suppressed BDDs, Proc. KDID, 152–169, 2006.

[20] J. Mitani and R. Uehara, Polygons Folding to Plu-
ral Incongruent Orthogonal Boxes, Proc. CCCG,
31–34, 2008.

[21] D. M. Mount, On folding shortest paths on convex
polyhedra, Technical Report 1495, Department of
Computer Science, University of Maryland, 1985.

[22] M. Namiki and K. Fukuda, Unfolding 3-
dimensional convex polytopes: A package for
Mathematica 1.2 or 2.0, Mathematica Notebook,
University of Tokyo, 1993.

[23] C. Schevon and J. O’Rourke, A conjecture on
random unfoldings, Technical report JHU-87/20,
Johns Hopkins University, Baltimore, MD, 1987.

[24] M. Sharir and A. Schorr, On shortest paths in poly-
hedral spaces, SIAM J. Comput., 15:193–215, 1986.

[25] G. C. Shephard, Convex polytopes with convex
nets, Math. Proc. Camb. Phil. Soc., 78:389–403,
1975.

[26] I. Wegener, Branching programs and binary deci-
sion diagrams, Monographs on discrete mathemat-
ics and applications, 2000.

23rd Canadian Conference on Computational Geometry, 2011

70

CCCG 2011, Toronto ON, August 10–12, 2011

Development of Curves on Polyhedra
via Conical Existence∗

Joseph O’Rourke† Costin Vı̂lcu‡

Abstract

We establish that certain classes of simple, closed,
polygonal curves on the surface of a convex polyhedron
develop in the plane without overlap. Our primary proof
technique shows that such curves “live on a cone,” and
then develops the curves by cutting the cone along a
“generator” and flattening the cone in the plane. The
conical existence results support a type of source unfold-
ing of the surface of a polyhedron, described elsewhere.

1 Introduction

Nonoverlapping development of curves plays a role in
unfolding polyhedra without overlap [2]. Any result
on simple (non-self-intersecting) development of curves
may help establishing nonoverlapping surface unfold-
ings. One of the earliest results in this regard is [7],
which proved that the left development of a directed,
simple, closed convex curve does not self-intersect. The
proof used Cauchy’s Arm Lemma. Here we extend
this result to a wider class of curves without invoking
Cauchy’s lemma. Our results support a “source unfold-
ing” based on these curves, described in [5].

Development. Let C be a simple, closed, polygonal
curve on the surface of a convex polyhedron P. For any
point p ∈ C, let L(p) be the total surface angle incident
to p at the left side of C, and R(p) the angle to the
right side. The left development of C with respect to
x ∈ C is an isometric drawing Cx of C in the plane,
starting from x, such that the angle to the left of Cx at
every point in the plane is L(p). The right development
is defined analogously. The left and right developments
of a curve are different if C passes through one or more
vertices of P . And in general the development depends
upon the cut point x.

Curve Classes. To describe our results, we introduce
a number of different classes of curves on convex poly-
hedra, which exhibit different behavior with respect to

∗This paper is based largely on [8]
†Department of Computer Science, Smith College, Northamp-

ton, MA 01063, USA. orourke@cs.smith.edu.
‡Institute of Mathematics “Simion Stoilow” of the Roma-

nian Academy, P.O. Box 1-764, RO-014700 Bucharest, Romania.
Costin.Vilcu@imar.ro.

living on a cone. Define a curve C to be convex (to the
left) if the angle to the left is at most π at every point
p: L(p) ≤ π; and say that C is a convex loop if this
condition holds for all but one exceptional loop point x,
at which L(x) > π is allowed. Analogously, define C
to be a reflex curve if the angle to one side (we consis-
tently use the right side) is at least π at every point p:
R(p) ≥ π; and say that C is a reflex loop if this con-
dition holds for all but an exceptional loop point x, at
which R(x) < π.

The loop versions of these curves arise naturally in
some contexts. For example, extending a convex path
on P until it self-intersects leads to a convex loop.

Summary of Results.

1. Every convex curve C left-develops to Cx without
intersection, for every cut point x. This is a new
proof of the result in [7].

2. There are convex loops C such that, for some x,
the left-development Cx self-intersects. However,
for every convex loop, there exists a y for which Cy
left-develops without overlap.

3. Every reflex curve C right-develops to Cx without
intersection, for every cut point x.

4. Every reflex loop C whose other side is convex
right-develops to Cx without intersection, for ev-
ery cut point x.

These results may be combined to reach conclusions
about the left- and right-developments of the same
curve: Every convex curve C that passes through at
most one vertex, both left-develops, and right-develops
without overlap, for every cut point x.

Living on a Cone. Our primary proof technique relies
on the notion of a curve C “living on a cone,” which
is based on neighborhoods of C. An open region NL
is a vertex-free left neighborhood of C to its left if it
includes C as its right boundary, and it contains no
vertices of P. In general C will have many vertex-free
left neighborhoods, and all will be equivalent for our
purposes. We say that C lives on a cone to its left if
there exists a cone Λ and a neighborhood NL so that

CCCG 2011, Toronto ON, August 10–12, 2011

71

23rd Canadian Conference on Computational Geometry, 2011

C ∪ NL may be embedded isometrically onto Λ, and
encloses the cone apex a.

A cone is an unbounded developable surface with cur-
vature zero everywhere except at one point, its apex,
which has total incident surface angle, called the cone
angle, of at most 2π. Throughout, we will consider a
cylinder as a cone whose apex is at infinity with cone
angle 0, and a plane as a cone with apex angle 2π. We
only care about the intrinsic properties of the cone’s
surface; its shape in R3 is not relevant for our purposes.
So one could view it as having a circular cross section,
although we will often flatten it to the plane.

We should remark that the cone on which a curve C
lives has no direct relationship (except in special cases)
to the surface that results from extending the faces of
P crossed by C.

a

C

ΛL

g

x
NL

Figure 1: A 4-segment curve C which lives on cone ΛL
to its left. One possible NL is shown, and a generator
g = ax is illustrated.

To say that C∪NL embeds isometrically into Λ means
that we could cut out C∪NL and paste it onto Λ with no
wrinkles or tears: the distance between any two points
of C ∪ NL on (C ∪ NL) ∩ P is the same as it is on
(C ∪ NL) ∩ Λ. See Figure 1. We say that C lives on a
cone to its right if C ∪NR embeds isometrically on the
cone, where NR is a vertex-free right neighborhood of
C such that the cone apex a is inside (the image of) C.
We will call the cones to the left and right of C, ΛL and
ΛR respectively. We will see that all four combinatorial
possibilities occur: C may not live on a cone to either
side, it may live on a cone to one side but not to the
other, it may live on different cones to its two sides, or
live on the same cone to both sides.

Cone Generators and Visibility. A generator of a cone
Λ is a half-line starting from the apex a and lying on
Λ. A curve C that lives on Λ is visible from the apex
if every generator meets C at one point. Although it is
possible for a curve to live on a cone but not be visible
from its apex, when we can establish visibility from the

apex, then cutting C at any point x ∈ C will develop
Cx without overlap.

2 Preliminary Tools and Lemmas

C partitions P into two half-surfaces. We call the left
and right half-surfaces PL and PR respectively, or P if
the distinction is irrelevant. We view each half-surface
as closed, with boundary C.

Curvature. The curvature ω(p) at any point p ∈ P is
the “angle deficit”: 2π minus the sum of the face angles
incident to p. The curvature is only nonzero at vertices
of P; at each vertex it is positive because P is convex.
The curvature at the apex of a cone is similarly 2π minus
the cone angle.

Define a corner of curve C to be any point p at which
either L(p)6=π or R(p)6=π. Let c1, c2, . . . , cm be the cor-
ners of C, which may or may not also be vertices of
P. C “turns” at each ci, and is straight at any non-
corner point. Let αi = L(ci) be the surface angle to
the left side at ci, and βi = R(ci) the angle to the right
side. Also let ωi = ω(ci) to simplify notation. We have
αi + βi + ωi = 2π by the definition of curvature. These
definitions will be used to further detail the relation-
ships among the curve classes in Section 5.

The Gauss-Bonnet Theorem. We will employ this
theorem in two forms. The first is that the total curva-
ture of P is 4π: the sum of ω(v) for all vertices v of P is
4π. It will be useful to partition the curvature into three
pieces. Let ΩL(C) = ΩL be the total curvature strictly
interior to PL, ΩR the curvature to the right, and ΩC
the sum of the curvatures on C (which is nonzero only
at vertices of P). Then ΩL + ΩC + ΩR = 4π.

The second form of the Gauss-Bonnet theorem relies
on the notion of the “turn” of a curve. Define τL(ci) =
τi = π−αi as the left turn of curve C at corner ci, and
let τL(C) = τL be the total (left) turn of C, i.e., the
sum of τi over all corners of C. Thus a convex curve
has nonnegative turn at each corner, and a reflex curve
has nonpositive turn at each corner. Then τL + ΩL =
2π, and defining the analogous term to the right of C,
τR + ΩR = 2π.

Alexandrov’s Gluing Theorem. In our proofs we use
Alexandrov’s theorem [1, Thm. 1, p. 100] that gluing
polygons to form a topological sphere in such a way
that at most 2π angle is glued at any point, results in a
unique convex polyhedron.

Vertex Merging. We now explain a technique used by
Alexandrov, e.g., [1, p. 240]. Consider two vertices v1
and v2 of curvatures ω1 and ω2 on P, with ω1+ω2 < 2π,
and cut P along a shortest path γ(v1, v2) joining v1 to

23rd Canadian Conference on Computational Geometry, 2011

72

CCCG 2011, Toronto ON, August 10–12, 2011

v2. Construct a planar triangle T = v̄′v̄1v̄2 such that its
base v̄1v̄2 has the same length as γ(v1, v2), and the base
angles are equal to 1

2ω1 and respectively 1
2ω2. Glue

two copies of T along the corresponding lateral sides,
and further glue the two bases of the copies to the two
“banks” of the cut of P along γ(v1, v2). By Alexandrov’s
Gluing Theorem, the result is a convex polyhedral sur-
face P ′. On P ′, the points v1 and v2 are no longer ver-
tices because exactly the angle deficit at each has been
sutured in; they have been replaced by a new vertex v′

of curvature ω′ = ω1 + ω2 (preserving the total curva-
ture). Figure 2(a) illustrates this. Here γ(v1, v2) = v1v2
is the top “roof line” of the house-shaped polyhedron
P. Because ω1 = ω2 = 1

2π, T has base angles 1
4π and

apex angle 1
2π. Thus the curvature ω′ at v′ is π. (Other

aspects of this figure will be discussed later.)
Note this vertex-merging procedure only works when

ω1 + ω2 < 2π; otherwise the angle at the apex v̄′ of T
would be greater than or equal to π.

v1

v2

v'

π/2

π/2

π/4

v'

π

a

b

c

d

a

b c

d

(a) (b)
3

√2

Figure 2: (a) C = (a, b, c, d) is a convex curve with
angle 3

4π to the left at each vertex. The curvature at v1
and at v2 is 1

2π. (b) Cutting along the generator from
v′ through the midpoint of ad and developing C shows
that it lives on a cone with apex angle π at v′. (Base of
P is 3×

√
2.)

Lemma 1 A curve C that lives on a cone Λ (say, to
its left) uniquely determines that cone.

Proof. Sketch. The apex angle of any cone on which
C lives must be α = 2π − ΩL, where ΩL is the total
curvature inside and left of C. Imagining rolling out two
distinct cones cut along a generator through the same
point x ∈ C leads to isometric unfoldings, showing that
the cones are in fact identical. Details are in [5]. �

3 Convex Curves

The lemma below reproves the result from [7].

Lemma 2 Let C be a convex curve on P, convex to its
left. Then C lives on a cone ΛL to its left side, whose
apex a has curvature ΩL, and so has cone apex angle
2π − ΩL. C is visible from the apex a of Λ.

Proof. Sketch. By the Gauss-Bonnet theorem, τL +
ΩL = 2π. Because τL ≥ 0 for a convex curve, we must
have ΩL ≤ 2π. If ΩL < 2π, we continually merge ver-
tices in PL until only one remains, at which point PL is
a pyramid, and therefore a cone. If ΩL = 2π, a slight
alteration of the proof results in C living on a cylinder.
Details are in [5]. �

Example 1. In Figure 2, the two vertices inside C, of
curvature 1

2π each, are merged to one of curvature π,
which is then the apex of a cone on which C lives.
Example 2. Figure 3(a) shows an example with three
vertices inside C. P is a doubly covered flat pentagon,
and C = (v4, v5, v4) is the closed curve consisting of a
repetition of the segment v4v5. C has π surface angle at
every point to its left, and so is convex. The curvatures
at the other vertices are ω1 = π and ω2 = ω3 = 1

2π.
Thus ΩL = 2π, and the proof of Lemma 2 shows that C
lives on a cylinder. Following the proof, merging v1 and
v2 removes those vertices and creates a new vertex v12 of
curvature 3

2π; see (b) of the figure. Finally merging v12
with v3 creates a “vertex at infinity” v123 of curvature
2π. Thus C lives on a cylinder as claimed. If we first
merged v2 and v3 to v23, and then v23 to v1, the result
is exactly the same, although not obviously so.

v3

v5v4

v2

v1

v3

v5v4 v5v4

v12

v123

(a) (b) (c)

Figure 3: (a) A doubly covered flat pentagon. (b) After
merging v1 and v2. (c) After merging v12 and v3.

4 Convex Loops

Convex Loops and Cones. We first show that the
technique that proved successful for convex curves can-
not apply to all convex loops: not every convex loop
lives on a cone. Consider the polyhedron P shown in
Figure 4(a), which is a variation on the example from
Figure 2(a). Here C = (a, b, b′, x, c′, c, d) is a convex
loop, with loop point x. The cone on which it should
live is analogous to Figure 2(b): vertex merging of v1
and v2 again produces the cone apex v′ whose curvature
is π. But C does not “fit” on this cone, as Figure 4(b)
shows; the apex a = v′ is not inside C.

Overlapping development of convex loop. In light of
the preceding negative result, it is perhaps not surpris-

CCCG 2011, Toronto ON, August 10–12, 2011

73

23rd Canadian Conference on Computational Geometry, 2011

v'

a

b c

d

(a) (b)

a

c

x

x

b

d

b'

c'

v1

v2

b' c'3
3

β

Figure 4: (a) A convex loop C that does not live on a
cone. (b) A flattening of the cone on which it should
live. (Base of P is 3× 3.)

ing that there are convex loops C and a point x ∈ C
such that Cx left-develops with overlap. Indeed Figure 5
shows an example where x is the loop point.

x

x1 x2

a1

a2

a1
a2

(a) (b)

Figure 5: (a) P with convex loop C. (b) Cx when cut
at loop point x.

Visibility Points. Despite the negative result illus-
trated above, we can show that there always exists some
cut point y that develops a convex loop without overlap.

Say that y ∈ C is a visibility point for C if for every
point z ∈ C there is a shortest path joining y to z that
remains interior to C except at its endpoints. The fol-
lowing proof sketch shows, roughly, that a convex loop
C lives on the union of two cones (Case I), or on two
cones separated by another region (Case II). This suf-
fices to establish a non-overlapping development. The
sketch relies at several points on our work on the star
unfolding in [4].

Lemma 3 Every convex loop C has a visibility point
y different from its loop point x, and Cy left-develops
without overlap.

Proof. Sketch. Let τ1 and τ2 be the tangent directions
of C at x, and consider µi = −τi.

Case I. Assume first there exists a shortest path
γ = xy from x to some y ∈ C whose tangent direction
at x lies between µ1 and µ2; see Figure 6. Then γ splits
P = PL into two convex regions Pi sharing the com-
mon boundary point y, and hence (by Lemma 8 in [4])

y “sees” every point in P . Moreover, vertex merging
in each Pi produces two cones Λi (of apices ai) with
common boundary γ.

τ1

μ1

μ2

τ2

x

y

γL α

Figure 6: Case 1: γ = xy is a shortest path.

Claim 1. Cutting each cone along the generator aiy
unfolds the union of cones without overlappings. Con-
sequently, this develops C without overlap.

Case II. Assume now that Case I does not hold.
Then P must contain a “fat digon” D, a concept
from [4]. This is a region bounded by two shortest paths
from x to some y ∈ C whose angle at x covers all possi-
ble “splitting” γ between µ1 and µ2. In this case what
remains outside the digon is the union of two convex
regions Pi, each visible from y. Moreover, D is itself
completely visible from y (see Sec. 4.2 in [4]). Again we
perform vertex merging in each Pi to obtain two cones,
of apices ai, which we unfold by cutting along aiy.

We unfold D by the star unfolding with respect to y,
and apply Lemma 7 in [4] to establish that the result
lies inside some angle (at x).

Claim 2. We can join the unfoldings without overlap-
pings. Consequently, this develops C without overlap.
The proof of Claim 2 follows the one for Claim 1, with
the additional fact that the star unfolding of the “fat
digon” fits inside a circular sector at x̄. �

This result on convex loops is best possible in the sense
that there are curves C that are convex except at two
exceptional points, and for which Cx overlaps for every
x.

5 Reflex Curves and Reflex Loops

For each corner ci of a curve C, αi+ωi+βi = 2π, where
αi and βi are the left and right angles at ci respectively,
and ωi is the curvature at ci. When C is vertex-free,
ωi = 0 at all corners, and the relationships among the
curve classes is simple and natural: the other side of a
convex curve is reflex, the other side of a reflex curve is
convex. The same holds for the loop versions: the other
side of a convex loop is a reflex loop (because αm ≥ π
implies βm ≤ π, where cm is the loop point), and the
other side of a reflex loop is a convex loop. When C

23rd Canadian Conference on Computational Geometry, 2011

74

CCCG 2011, Toronto ON, August 10–12, 2011

includes vertices, the relationships between the curve
classes are more complicated. The other side of a convex
curve is reflex only if the curvatures at the vertices on
C are small enough so that αi + ωi ≤ π; C would still
be convex even if it just included those vertices inside.
The same holds for convex loops.

On the other hand, the other side of a reflex curve is
always convex, because nonzero vertex curvatures only
make the other side more convex. The other side of a
reflex loop is a convex loop, and it is a convex curve if
the curvature at the loop point cm is large enough to
force αm ≤ π, i.e., if βm + ωm ≥ π.

This latter subclass of reflex loops—those whose other
side is convex—especially interest us, because any con-
vex curve that includes at most one vertex is a reflex
loop of that type. All our results in this section hold for
this class of curves.

Lemma 4 Let C be a curve that is either reflex (to its
right), or a reflex loop which is convex to the other (left)
side, with βm < π at the loop point cm. Then C lives
on a cone ΛR to its reflex side, and is visible from its
apex a. If ΩR > 2π, then the reflex neighborhood NR is
to the unbounded side of ΛR, i.e., the apex of ΛR is left
of C; if ΩR < 2π, then NR is to the bounded side, i.e.,
the apex of ΛR is to the right side of C. If ΩR = 2π,
C ∪NR lives on a cylinder.

Proof. Sketch. Because C is convex to its left, we have
ΩL ≤ 2π. Just as in Lemma 2, merge the vertices
strictly in PL to one vertex a. Let ΛL be the cone with
apex a on which C now lives.

The remainder of the proof alters ΛL to ΛR step-by-
step with repeated insertions of “curvature triangles” to
the left at each corner ci of C. Each of these triangles is
an isosceles triangle of apex angle ωi, which flattens the
surface at ci without altering C ∪ NR. For a detailed
proof, see [5] �

Example 3. An example of a reflex loop that satisfies the
hypotheses of Lemma 4 is shown in Figure 7(a). Here
C has five corners, and is convex to one side at each.
C passes through only one vertex of the cuboctahedron
P, and so it is reflex at the four non-vertex corners to
its other side. Corner c5 coincides with a vertex of P,
which has curvature ω5 = 1

3π. Here α5 = β5 = 5
6π.

Because β5 < π, C is a reflex loop. We have ΩL = 2
3π

because C includes two cuboctahedron vertices, u and v
in the figure. ΩC = ω5 = 1

3π. And therefore ΩR = 3π.
The apex curvature of ΛL is ΩL = 2

3π, and the apex
curvature of ΛR is π. NR lives on the unbounded side
of this cone, which is shown shaded in Figure 7(b). Note
the apex a is left of C, in accord with the lemma.

c1

c2

c5

c4

c3

c1c5

c4

c3

c2

c4
u

v

u

v

39o

51o

61o

59o

(a) (b)

150o

a

Figure 7: (a) A curve C of five corners passing through
one polyhedron vertex. C is convex to one side, and a
reflex loop to the other, with loop point c5, at which
β5 = 5

6π(= 150◦) < π. (b) The cone ΛR with apex a is
shaded.

6 Discussion

We summarize the results claimed in the Introduction
in a theorem:

Theorem 5 On a convex polyhedron, every convex
curve left-develops without overlap, and every reflex
curve, and reflex loop whose other side is convex, right-
develops without overlap, for every cut point. Ev-
ery convex loop has some cut-point from which it left-
develops without overlap.

Proving that a curve on a convex polyhedron lives on
a cone is a powerful technique for establishing that these
polyhedron curves develop without overlap. Even when
a curve—such as a convex loop—does not live on a cone,
still the cone perspective can help prove nonoverlapping
development (Lemma 3).

Many questions remain.

Overlapping Developments. It is not the case that ev-
ery curve that lives on a cone develops without overlap.
Here we show that there exist C such that Cx is non-
simple for every choice of x. We provide one specific
example, but it can be generalized.

The cone Λ has apex angle α = 3
4π; it is shown cut

open and flattened in two views in Figure 8(a,b). An
open curve C ′ = (p1, p2, p3, p4, p5) is drawn on the cone.
Directing C ′ in that order, it turns left by 3

4π at p2, p3,
and p4. From p5, we loop around the apex a with a
segment S = (p5, p6, p

′
5), where p′5 is a point near p5 (not

shown in the figure). Finally, we form a simple closed
curve on Λ by then doubling C ′ at a slight separation
(again not illustrated in the figure), so that from p5
it returns in reverse order along that slightly displaced
path to p1 again. Note that C = C ∪ S ∪ C ′ is closed
and includes the apex a in its (left) interior.

CCCG 2011, Toronto ON, August 10–12, 2011

75

23rd Canadian Conference on Computational Geometry, 2011

a

α

5
1

2

3

4

(a)

a

1

4 5
6

2
3

2
3

4

(b)

(c)

1

4

5

2

3

66

S

S

C'

C'

C'

Figure 8: (a) Open curve C ′ = (p1, p2, p3, p4, p5) on cone
of angle α, with cone opened. (b) A different opening
of the same cone and curve. (c) Development of curve
C ′ self-intersects.

Now, let x be any point on C from which we will start
the development Cx. Because C is essentially C ′∪C ′, x
must fall in one or the other copy of C ′, or at their join
at p1. Regardless of the location of x, at least one of
the two copies of C ′ is unaffected. So Cx must include
C ′ as a subpath in the plane.

Finally, developing C ′ reveals that it self-intersects:
Figure 8(c). Therefore, Cx is not simple for any x.
Moreover, it is easy to extend this example to force self-
intersection for many values of α and analogous curves.
The curve C ′ was selected only because its development
is self-evident.

Slice Curves. There are curves already known to de-
velop without overlap that are not known to live on a
cone. One particular class we could not settle are the
slice curves. A slice curve C is the intersection of P
with a plane. Slice curves in general are not convex.
The intersection of P with a plane is a convex polygon
in that plane, but the surface angles of P to either side
along C could be greater or smaller than π at differ-

ent points. Slice curves were proved to develop without
intersection, to either side, in [6], so they are good can-
didates to live on cones. However, we have not been
able to prove that they do.

Convex Loops. Although we have shown that there is
some cut point from which every convex loop develops
without overlap (Lemma 3), we have not determined all
the cut points that enjoy this property.

Cone Curves. Finally, we have not obtained a com-
plete classification of the curves on a cone that develop,
for every cut point x, as simple curves in the plane. It
would equally interesting to identify the class of curves
on cones for which there exists at least one cut-point
that leads to simple development. Indeed, the same
questions for curves on a sphere are also unresolved [3].

References

[1] Aleksandr D. Alexandrov. Convex Polyhedra. Springer-
Verlag, Berlin, 2005. Monographs in Mathematics.
Translation of the 1950 Russian edition by N. S. Dair-
bekov, S. S. Kutateladze, and A. B. Sossinsky.

[2] Erik D. Demaine and Joseph O’Rourke. Geometric Fold-
ing Algorithms: Linkages, Origami, Polyhedra. Cam-
bridge University Press, 2007. http://www.gfalop.org.

[3] Erik D. Demaine and Joseph O’Rourke. Open problems
from CCCG 2009. In Proc. 22nd Canad. Conf. Comput.
Geom., pages 83–86, 2010.

[4] Jin-ichi Itoh, Joseph O’Rourke, and Costin Vı̂lcu. Star
unfolding convex polyhedra via quasigeodesic loops. Dis-
crete Comput. Geom., 44:35–54, 2010.

[5] Jin-ichi Itoh, Joseph O’Rourke, and Costin Vı̂lcu. Source
unfoldings of convex polyhedra with respect to certain
closed curves. Submitted, 2011.

[6] Joseph O’Rourke. On the development of the intersec-
tion of a plane with a polytope. Comput. Geom. Theory
Appl., 24(1):3–10, 2003.

[7] Joseph O’Rourke and Catherine Schevon. On the de-
velopment of closed convex curves on 3-polytopes. J.
Geom., 13:152–157, 1989.

[8] Joseph O’Rourke and Costin Vı̂lcu. Conical existence of
closed curves on convex polyhedra. http://arxiv.org/

abs/1102.0823, February 2011.

23rd Canadian Conference on Computational Geometry, 2011

76

CCCG 2011, Toronto ON, August 10–12, 2011

Common Developments of Several Different Orthogonal Boxes

Zachary Abel∗ Erik Demaine† Martin Demaine‡ Hiroaki Matsui§ Günter Rote¶ Ryuhei Uehara‖

Abstract

We investigate the problem of finding common develop-
ments that fold to plural incongruent orthogonal boxes.
It was shown that there are infinitely many orthogonal
polygons that fold to two incongruent orthogonal boxes
in 2008. In this paper, we first show that there is an or-
thogonal polygon that fold to three boxes of size 1×1×5,
1 × 2 × 3, and 0 × 1 × 11. Although we have to admit
a box to have volume 0, this solves the open problem
mentioned in literature. Moreover, once we admit that
a box can be of volume 0, a long rectangular strip can
be folded to an arbitrary number of boxes of volume 0.
We next consider for finding common non-orthogonal
developments that fold to plural incongruent orthogo-
nal boxes. In literature, only orthogonal folding lines or
with 45 degree lines were considered. In this paper, we
show some polygons that can fold to two incongruent
orthogonal boxes in more general directions.

1 Introduction

Since Lubiw and O’Rourke posed the problem in 1996
[4], polygons that can fold to a (convex) polyhedron
have been investigated. In a book about geometric fold-
ing algorithms by Demaine and O’Rourke in 2007, many
results about such polygons are given [3, Chapter 25].
Such polygons have an application in the form of toys
and puzzles. For example, the puzzle “cubigami” (Fig-
ure 1) is developed by Miller and Knuth, and it is a
common development of all tetracubes except one (of
surface area 16). One of the many interesting problems
in this area is that whether there exists a polygon that
folds to plural incongruent orthogonal boxes. Biedl et
al. answered “yes” by finding two polygons that fold to
two incongruent orthogonal boxes [2] (see also [3, Figure

∗Department of Mathematics, Massachusetts Institute of Tech-
nology, MA 02139, USA. zabel@math.mit.edu

†Computer Science and Artificial Intelligence Lab,
Massachusetts Institute of Technology, MA 02139, USA.
edemaine@mit.edu

‡Computer Science and Artificial Intelligence Lab,
Massachusetts Institute of Technology, MA 02139, USA.
mdemaine@mit.edu

§School of Information Science, JAIST, Asahidai 1-1, Nomi,
Ishikawa 923-1292, Japan. s0910058@jaist.ac.jp

¶Institut für Informatik, Freie Universität Berlin, Taku-
straße 9, 14195 Berlin, Germany. rote@inf.fu-berlin.de

‖School of Information Science, JAIST, Asahidai 1-1, Nomi,
Ishikawa 923-1292, Japan. uehara@jaist.ac.jp

Figure 1: Cubigami.

25.53]). Later, Mitani and Uehara constructed infinite
families of orthogonal polygons that fold to two incon-
gruent orthogonal boxes [5]. However, it is open that
whether there is a polygon that can fold to three or
more boxes.

First, we give an affirmative answer to this open prob-
lem, at least in some weak sense. That is, we give a
polygon that can fold to three incongruent orthogonal
boxes of size 0 × 1 × 11, 1 × 1 × 5, and 1 × 2 × 3. Note
that one of the boxes is degenerate, as it has a side of
length 0. Such a box is sometimes called a “doubly cov-
ered rectangle” (e.g., [1]). For boxes of positive volume,
the existence of three boxes with a common unfolding
is still open.

The polygon is found as a side effect of the enumera-
tion of common developments of boxes of size 1 × 1 × 5
and 1 × 2 × 3. In the previous result by Mitani and
Uehara [5], they randomly generated common develop-
ments of these boxes, and they estimated the number of
common developments of these boxes at around 7000.
However, they overestimated it since their algorithm did
not exclude some symmetric cases. We enumerate all
common developments of boxes of size 1 × 1 × 5 and
1 × 2 × 3, which can be found on a Web page1. As
a result, the number of common developments of these
boxes is 2263. Among 2263 developments, the devel-
opment in Figure 2 is the only one that can fold to
0 × 1 × 11.

Once we admit that a box can be a doubly covered

1http://www.jaist.ac.jp/~uehara/etc/origami/net/

all-22.html

CCCG 2011, Toronto ON, August 10–12, 2011

77

23d Canadian Conference on Computational Geometry, 2011

(c) 0x1x11

(a) 1x1x5

(b) 1x2x3

Figure 2: A common development of three different
boxes. (a) Folding lines to make a 1 × 1 × 5 box. (b)
Folding lines to make a 1 × 2 × 3 box. (c) Folding lines
to make a 0 × 1 × 11 box.

rectangle, we have a new view of this problem since a
doubly covered rectangle seems to be easier to construct
than a box of positive volume. Indeed, we show that
a sufficient long rectangular strip can be folded to an
arbitrary number of doubly covered rectangles.

Next we turn to another approach to this topic. In
an early draft by Biedl et al. [2], they showed a common
development of two boxes of size 1×2×4 and

√
2×

√
2×

3
√

2 (Figure 3). In the development, two folding ways to
two boxes are not orthogonal. That is, the set of folding
lines of a box intersect the other set of folding lines
by 45 degrees. This development motivates us to the
following problem: Is there any common development of
two incongruent boxes such that two sets of folding lines
intersect by an angle different from 45 or 90 degrees? We
give an affirmative answer to this question.

(a) 1x2x4 box (b) 2x 2x3 2 box

Figure 3: A common development of two different boxes
by Biedl et al. [2]. (a) Folding lines to make a 1 × 2 × 4
box. (b) Folding lines to make a

√
2 ×

√
2 × 3

√
2 box.

2 Common orthogonal developments of boxes of
size 1 × 1 × 5 and 1 × 2 × 3

For a positive integer S, we denote by P (S) the set
of three integers a, b, c with 0 < a ≤ b ≤ c and
ab+bc+ca = S, i.e., P (S) = {(a, b, c) | ab+bc+ca = S}.
When we only consider the case that folding lines are
on the edges of unit squares, it is necessary to sat-
isfy |P (S)| ≥ k to have a polygon of size 2S that can
fold to k incongruent orthogonal boxes of positive vol-
umes. The smallest S with P (S) ≥ 2 is 11 and we have
P (11) = {(1, 1, 5), (1, 2, 3)}. In this section, we con-
centrate at this special case. That is, we consider the
developments that consist of 22 unit squares. Mitani
and Uehara developed two randomized algorithms that
try to find common developments of two different boxes
[5]. Both algorithms essentially generate common de-
velopments randomly. Using the faster algorithm, they
also estimated the number of common developments of
the boxes of size 1× 1× 5 and 1× 2× 3 at around 7000.
However, they overestimated it since their algorithm did
not exclude some symmetric cases.

We develop another algorithm that tries all common
developments of these boxes. For a common develop-
ment P of the boxes, let P ′ be a connected subset of
P . That is, P ′ be a set of unit squares and it pro-
duces a connected simple polygon. Then, clearly, we
can stick P ′ on these two boxes without overlap. We
use the term common partial development of the boxes
to denote such a smaller polygon. For example, one unit
square is the common partial development of the boxes
of surface area 1, and a rectangle of size 1 × 2 is the
common development of them of surface area 2, and so
on. Let Li be the set of common partial developments
of the boxes of surface area i. Then |L1| = |L2| = 1, and
|L3| = 2, and one of our main results is |L22| = 2263.
The outline of the first algorithm is as follows:

23rd Canadian Conference on Computational Geometry, 2011

78

CCCG 2011, Toronto ON, August 10–12, 2011

i 1 2 3 4 5 6 7 8 9
Li 1 1 2 5 12 35 108 368 1283

i-ominos 1 1 2 5 12 35 108 369 1285

i 10 11 12 13 14
Li 4600 16388 57439 193383 604269

i-ominos 4655 17073 63600 238591 901971

i 15 16 17 18
Li 1632811 3469043 5182945 4917908

i-ominos 3426576 13079255 50107909 192622052

i 19 20 21 22
Li 2776413 882062 133037 2263

Table 1: The number of common partial developments
of two boxes 1 × 1 × 5 and 1 × 2 × 3 of surface area i
with 1 ≤ i ≤ 22. (For 1 ≤ i ≤ 18, we give the number
of i-ominos, for comparison.)

Input : None;
Output: Polygons that consist of 22 squares and

fold to boxes of size 1 × 1 × 5 and
1 × 2 × 3;

let L1 be a set of one unit square;1

for i = 2, 3, 4, . . . , 22 do2

Li := ∅;3

for each common partial development P in4

Li−1 do
for every polygon P+ of size i obtained by5

attaching a unit square to P do
check if P+ is a common partial6

development, and add it into Li if it is a
new one;

end7

end8

end9

output L22;10

We implemented the algorithm and obtain all com-
mon developments in L22

2. One can find all of them
at http://www.jaist.ac.jp/~uehara/etc/origami/

net/all-22.html. All the values of Li with 1 ≤ i ≤ 22
are shown in Table 1. The first main theorem is as fol-
lows:

Theorem 1 The number of the common developments
of boxes of size 1 × 1 × 5 and 1 × 2 × 3 into unions of
unit squares is 2263.

3 Boxes including doubly-covered rectangles

3.1 Three boxes of surface area 22

Among the 2263 developments in Theorem 1, there is
only one development that gives an affirmative answer

2The first program with a naive implementation was too slow.
We tuned it with many technical tricks, and now it outputs L22

in around 10 hours.

Figure 4: Tiling by the common development of three
different boxes.

to the open problem in [5]:

Theorem 2 There is a common development of three
boxes of size 1×1×5, 1×2×3, and 0×1×11. Moreover,
the development is a polygon such that (1) it can fold to
three boxes by orthogonal folding lines, and (2) it forms
a tiling.

Proof. The development is depicted in Figure 2. It is
easy to see that all folding lines in Figure 2(a)-(c) are
orthogonal. The tiling is given in Figure 4. �

In Theorem 2(1), one may complain that some folding
lines are not on the edges of unit squares. Then, split
each unit square into four unit squares. On the refined
development for three boxes of surface area 88, we again
have the claims in Theorem 2 for the boxes of size 2 ×
2 × 10, 2 × 4 × 6, and 0 × 2 × 22, and all folding lines
are on the edges of unit squares.

3.2 A rectangular strip can be folded to an arbitrary
number of doubly-covered rectangles

Theorem 3 A rectangular L × 1 paper (L > 1) can be
folded into at least

2 + bLc
different doubly-covered rectangles in at least

1 +
⌊

L
4

⌋
+

⌈
L
4

⌉
+ bLc

different ways.

Proof. Figure 5a shows how a long ribbon of width
1 can be wrapped by “twisting” it around a rectangu-
lar strip. Here we show that we can obtain bLc differ-
ent doubly covered rectangles based on this way. First,
we consider the points p0, q0, q1, a, b, c, in Figure 5b).
(Without loss of generality, we assume that q0b ≥ q1a.)
Let p1 be the center of bc, and hi is the point such that
pihi is a perpendicular of ab for i = 0, 1. We first ob-
serve that p0a and bc are in parallel, the angles ap0b
and p0bc are right angles, and p0 is the center of q0q1.

CCCG 2011, Toronto ON, August 10–12, 2011

79

23d Canadian Conference on Computational Geometry, 2011

a)

b)

p0
p1

p2

a

b

c

h0

h1

p0

a

b

c
q0

q1

Figure 5: Another way of folding a ribbon to a doubly-
covered rectangle

Thus, careful analysis tells us that 4q0p0b, 4h0p0b, and
4h1p1a are congruent. By symmetry, 4q1p0a, 4h0p0a,
and 4h1p1b are also congruent. Hence the points ap0bp1

form a rectangle. Therefore, the folding lines in Fig-
ure 5a) can be obtained by filling the rectangles like
Figure 5b). Let k and w be the number of the rect-
angles and the length of the diagonal of the rectangle,
respectively. Then, to obtain a feasible folding lines, we
need k ≥ 1, kw = L, and w = ab ≥ 1. Therefore, for
each k = 1, 2, . . . , bLc, we can obtain a doubly covered
rectangle of size p0b and kp0a.

In addition, we have the two ways of folding the rib-
bon in half along the long axis (leading to a L × 1

2 rect-
angle) or along the short axis (leading to a (L/2) × 1
rectangle).

1

d

a)

b)

d)

c)

α

11

A

B C

Figure 6: Folding a ribbon to a doubly-covered rect-
angle. For better visibility, one side of the ribbon is
shaded.

We next turn to another idea of folding. Figure 6a
shows how a long ribbon of width 1 can be wrapped by
“winding” it around a rectangular strip in such a way
that the space between successive windings is equal to
the width of the ribbon. By bending it backward at the
end, as in Figure 6b–c, one obtains a doubly covered

strip. Figure 6d shows the geometric construction: start
with a right triangle ABC with the long side d = BC =
cot α + tanα on a long edge of the ribbon and the right
angle A on the opposite edge. When the length L of the
ribbon is an even multiple of d (L = 2n · d), the folding
will close into a doubly covered rectangle.

Figure 7: A different way of folding a ribbon to a
doubly-covered rectangle

The minimum possible value of d is 2. d changes
continuously with α, and any value of d larger than
2 can be obtained. So n, the number of repetitions,
can take all values between 1 and nmax := bL/4c.
For each n in this range, one can form a right tri-
angle ABC with hypotenuse d = L/(2n) and legs
1
2 (

√
d2 + 2d ±

√
d2 − 2d). One can use the longer leg

as the wrapping direction, as in Figure 6, or the shorter
leg, as in Figure 7. This leads to doubly covered rect-
angles of dimensions

(
n · 1

2 (
√

d2 + 2d +
√

d2 − 2d)
)

×
1
2 (

√
d2 + 2d−

√
d2 − 2d) and 1

2 (
√

d2 + 2d+
√

d2 − 2d)×(
n · 1

2 (
√

d2 + 2d −
√

d2 − 2d)
)
.

For d = 2, the two possibilities coincide. So the total
number of possibilities is bL/4c+dL/4e−1. This equals
2bL/4c except when L is a multiple of 4. In this case,
we have to subtract 1 to compensate the overcounting
for the case d = 2.

But we can see that each doubly covered rectangle
by winding can be also obtained by twisting. Hence we
obtain 2 + bLc different doubly covered rectangles in
total. �

4 Non-orthogonal polygons that fold to two incon-
gruent boxes

Figure 8 shows a common unfolding of a 4 × 4 × 8 box
and a

√
10 × 2

√
10 × 2

√
10 box. It was obtained by

solving an integer programming problem. The integer
programming model formulates the problem of selecting
a subset of 160 unit squares of the axis-aligned square
grid underlying Figure 8, subject to the following con-
straints.

1. They should form a connected set in the plane.

2. When folded on the 4 × 4 × 8 box, every square of
the surface is covered exactly once. (There are no
overlaps.)

3. When folded on the
√

10×2
√

10×2
√

10 box, every
part of the surface is covered exactly once. Note

23rd Canadian Conference on Computational Geometry, 2011

80

CCCG 2011, Toronto ON, August 10–12, 2011

that the surface of the
√

10×2
√

10×2
√

10 box can
be partitioned into 160 unit squares, which are how-
ever not aligned with the edges of the box. These
squares result from folding the standard grid onto
the box surface as shown in Figure 8. Some of these
squares bend across an edge of the box.

The algorithm of Section 2 can be viewed as a sys-
tematic incremental way of finding all solutions to this
problem.

The dimensions of the boxes were chosen as follows:
A 1 × 1 × 2 box has surface area 10, and a 1 × 2 × 2
box has surface area 16. By scaling the first box with
the factor 4 and the second box with the factor

√
10, we

get two boxes with equal surface areas. A square lattice
of side length

√
10 can be embedded on the standard

integer grid by choosing the vector
(
1
3

)
as a generating

“unit vector”.

The alignment of the two box unfoldings, with the
symmetric layout of two “central” faces sharing two ver-
tices, was fixed and was chosen by hand.

Figure 9 has been made from Figure 8 in an attempt
to conceal the obvious folding directions. Further puz-
zles along these lines (for printing and cutting out) are
given on a web page3.

5 Concluding remarks

It is an open question if a polygon exists that can fold
to three or more orthogonal boxes such that all of them
have positive volume. We are exploring the possibil-
ity to find such examples by our integer programming
model of Section 4. If we take the approach in Sec-
tion 2, the smallest S with |P (S)| ≥ 3 is given by
P (23) = {(1, 1, 11), (1, 2, 7), (1, 3, 5)}. Thus we need to
construct polygons of surface area 46, which is much
bigger than 22.

In Section 3.2, we use three different ideas for folding
a rectangular ribbon R to a doubly-covered rectangle.
It would be interesting to classify all ways of folding
ribbons into doubly-covered rectangles. In fact, we can
generalize the ideas of “twisting” and “winding”; see
Figures 10 and 11. These folding ways correspond to a
kind of the billiard ball problem on a rectangular table.
Hence, to specify all the folding ways in the figures, we
have to find all pairs of relatively prime integers p and
q with pq = bcLc for c = 1, 1/4. The number of such
pairs seems to be related to the maximal value of prime
divisors of numbers in reduced residue system for bcLc
4.

3http://www.inf.fu-berlin.de/~rote/Software/

folding-puzzles/
4http://oeis.org/A051265

Figure 8: A common development of two different
boxes. The set of folding lines for one box intersect
the other set by neither 90 nor 45 degrees, but at
arctan 3 ≈ 72◦.

Acknowledgments

This work was initiated at the 26th Bellairs Winter
Workshop on Computational Geometry held February
11–18, 2011 in Holetown, Barbados, co-organized by
Erik Demaine and Godfried Toussaint. We thank the
other participants of that workshop—Oswin Aichholzer,
Greg Aloupis, Prosenjit Bose, Mirela Damian, Vida Du-
jmović, Robin Flatland, Ferran Hurtado, Anna Lubiw,
André Schulz, Diane Souvaine, and Andrew Winslow—
for helpful comments and for providing a stimulating
environment.

References

[1] J. Akiyama. Tile-Makers and Semi-Tile-Makers. The
Mathematical Association of Amerika, Monthly 114:602–
609, August-September 2007.

[2] T. Biedl, T. Chan, E. Demaine, M. Demaine, A. Lubiw,
J. I. Munro, and J. Shallit. Notes from the University
of Waterloo Algorithmic Problem Session. September 8
1999.

[3] E. D. Demaine and J. O’Rourke. Geometric Folding
Algorithms: Linkages, Origami, Polyhedra. Cambridge
University Press, 2007.

CCCG 2011, Toronto ON, August 10–12, 2011

81

23d Canadian Conference on Computational Geometry, 2011

Figure 9: A common development of two different
boxes. This has been obtained from Figure 8 by modi-
fying the boundary.

[4] A. Lubiw and J. O’Rourke. When Can a Polygon Fold
to a Polytope? Technical Report Technical Report 048,
Department of Computer Science, Smith College, 1996.

[5] J. Mitani and R. Uehara. Polygons Folding to Plural
Incongruent Orthogonal Boxes. In Canadian Conference
on Computational Geometry (CCCG 2008), pages 39–42,
2008.

Figure 10: A generalization of twist folding to a doubly
covered rectangle.

Figure 11: A generalization of wind folding to a doubly
covered rectangle.

23rd Canadian Conference on Computational Geometry, 2011

82

CCCG 2011, Toronto ON, August 10–12, 2011

Edge-Unfolding Orthogonal Polyhedra is Strongly NP-Complete

Zachary Abel∗ Erik D. Demaine†

Abstract

We prove that it is strongly NP-complete to decide
whether a given orthogonal polyhedron has a (nonover-
lapping) edge unfolding. The result holds even when
the polyhedron is topologically convex, i.e., is homeo-
morphic to a sphere, has faces that are homeomorphic
to disks, and where every two faces share at most one
edge.

1 Introduction

An edge unfolding of a polyhedron consists of cutting
the surface along a subset of its edges in such a way
that the surface can be unfolded into one planar piece
without overlap.1 Edge unfoldings have a long his-
tory, dating back to Albrecht Dürer in 1525; see [3].
The most famous open question is whether every con-
vex polyhedron has an edge unfolding, but nonconvex
polyhedra are even more interesting for practical man-
ufacturing applications. The theoretical study of such
unfoldings began at CCCG 1998 [2] and CCCG 1999 [1].
Biedl et al. [2] found some orthogonal polyhedra with
no edge unfoldings, but the examples had faces with
holes or two faces that shared two edges. Bern et al. [1]
found a triangulated polyhedron with no edge unfold-
ing that is homeomorphic to a sphere, implying that
the polyhedron is topologically convex—has the graph
(1-skeleton) of a convex polyhedron. In the journal ver-
sion of their CCCG 1999 paper [1], they asked for the
computational complexity of deciding whether a given
triangulated polyhedron has an edge unfolding.

In this paper, we settle the computational complex-
ity of the closely related problem of deciding whether a
topologically convex orthogonal polyhedron has an edge
unfolding. Specifically, we prove this Orthogonal Edge
Unfolding problem is strongly NP-complete.

∗Department of Mathematics, Massachusetts Institute of Tech-
nology, Cambridge, MA 02139, USA. zabel@math.mit.edu. Par-
tially support by an MIT Mathematics Department Levinson Fel-
lowship and an NSF Graduate Research Fellowship.

†Computer Science and Artificial Intelligence Lab,
Massachusetts Institute of Technology, MA 02139, USA.
edemaine@mit.edu. Partially supported by NSF CAREER award
CCF-0347776.

1We allow boundary edges to touch in unfoldings, requiring
only that the interior of the cut surface does not overlap itself.

2 Unique Coordinate Square Packing

The Square Packing problem asks, given n squares
s1, . . . , sn of side-lengths a1, . . . , an and a target dis-
tance d, whether there is some (non-overlapping) or-
thogonal packing of the squares si into a square of side-
length d. This is known to be strongly NP-complete [4].
We first show that we may impose a few simplifying
assumptions on the packings produced by this problem:

Definition 1 (Unique Coordinate Square Packing)
An instance of the Unique Coordinate Square Packing
(UCSP) promise problem has the form (d, (a1, . . . , an)),
where all values are positive integers and ai ≤ d− 2 for
each 1 ≤ i ≤ n. In a YES instance, there exists an or-
thogonal packing of n squares s1, . . . , sn of side-lengths
a1, . . . , an into the square D = [0, d] × [0, d] ⊂ R2

satisfying the following additional properties:
• all vertices of all squares in the packing have integer

coordinates,
• no two vertices of two different squares have the

same x- or y-coordinate, and
• no square in the packing touches the boundary of D.

In a NO instance, there does not exist any orthogonal
packing of the si into D.

Theorem 2 The Unique Coordinate Square Packing
problem is strongly NP-hard.

The simple but technical proof is omitted from this
extended abstract.

3 Overview

This section provides an overview of the detailed con-
structions to follow.

We first consider the problem of unfolding orthogonal
polyhedra with boundary in Section 4, proving hardness
by reduction from a UCSP instance (d, (a1, . . . , an)). We
construct a polyhedron B with boundary (Figure 3)
involving n squares bi with side-lengths ai (call these
“blocks”) surrounded by filler material. The polyhe-
dron is designed to force the blocks to unfold inside a
“cage” of shape d×d, such that an unfolding exists if and
only if there exists a square packing. (In the construc-
tion below, the blocks and cage are scaled up by a large
factor q.) As the unfolding must remain connected, we
use thin “wires” made from the filler material to “wind”
around the blocks and connect them to the boundary

CCCG 2011, Toronto ON, August 10–12, 2011

83

23rd Canadian Conference on Computational Geometry, 2011

Figure 1: A depiction of an “atom,” the polyhedral sur-
face with 9× 9 square boundary that enables universal
wire unfolding as in Theorem 3. An atom is composed
of 125 unit-square faces.

of the cage. The un-needed filler material winds itself
out of the way. The univesally windable wires are de-
scribed and proved in Section 4.1, and the details of the
unfolding are presented in Sections 4.2, 4.3, and 4.4.

In Section 5 we reduce to orthogonal polyhedra with-
out boundary by extending B into a polyhedron C with
the property that C has an unfolding if and only if B
does. This is accomplished with two U-shaped polygons
(Figure 6) that must be separated from B to avoid over-
lap, which forces the extra material of C not to interfere
with the unfolding of B.

4 Polyhedron With Boundary

In this section we show that the edge unfolding problem
for an orthogonal polyhedron with boundary is NP-hard.

4.1 Atoms and Universal Wire Unfolding

As described in the overview, we require “winding
wires” that can unfold into an arbitrarily chosen or-
thogonal path. We construct those here.

Define an atom as the polyhedral surface with
boundary in Figure 1, whose boundary is a 9×9 square.
The width of an atom is called the atomic width ,
wA = 9. Atoms are named thus since they are the
basic “winding wire” unit, and also due to their tiny
size relative to many constructions to follow.

For a finite or infinite grid G of u×u squares in the xy-
plane and integers i, j, write G[i, j]u for the (i, j)th cell
in G, i.e., the u×u cell positioned at (ui, uj). Similarly,
if e is a directed line segment of length ` and u evenly di-
vides `, express e as the union of `/u directed segments
of length u and let e[i]u be the ith such segment.

Define a wire W of length k in G as a simple path
of connected squares in G: specifically, a collection of
distinct squares ci = ci(W) (0 ≤ i ≤ k − 1) in G and

distinct, oriented edges ei = ei(W) (0 ≤ i ≤ k) such
that ei is the common edge of cells ci−1 and ci for each
1 ≤ i ≤ k − 1, edge e0 (the starting edge) is an edge
of the starting cell c0, and ek (the ending edge) is
an edge of the ending cell ck−1. Edge ei is oriented
to trace the boundary of ci−1 clockwise, or equivalently,
to trace the boundary of ci counterclockwise. (Use the
former condition for ek and the latter for e0.) It is con-
venient to discuss the medial path of a wire that con-
nects the centers of e0, c0, e1, . . . , ck−1, ek sequentially.
The wire turns right, straight, or left at square ci
if the medial path turns right, straight, or left there.

If W is a wire of wA×wA squares in the x, y-plane, we
can form the associated wire of atoms A(W), a poly-
hedral surface with boundary, by replacing each square
ci with an atom ai pointing in the positive z-direction
such that atoms ai−1 and ai are connected along the
edge corresponding to ei. Each unit-length edge ei[s]1
(for 0 ≤ s ≤ wA − 1 = 8) corresponds to an edge of one
or two unit-square faces on A(W).

Define a flatom2 as a wF×wF square where wF = 27
is the flatomic width . We will now show that wires
of atoms can be universally unfolded in the following
sense: roughly, any wire of k atoms can be unfolded
inside any desired wire of k flatoms, while ensuring that
the middle of each atom edge unfolds to the center of
the corresponding flatom edge (or one unit away from
center).

Theorem 3 Let W and W ′ be any two wires of length
k with side-lengths wA and wF respectively. Then for
each t ∈ {12, 13, 14} there is an edge unfolding of
the wire of atoms A(W) that lies inside W ′ such that
e0(W)[4]1 (the middle unit edge of e0(W)) unfolds to
e0(W ′)[t]1 (i.e., the middle edge of e0(W ′) or one unit
away) and ek(W)[4]1 unfolds to ek(W ′)[u]1 for some
u ∈ {12, 13, 14}. Furthermore, this unfolding can be
accomplished so that t and u have the same (resp., dif-
ferent) parity when W and W ′ together have an even
(resp., odd) total number of left and right turns.

Proof. By induction on k, it suffices to prove only
the case k = 1. There are thus 27 cases: W turns
right, straight or left; W ′ turns right, straight, or left;
and e0(W)[4]1 unfolds to e1(W ′)[12]1, e1(W ′)[13]1, or
e1(W ′)[14]1. We label these unfoldings of an atom by a
quadruple [X,Y, t, u], where X,Y ∈ {L,S,R}3 indicate
the directions of the turns of wires W and W ′ respec-
tively, and t and u are as above. We must show that
each of the 27 tuples (X,Y, t) appears in some unfold-
ing [X,Y, t, u] with the required parity constraints on t
and u. Up to mirror-reflection and direction reversal,
only ten unfoldings are required4. Three of these are

2short for “flat atom”
3These are abbreviations for Left, Straight, and Right turns.
4For example, these ten suffice: [L,L, 13, 13], [L,L, 14, 12],

23rd Canadian Conference on Computational Geometry, 2011

84

CCCG 2011, Toronto ON, August 10–12, 2011

(a) [L,L, 13, 13]. (b) [L, S, 14, 13]. (c) [R,L, 13, 13].

Figure 2: Three of the ten required unfoldings of an atom inside a flatom. Each unfolding is labeled with [X,Y, t, u]
as described in the proof of Theorem 3. Solid black lines indicate cuts, dotted lines are valley folds, and dashed lines
are mountain folds. Gray lines are uncreased edges.

illustrated in Figure 2, with the remaining seven to be
included in the full version. �

4.2 The Construction

Here we specify the polyhedron with boundary used in
the reduction. The remainder of Section 4 is devoted to
proving its correctness.

It will be useful to package atoms into a molecule :
a 2 × 2 grid of atoms whose boundary is a wM × wM
square, where wM = 2wA = 18. Much of the reduction
below uses a molecule as a basic unit of construction.

Begin with a Unique Coordinate Square Packing in-
stance (d, (a1, . . . , an)). Define q = 25 · 34 · nd (a large
scale factor), and let qM = q/wM be the number of
molecules that fit across a distance q. Also set t =
(n+1+a1+· · ·+an)qM , and p = 500(4dqM t+t

2)+3wA;
these choices will be explained shortly. Define the poly-
hedron with boundary B(d, (a1, . . . , an)) as the sur-
face shown in Figure 3, to be described in more detail
presently. The diagram is oriented so that the positive
x and y directions are right and up respectively, and z
is out of the page.

The face Ffloor in Figure 3a is a single polygon formed
by creating a wF × p hole, Hdrain, and a dq × dq hole,
Hcage, in a large square of size ` = p + dq + wA. The
two faces F 1

pipe and F 2
pipe, of widths 2wA and wA respec-

tively, exactly fill Hdrain. Five (not flat!) polyhedral
surfaces Tbottom, Tleft, Tmid, Tright, Ttop, shown in detail
in Figure 3b, form the sides of the tower , T , which
connects along the boundary of Hcage. The polyhedral
surface Tbottom, whose boundary is a dq×twM rectangle,
is a dqM×t grid of molecules facing away from the tower

[L, S, 12, 13], [L, S, 14, 13], [S,L, 14, 13], [S,L, 12, 13], [S, S, 13, 13],
[S, S, 12, 12], [R,L, 13, 13], [R,L, 14, 12].

except for the n square faces b1, . . . , bn—called bricks—
of side-lengths qa1, . . . , qan, where brick bi is positioned
at (q, (i+ a1 + · · ·+ ai−1)q) relative to the bottom-left
corner of Tbottom. (For Tbottom, “right” and “up” refer
to the positive x and z directions, respectively, as in
Figure 3b.) The parameter t was chosen so that these
bricks exactly fit with q separation from each other and
from the bottom and top edges. Recall that ai ≤ d− 2
for each i, so there is at least q separation between each
brick and the right edge of Tbottom. The other four sides
of T , which have dimensions dq × twM or dq × dq, are
completely tiled with outward-facing molecules.

A single molecule has surface area 500, so the to-
tal surface area of T is strictly less than what the sur-
face area would be if each brick were also tiled with
molecules, namely 500(4dqM t+ t2) < p−3wA. Further-
more, the height of a molecule (out of the plane of its
boundary) is 7, so the projection of T onto the plane
containing Ffloor extends beyond Hcage by only seven
units. In particular, this projection lies strictly in the
interior of the bounding box of Ffloor, and is at least
p− 7 > wA units away from the top edge of Ffloor.

We will show in the next two subsections that
B(d, (a1, . . . , an)) has an edge unfolding if and only if
(d, (a1, . . . , an)) is a YES instance of UCSP. One direc-
tion is straightforward:

Lemma 4 If (d, (a1, . . . , an)) is a UCSP instance
and B(d, (a1, . . . , an)) has an edge unfolding, then
(d, (a1, . . . , an)) is a YES instance.

Proof. Fix some unfolding of B = B(d, (a1, . . . , an)).
Let F 1∗

pipe be the bottom height-1 subrectangle of F 1
pipe,

and similarly for F 2∗
pipe, and consider the polyhedral sur-

face B∗ obtained by replacing F 1
pipe and F 2

pipe with F 1∗
pipe

and F 2∗
pipe. The unfolding of B induces an unfolding of

CCCG 2011, Toronto ON, August 10–12, 2011

85

23rd Canadian Conference on Computational Geometry, 2011

f0

wA

dq

p

wA2wAwA

Ffloor

F 1
pipe

F 2
pipe

T

(a) The global structure of surface B. Faces Ffloor, F 1
pipe, and

F 2
pipe are each a single polygon, but tower T is mostly covered

with molecules as detailed in part (b). For ease of viewing, the
image here is not drawn to scale: the width of the two pipes is
significantly smaller than the width of the tower T , for example.

b1

b2

bn Tmiddle

TrightTleft

Tbottom

Ttop

f0

q

q

q

qa1

qa2

qan

(b) A detail of the tower, T . Each surface of T is entirely tiled
with molecules except for Tbottom, which has bricks b1, . . . , bn—
each a single square face—arranged as shown.

Figure 3: Detailed depiction of polyhedral surface B.

B∗. In this unfolding of B∗, all of T ∪ {F 1∗
pipe, F

2∗
pipe}

unfolds into Hcage ∪Hdrain: indeed, p was chosen to en-
sure that the surface area of T ∪{F 1∗

pipe, F
2∗
pipe} is strictly

less than p, so there is not enough material to reach
the top of Hdrain. It follows that each brick bi unfolds
into Hcage ∪ Hdrain, and since Hdrain is too narrow for
the bricks, each bi unfolds into Hcage. So there exists
a packing of the bi (with side-lengths ai · q) into Hcage

(with side-length d · q), which proves the Lemma. �

4.3 Wiring the Tower

Think of Tbottom as a grid of molecules, with origin (0, 0)
at its lower left corner. In this section we demonstrate
how to connect each brick to the bottom-left corner of
the tower by a chain of molecules. For convenience, we

ensure all such chains have the same length, L.
Brick bi is positioned at (q, yiq) where

yi = i + a1 + · · · + ai−1. Let fi (1 ≤ i ≤ n) be
the lower edge of bi, oriented left-to-right, and let f0
be the lower edge of Tbottom, also oriented left-to-right.
For 1 ≤ i ≤ n define ui = Tbottom[6i, 0]wM

; these are
lined along the left of f0 in Tbottom, spaced 6 molecules
apart. Also let vi = Tbottom[q, yi−1]wM

be the molecule
just under the lower left corner of bi in Tbottom.

Lemma 5 For any permutation σ of {1, . . . , n}, there
exist n non-overlapping wires W1, . . . ,Wn of molecules
in Tbottom such that each wire Wi has length exactly L =
4ndqM and connects c0(Wi) = ui to cL(Wi) = vσi, with
starting and ending edges along f0 and fσ(i) respectively.
Furthermore, no wire touches the two leftmost columns
of molecules on Tbottom, and finally, the complement of
the bricks bi and wires Wi in Tbottom forms a single
edge-connected polyomino of molecules.

b1

b2

b3

b4

(a) In the first
step, overlap-
ping wires are
drawn from ui

to vσ(i) with
just one right
turn.

b1

b2

b3

b4

(b) Wires are
modified with
detours around
bricks to avoid
intersections.

b1

(c) Finally, each wire Wi is
modified with zig-zags in the
empty aσ(i)qM/2 × qM/2 grid
next to brick bσ(i) in order to
bring its length up to exactly
L = 4ndqM .

Figure 4: The three steps in the construction of molecule
wires Wi of Lemma 5. The figures correspond to σ(1) =
3, σ(2) = 1, σ(3) = 2, and σ(4) = 4.

Proof. Provisionally define each Wi as the wire that
goes straight up from ui and turns right to vσ(i), as
in Figure 4a. As defined, these wires may intersect:
the horizontal segment of Wi hits the vertical segment
of Wj when i < j but σ(i) > σ(j). To fix these,
for each i, take all wires Wj that hit the horizontal
part of Wi and insert a detour around brick bi as il-
lustrated in Figure 4b, keeping a 1-molecule gap be-
tween two detouring wires, and between these wires and
bi. Because qM > 4n, there is ample room for the de-
tours. Before the detours, each wire had length less than

23rd Canadian Conference on Computational Geometry, 2011

86

CCCG 2011, Toronto ON, August 10–12, 2011

t+qM = (n+ 2 + a1 + · · ·+ an) qM ≤ 2ndqM , and each
of fewer than n detours adds at most 2dqM molecules,
so the total length of each Wi is less than 4ndqM . Fur-
thermore, by the parity of the positions of ui and vσ(i),
Wi has even length.

We now bring the length of each Wi up to exactly L =
4ndqM . The aiqM× qM

2 grid of molecules to the left of bi
is empty, its bottom edge is adjacent to wire Wi, and the
top and left edges are not adjacent to any wires. This
grid has even width qM/2, and by zig-zagging up and
down in this region as shown in Figure 4c, we can add
any even number of molecules up to aiq

2
M/2 > L. This

indeed allows each wire to reach its destination with
total length exactly L. Finally, the left two columns
of molecules were not touched by the wires, and the
1-molecule gaps inserted above ensure that the comple-
ment of the bricks and wires remains connected. �

Now think of T (partially unfolded as in Figure 3b)
as a grid of atoms, not molecules. Edges f0, f1, . . . , fn
are as defined above, and let g be the bottom edge of
F 1
pipe ∪ F 2

pipe of length 3wA, oriented left to right.

Lemma 6 It is possible to write T as an interior-
disjoint union of the following pieces:
• bricks b1, . . . , bn,
• wires X1, . . . , Xn of atoms where each Xi has length

exactly 4L and connects the bottom-right corner of
molecule ui (with starting edge along f0) to the
top-right corner of molecule vσ(i) (with ending edge
along fσ(i)), and
• a wire X0 connecting (Tbottom[1, 0]wA

, f0[1]wA
) to

edge g[1]wA
along with its adjacent atom on Ttop.

Proof. Let wires of molecules Wi be as in Lemma 5.
Wire Xi is obtained from Wi by starting at the
bottom-right atom in molecule ui and ensuring that
c4k(Xi), . . . , c4k+3(Xi) are the four atoms in molecule
ck(Wi) for each 0 ≤ k ≤ L − 1. This can be done
uniquely, and by parity, this wire Xi will terminate at
the top-right atom of molecule vσ(i).

It remains to construct X0. Let W0 be the wire of
molecules in T that starts at Tbottom[0, 0]wM

and traces
the left edge of Tbottom, the bottom, left, and top edges
of Tleft, and the left edge of Ttop up to its top-left
corner. Let X ′0 be the length-four wire of atoms that
traces c0(W0) as in Figure 5, and define X ′′0 as the
wire of atoms that follows the rest of W0 as in the
Figure. Let G be the region of T outside of the bricks
b1, . . . , bn and wires X1, . . . , Xn, X

′
0, X

′′
0 ; by Lemma 5,

G forms a connected polyomino of molecules. Lemma 5
guarantees that molecules G[1, 0]wM

and G[1, 1]wM
are

in G, so pick any spanning tree S of the molecules in
G in which these two molecules are connected. The
desired wire of atoms X0 is obtained by traversing X ′0,
walking all the way around S to the starting edge of
X ′′0 , and then following X ′′0 . �

wM

wA

X
′

0

X′′

0

Figure 5: A closeup of the bottom-left corner of Tbottom
illustrating how to write G as a wire of atoms as in the
proof of Lemma 6. This wire, X0, is formed by travers-
ing the four atoms of wire X ′0, then walking around the
spanning tree S, and finally following atom-wire X ′′0 .

4.4 Unfolding Surface B

We are now able to prove the converse of Lemma 5:

Lemma 7 If (d, (a1, . . . , an)) is a YES instance of
UCSP, then B(d, (a1, . . . , an)) has an edge unfolding.

Proof. Think of Hcage as a dqF × dqF grid of flatoms,
where qF = q/wF , with origin in the lower-left corner.
Let f0 and fi (1 ≤ i ≤ n) be the bottom edges of Hcage

and brick bi respectively, as above. Pick a packing of
squares with side-lengths a1, . . . , an into [0, d]2 with all
the guarantees of the YES-promise of UCSP, and say
the ith square is positioned at (xi, yi). Scale this up
to a packing of bricks bi into Hcage, with bi positioned
at (xiqFwF , yiqFwF). Since the bricks bi do not meet
each other or the edges of Hcage, there is at least a
qF -flatom separation between them. For 1 ≤ i ≤ n,
define the flatoms hi = Hcage[4i, 0]wF

(along f0) and
ki = Hcage[xiqF , yiqF − 1]wF

(just under edge fi).
Since the coordinates y1, . . . , yn are all different, let

σ be the permutation so that yσ(1) > yσ(2) > · · · >
yσ(n). It is possible to construct non-overlapping wires
Z1, . . . , Zn of flatoms in Hcage \

⋃n
i=1 bi where wire Zi

connects flatom hi with its bottom edge to flatom kσ(i)
with its top edge, and each wire has length exactly L.
This can be accomplished with a method very similar
to the proof of Lemma 5, so we omit these details.

Now we can describe the unfolding of B =
B(d, (a1, . . . , an)). Using permutation σ defined here,
apply Lemma 6 to B to obtain n + 1 wires of atoms
X0, X1, . . . , Xn. Each brick bi will unfold to its position
(xiq, yiq) in the UCSP unfolding above. For each 1 ≤
i ≤ n, wires Xi and Zi were designed so that their ini-
tial edges are centered on the same unit-length segment
along f0: e0(Xi)[4]1 = f0[108i+ 13]1 = e0(Zi)[13]1, and
similarly their final edges are centered in the same place

CCCG 2011, Toronto ON, August 10–12, 2011

87

23rd Canadian Conference on Computational Geometry, 2011

on fσ(i): e4L(Xi)[4]1 = fσ(i)[13]1 = e4L(Zi)[13]1. Fur-
thermore, wires Xi and Zi have the same length, 4L,
and each has an even number of left and right turns be-
cause their initial and final edges are parallel. It is thus
possible, by Lemma 3, to unfold wire Xi into the region
of Hcage described by Zi while keeping Xi connected
to both Ffloor and bσ(i) along edges f0[108i + 13]1 and
fσ(i)[13]1 respectively.

It remains to describe the unfolding of X0, F 1
pipe and

F 2
pipe. In Hcage, the wires Z1, . . . , Zn do not intersect

leftmost column of modules, so define Z0 as the wire of
flatoms in Hcage ∪ Hdrain that starts at Hcage[0, 0]wF

with its bottom edge and proceeds straight up into
Hdrain with a total length equal to the length of X0.
By Lemma 3, we may unfold X0 into Z0 while keeping
the center of its initial edge connected to Ffloor at f0[13]1
and the center of its final edge connected to F 1

pipe∪F 2
pipe

along g[13]1. In the unfolding, therefore, F 1
pipe ∪ F 2

pipe

simply slides up relative to Ffloor and partially juts out
of the top of Hdrain. �

5 Eliminating the Boundary

With the construction from the previous section, we are
ready for the main result:

Theorem 8 The Orthogonal Edge Unfolding problem
is strongly NP-complete.

Proof. This problem is in NP because any unfolding
has integer coordinates and can thus be checked to be
non-overlapping in polynomial time.

For hardness, we reduce from UCSP. For an instance
(d, (a1, . . . , an)) of UCSP, define B = B(d, (a1, . . . , an))
as above, whose boundary is a square of side-length
`. Define the closed, orthogonal polyhedron C =
C(d, (a1, . . . , an)) as specified in Figures 6a and 6b. The
tower T (and the molecules on the tower) do not inter-
sect the other faces of C, so this is a simple polyhedron.
We will show C has an edge unfolding if and only if
(d, (a1, . . . , an)) is a YES instance.

If (d, (a1, . . . , an)) is a YES instance, then by
Lemma 7, there is an unfolding of B that fits inside the
bounding box of Ffloor except for F 1

pipe ∪ F 2
pipe which

sticks above the top edge. Then Figure 6b shows that
this unfolding extends to an unfolding of all of C.

On the other hand, suppose C has an edge unfolding.
Let t1 be the edge shared by F 1

pipe and U1, and similarly
for t2. The shapes of U1 and U2 were chosen to force
these two edges to be cut in the unfolding of C: indeed,
if t1 were not cut, then F 1

pipe and U1 would overlap in the
plane; the argument for t2 is the same. It follows that
the unfolding of C induces a connected unfolding of B,
so by Lemma 4, (d, (a1, . . . , an)) is a YES instance. �

(a) The faces U1 and U2 must be cut away from B in any unfolding
of C in order to avoid overlapping Ffloor, F

1
pipe, or F 2

pipe.

ℓ

2wA

ℓ− 3wA

ℓ

U1
U2

(b) A partial unfolding of C showing that any unfolding of B
extends to an unfolding of C.

Figure 6: The polyhedron C = C(d, (a1, . . . , an)) with-
out boundary.

References

[1] M. Bern, E. D. Demaine, D. Eppstein, E. Kuo,
A. Mantler, and J. Snoeyink. Ununfoldable polyhedra
with convex faces. Computational Geometry: Theory and
Applications, 24(2):51–62, February 2003.

[2] T. Biedl, E. Demaine, M. Demaine, A. Lubiw, M. Over-
mars, J. O’Rourke, S. Robbins, and S. Whitesides. Un-
folding some classes of orthogonal polyhedra. In Proceed-
ings of the 10th Canadian Conference on Computational
Geometry, Montréal, Canada, August 1998.

[3] E. D. Demaine and J. O’Rourke. Geometric Folding
Algorithms: Linkages, Origami, Polyhedra. Cambridge
University Press, July 2007.

[4] J. Y.-T. Leung, T. W. Tam, C. S. Wong, G. H. Young,
and F. Y. L. Chin. Packing squares into a square. Journal
of Parallel and Distributed Computing, 10(3):271–275,
1990.

23rd Canadian Conference on Computational Geometry, 2011

88

CCCG 2011, Toronto ON, August 10–12, 2011

A Topologically Convex Vertex-Ununfoldable Polyhedron

Zachary Abel∗ Erik D. Demaine† Martin L. Demaine†

Abstract

We construct a polyhedron that is topologically convex
(i.e., has the graph of a convex polyhedron) yet has no
vertex unfolding: no matter how we cut along the edges
and keep faces attached at vertices to form a connected
(hinged) surface, the surface necessarily unfolds with
overlap.

1 Introduction

Polyhedron unfolding has a long history dating back to
Albrecht Dürer in 1525; see [3]. In general, the goal
is to cut along a one-dimensional subset of the poly-
hedron’s surface to enable the remainder of the surface
to unfold into the plane without overlap. An edge un-
folding consists of cutting along a subset of the edges
of the polyhedron, while keeping the surface interior-
connected; the planar unfolding is then uniquely de-
termined by the development (local unfolding) of the
intrinsic metric in the plane. A vertex unfolding con-
sists of cutting along a subset of the edges, typically all
of them, while keeping the faces connected together via
shared vertices (without any crossing connections at the
vertices); the planar unfolding is no longer unique, but
rather acts like a hinged dissection, with faces able to
rotate around shared vertex hinges.

Vertex unfolding was introduced in [2] as a less re-
strictive form of edge unfolding. They proved that ev-
ery triangulated manifold (in any dimension, though we
focus here on 2-manifolds in 3D) has a vertex unfolding.
This result shows that vertex unfolding is more powerful
than edge unfolding, as there are triangulated polyhe-
dra that are edge-ununfoldable (have no edge unfolding)
[1].

In this paper, we solve the “obvious question left
open” by [2]: to what extent is the assumption of trian-
gular faces necessary for vertex unfolding? Specifically,
they asked whether every polyhedron with simply con-
nected faces has a vertex unfolding, and whether every
polyhedron with convex faces has a vertex unfolding.

∗Department of Mathematics, Massachusetts Institute of Tech-
nology, Cambridge, MA 02139, USA. zabel@math.mit.edu. Par-
tially support by an MIT Mathematics Department Levinson Fel-
lowship and an NSF Graduate Research Fellowship.
†Computer Science and Artificial Intelligence Lab, Mas-

sachusetts Institute of Technology, MA 02139, USA. {edemaine,
mdemaine}@mit.edu. Partially supported by NSF CAREER
award CCF-0347776.

A

B

C

D E

F

G

α
β
γ

S1

S2

S3

Figure 1: The polyhedron P is a union of two identi-
cal overlapping triangular prisms, and—with proper di-
mension choices—has no vertex unfolding. The labeled
points have coordinates A = (1, 2, 1), B = (1,−2, 1),
C = (5,−2, 1), D = (5, 2, 1), E = (2, 1,−1), F =
(2, 5,−1), G = (0, 5, 3); the rest can be derived from
symmetries around the z-axis and the lines x = ±y in
the xy-plane.

We prove that the answer to the first problem is “no”,
though the second problem remains open.

More precisely, we construct “topologically con-
vex” vertex-ununfoldable polyhedra, strengthening the
CCCG 1999 result of edge-ununfoldable polyhedra [1].
A polyhedron is topologically convex if its graph (1-
skeleton) is the graph of a convex polyhedron, or equiv-
alently by Steinitz’s Theorem, it is 3-connected and pla-
nar. In terms of the polyhedron’s surface, topological
convexity is equivalent to requiring that every face is
homeomorphic to a disk (as they are in a convex poly-
hedron), and that every two faces meet at one edge,
one vertex, or not at all (as they would in a convex
polyhedron). In particular, topological convexity for-
bids the example of a small box attached in the middle
of a face of another box, which is the only previously
known vertex-ununfoldable polyhedron [2].

2 Vertex-Ununfoldable Polyhedra

We present two related topologically convex vertex-
ununfoldable polyhedra. Our first example, P , is sim-

CCCG 2011, Toronto ON, August 10–12, 2011

89

23rd Canadian Conference on Computational Geometry, 2011

A

Figure 2: If faces S1 and S3 were hinged at A, they
must be in this configuration by Observation 2. But as
there are overlaps, this is not allowed.

ply the union of two overlapping, identical triangular
prisms, as shown in Figure 1. For concreteness’s sake,
we have listed coordinates of the labeled vertices, and
the rest can be inferred from symmetries. To prove that
P has no vertex unfolding, we make two self-evident ob-
servations:

Observation 1 If two polygons T1 and T2 have two
vertices v1 ∈ T1 and v2 ∈ T2 whose angles add to more
than 360◦, then these vertices cannot be hinged in the
plane without the polygons overlapping.

Observation 2 If the angles at v1 and v2 add to exactly
360◦, and if these vertices are hinged without overlap in
the plane, then they must be oriented to exactly cover
the 360◦ surrounding the hinge.

Notice these obstructions to vertex unfoldings are en-
tirely local in nature, involving only two polygons joined
at a vertex.1 These observations alone are enough to
prove our claim:

Theorem 3 Polyhedron P has no vertex unfolding.

Proof. We will show that no lightly shaded face (as
in Figure 1) can connect to a dark face in any planar
vertex hinging of the faces, and therefore any proposed
vertex unfolding is disconnected. Indeed, any light-dark
connection must happen at one of the eight central ver-
tices, and as they are all identical under symmetry, we
may focus on vertex A. Because α > 270◦ and β = 90◦,
Observation 1 implies that S1 and S2 cannot hinge at
A. Because α + γ = 360◦, by Observation 2, if S1 and
S3 were hinged at A then they must be hinged as in
Figure 2. But the dimensions were chosen so that these
polygons would overlap in this configuration. �

By contrast, if the unfolding is allowed to have two
connected components, then an edge unfolding is pos-
sible, as in Figure 3. Also, the use of Observation 2
required more global knowledge than just the vertex
angles: the shapes of polygons S1 and S3 were crucial.
Indeed, if AD (and all symmetric copies) were chosen
shorter, then an edge unfolding of P would be possible,
as in Figure 4.

1For the related edge-unfolding problem, these are called 1-
local obstructions [4].

Figure 3: An edge unfolding of P into two connected
components.

Figure 4: If the prisms were shorter, an edge unfolding
would exist, as depicted here.

In fact, Observation 1 alone is sufficient to provide a
vertex-ununfoldable polyhedron. Perturb polyhedron P
to a new polyhedron P ′ by increasing γ slightly (while
maintaining symmetry) so that α+ γ′ > 360◦; this also
increases β slightly to β′. Such a polyhedron P ′ is shown
in Figure 5. Because α + β′, α + γ′ > 360◦, it follows
by Observation 1 that S′1 cannot hinge to S′2 or S′3 at
vertex A, so as before, any vertex unfolding must be
disconnected:

Theorem 4 Polyhedron P ′ has no vertex unfolding.

3 Open Questions

The foremost open question concerning vertex unfold-
ing is to find the largest natural class of polyhedra that
always admit vertex unfoldings. We have shown here
that topologically convex is too large a class. In fact,
topologically convex and star shaped is too large, be-
cause both P and P ′ are star shaped—in both cases,
the origin can see the entire polyhedron.

Another natural question, posed in [2], is whether
(topologically convex) polyhedra with convex faces ad-
mit vertex unfoldings. We conjecture that the answer

23rd Canadian Conference on Computational Geometry, 2011

90

CCCG 2011, Toronto ON, August 10–12, 2011

A

B
C ′

D′

E

F ′

G

α
β ′

γ′

Figure 5: Polyhedron P ′ is obtained from P by mov-
ing vertex C to C ′ = (5,−3, 3) and similarly for its
symmetric copies. This polyhedron has no vertex un-
folding based solely on the fact that α+ β′ > 360◦ and
α+ γ′ > 360◦.

is “no”, but the methods used in this paper cannot be
directly extended. Indeed, any vertex of such a polyhe-
dron with negative curvature must have at least four in-
cident faces, any two of which could potentially remain
connected, so the local conclusions are not as strong.

Finally, we echo an open problem implicit in [2] and
explicit in [3, Open Problem 22.20]: does every convex
polyhedron have a vertex unfolding? This is a weaker
form of the famous convex edge-unfolding conjecture [3].

4 Acknowledgments

This work was begun at the 26th Bellairs Winter Work-
shop on Gomputational Geometry in February, 2011,
and we are grateful to the organizers—Godfried Tou-
ssaint and the second author—and participants of the
Workshop for providing a stimulating and productive
atmosphere.

References

[1] M. Bern, E. D. Demaine, D. Eppstein, E. Kuo,
A. Mantler, and J. Snoeyink. Ununfoldable polyhedra
with convex faces. Computational Geometry: Theory
and Applications, 24(2):51–62, February 2003. Originally
appeared at CCCG 1999.

[2] E. D. Demaine, D. Eppstein, J. Erickson, G. W. Hart,
and J. O’Rourke. Vertex-unfolding of simplicial mani-
folds. In Discrete Geometry: In Honor of W. Kuperberg’s
60th Birthday, pages 215–228. Marcer Dekker Inc., 2003.
Originally appeared at SoCG 2002.

[3] E. D. Demaine and J. O’Rourke. Geometric Folding
Algorithms: Linkages, Origami, Polyhedra. Cambridge
University Press, July 2007.

[4] B. Lucier. Local overlaps in special unfoldings of convex
polyhedra. Computational Geometry: Theory and Ap-
plications, 42(5):495–504, 2009. Originally appeared at
CCCG 2006.

CCCG 2011, Toronto ON, August 10–12, 2011

91

23rd Canadian Conference on Computational Geometry, 2011

92

CCCG 2011, Toronto ON, August 10–12, 2011

Isoperimetric Triangular Enclosure with a Fixed Angle

Prosenjit Bose∗ Jean-Lou De Carufel∗

Abstract

Given a set S of n > 2 points in the plane (in general
position), we show how to compute in O(n2) time, a
triangle T with maximum (or minimum) area enclosing
S among all enclosing triangles with fixed perimeter P
and one fixed angle ω. We show that a similar approach
can be used to compute a triangle T with maximum (or
minimum) perimeter enclosing S among all enclosing
triangles with fixed area A and one fixed angle ω.

1 Introduction

The classical isoperimetric problems are

1. Of all plane figures of equal area, what is the one
with minimum perimeter?

2. Of all plane figures of equal perimeter, what is the
one with maximum area?

Several related problems and a complete discussion on
the foundations and applications of these problems to-
gether with the proof of the following result can be
found in Polya [7].

Theorem 1 (Isoperimetric Theorem)

1. Of all plane figures of equal area, the circle has min-
imum perimeter.

2. Of all plane figures of equal perimeter, the circle
has maximum area.

3. 1 and 2 are equivalent.

4. Let n > 2 be a fixed integer. Of all n-gons of equal
area, the regular n-gon has minimum perimeter.

5. Let n > 2 be a fixed integer. Of all n-gons of equal
perimeter, the regular n-gon has maximum area.

Given a fixed area (respectively perimeter), there is no
upper bound (respectively lower bound) on the perime-
ter (respectively area) a plane figure can have. In this
paper, we are interested in figures that enclose a set of
at least 3 non-collinear points. Then it is relevant to
maximize the perimeter given a fixed area (respectively

∗School of Computer Science, Carleton University. This
research was partially supported by NSERC (Natural
Sciences and Engineering Research Council of Canada).
{jit,jdecaruf}@cg.scs.carleton.ca

minimize the area given a fixed perimeter). We refer to
these four isoperimetric problems as FIP.

Let ω be a fixed angle with 0 < ω < π. A triangle that
has an angle ω is called an ω-triangle. In this paper, we
study the FIP with two additional constraints: (1) the
plane figures we consider are ω-triangles, and (2) they
must enclose a given set S of n points.

These problems are a variant of the problems studied
in [1, 2, 3, 4, 5, 6, 8, 9]. Most of these problems can
be solved in linear time when the input is a convex n-
gon or in O(n log n) time when the input is a set of
n points because of an interspersing lemma proper to
each of these problems. Essentially, an interspersing
lemma states that given a local extremum, if we turn
clockwise around the convex hull of the set of points,
then we will find all the other local extrema also in
clockwise order (there is no need to backtrack). So it
takesO(n log n) time to compute the convex hull, then it
takes O(n) time to compute one local extremum, then it
takes O(n) time to compute all the other local extrema
and finally, it takes O(n) time to compute the global
extrema. Unfortunately, such a lemma does not hold in
the isoperimetric case. Our solution to the FIP takes
O(n2) time. We explain in Section 5 why the canonical
interspersing lemma does not apply, though we do not
have a proof of a quadratic lower bound. The FIP
can also be compared to the following problem (see [7],
p.180): “Given an angle (the infinite part of a plane
between two rays drawn from the same initial point).
Find the maximum area cut off from it by a line of
given length.”. Note that if the fixed perimeter or the
fixed area is too small, no solution exists.

2 Preliminary Results

Let T = 4bqc be an ω-triangle with ∠bqc = ω. Denote
the area and the perimeter of T by A and P respectively.
Let x = |bq|, y = |qc| and z = |bc|. Therefore,

P = x+ y + z ,

A =
1

2
xy sin(ω) ,

z2 = x2 + y2 − 2xy cos(ω) ,

from which

x =
P 2 sin(ω) + 4A(1 + cos(ω))

4P sin(ω)
(1)

CCCG 2011, Toronto ON, August 10–12, 2011

93

23d Canadian Conference on Computational Geometry, 2011

−
√

(P 2 sin(ω) + 4A(1 + cos(ω)))2 − 32AP 2 sin(ω)

4P sin(ω)
,

y =
P 2 sin(ω) + 4A(1 + cos(ω))

4P sin(ω)

+

√
(P 2 sin(ω) + 4A(1 + cos(ω)))2 − 32AP 2 sin(ω)

4P sin(ω)
,

z =
P 2 sin(ω)− 4A(1 + cos(ω))

2P sin(ω)
.

Then, from (1), we have

A(x) =
Px sin(ω)(P − 2x)

4(P − x(1 + cos(ω)))
,

P (x) =
2A+ x2 sin(ω)

x sin(ω)

+

√
4A2 + x4 sin2(ω)− 4x2A sin(ω) cos(ω)

x sin(ω)
.

With standard calculus techniques, we can prove the
following properties (refer to Subsection 2.1). If P is
fixed, then A(x) is defined for all 0 < x < 1

2P . It is

increasing for x ∈
]
0,

2−
√
2
√

1−cos(ω)
2(1+cos(ω)) P

]
and decreas-

ing for x ∈
[
2−
√
2
√

1−cos(ω)
2(1+cos(ω)) P, 12P

[
. Thus the area is

a unimodal function of x. When x =
2−
√
2
√

1−cos(ω)
2(1+cos(ω)) P ,

T is isosceles with x = y. As for P (x), if A is fixed,
then it is defined for all x > 0. It is decreasing for

x ∈
]
0,
√
2
√
A√

sin(ω)

]
and increasing for x ∈

[√
2
√
A√

sin(ω)
,∞
[
.

Thus the perimeter is a unimodal function of x. When

x =
√
2
√
A√

sin(ω)
, T is isosceles with x = y.

From the previous discussion, we see that the FIP
can be solved by focusing on the length of one of the
sides of the ω-triangle. The angle ω of the desired ω-
triangle is part of an ω-wedge.

Definition 1 (ω-Wedge) Let q be a point in the
plane. Let ∆1 and ∆2 be two rays emanating from
q such that the smallest angle between ∆1 and ∆2

is ω. The closed set formed by q, ∆1, ∆2 and the
points between ∆1 and ∆2 is an ω-wedge, denoted
W(ω, q,∆1,∆2). The point q is the apex of the ω-
wedge. An ω-wedge W is said to enclose a convex n-
gon Q when Q ⊆ W and both ∆1 and ∆2 are tangent
to Q.

Therefore the vertex q of the desired ω-wedge is on an
ω-cloud.

Definition 2 (ω-Cloud) By rotating an enclosing ω-
wedge around a convex n-gon Q, the apex traces a se-
quence of circular arcs. This sequence is called an
ω-cloud, denoted Ω (refer to Figure 1). The circu-

u0

u1 u2
u3

u4

u5

Γ0

Γ1

Γ2

Γ3

Γ4

Γ5

Q

Ω

Figure 1: Ω is the 1
2π-cloud of Q.

lar arcs of Ω are labelled in clockwise order by Γj for
0 ≤ j ≤ n′ − 1. We note that n′ = O(n) [3].

The proof of the following Lemma is similar to the
proof of Lemma 1 in [1].

Lemma 2 Let A and P be two positive real numbers.
Take W =W(ω, q,∆1,∆2).

1. Consider the set of ω-triangles 4bqc with perimeter
P such that b ∈ ∆1 and c ∈ ∆2. The side bc of
these ω-triangles are tangent to a common circle
with radius rP = 1

2P tan
(
1
2ω
)

(refer to Figure 2).
We call this circle the perimeter circle of W and we

q

∆1 ∆2

t1 t2

Figure 2: A 1
2π-wedge together with 1

2π-triangles 4bqc
with perimeter P such that b ∈ ∆1 and c ∈ ∆2.

denote it by CP . The center of CP is on the angle
bisector of W and ∆1 (respectively ∆2) is tangent
to CP at t1 (respectively at t2) where |qt1| = 1

2P
(respectively |qt2| = 1

2P).

2. Consider the set of ω-triangles 4bqc with area A
such that b ∈ ∆1 and c ∈ ∆2. The sides bc of all
these ω-triangles are tangent to a common hyper-
bola with asymptotes ∆1 and ∆2 (refer to Figure 3).
We call this hyperbola the area hyperbola of W and
we denote it by HA. The center of HA is on q.

In this paper, we explain in detail how to find an ω-
triangle of minimum and maximum area with fixed
perimeter. The solution when the area is fixed is al-
most identical since both A(x) and P (x) are unimodal
functions. We use a technique similar to the one of Bose

23rd Canadian Conference on Computational Geometry, 2011

94

CCCG 2011, Toronto ON, August 10–12, 2011

q

∆1 ∆2

Figure 3: A 1
2π-wedge together with 1

2π-triangles 4bqc
with area A such that b ∈ ∆1 and c ∈ ∆2.

and De Carufel in [2]. The main difference is in the lack
of interspersing lemma (refer to Section 5). If the input
is a set S of n ≥ 3 non-collinear points, we first com-
pute the convex hull of S. In what follows, we show how
to solve the FIP when the input is a convex n-gon Q.
Moreover, Q = int(Q) ∪ δQ, where int(Q) is the interior
of Q and δQ is the boundary of Q.

2.1 Analysis of A(x) and P (x)

Given

A(x) =
Px sin(ω)(P − 2x)

4(P − x(1 + cos(ω)))

for 0 < x < 1
2P , we have

A′(x) =
P sin(ω)(P 2 − 4Px+ 2x2 + 2x2 cos(ω))

4(P − x− x cos(ω))2
.

Hence, A′(x) = 0 if and only if x =
2±
√

2−2 cos(ω)

2(1+cos(ω)) P . We

reject x =
2+
√

2−2 cos(ω)

2(1+cos(ω)) P because

2 +
√

2− 2 cos(ω)

2(1 + cos(ω))
P =

1 +
√

1−cos(ω)
2

1 + cos(ω)
P

=
1 + sin

(
1
2ω
)

1 + cos(ω)
P

>
1

2
P (0 < ω < π).

As for x =
2−
√

2−2 cos(ω)

2(1+cos(ω)) P , it is a maximum because

A′′(x) = −P
3 sin(ω)(1− cos(ω))

(P − x− x cos(ω))3

< − P 3 sin(ω)(1− cos(ω))
(
P − 1

2P − 1
2P cos(ω)

)3

= − 8 sin(ω)

(1− cos(ω))2

< 0 (0 < ω < π).

Therefore, if P is fixed, A(x) is increasing for

x ∈
]
0,

2−
√
2
√

1−cos(ω)
2(1+cos(ω)) P

]
and decreasing for x ∈

q

∆1 ∆2

CP

Q

b−
b+ c−

c+v v′

x−
x+

(a) An enclosing ω-trian-
gle exists because int(Q) ∩
int(CP) = Ø. b− is such that
x− = |qb−| is the smallest.
b+ is such that x+ = |qb+| is
the longest.

q

CP

Q

∆1 ∆2

(b) No enclosing ω-trian-
gle exists because int(Q) ∩
int(CP) 6= Ø.

Figure 4: In Figure 4(a), an enclosing ω-triangle exists.
In Figure 4(b), no enclosing ω-triangle exists.

[
2−
√
2
√

1−cos(ω)
2(1+cos(ω)) P, 12P

[
. The analysis of P (x) is simi-

lar.

3 The Solution for a Fixed ω-Wedge

Take a convex polygon Q and an ω-wedge W =
W(ω, q,∆1,∆2) enclosing Q (refer to Figure 4(a)). The
solution for W is based on the following observations.

Observation 1

1. An enclosing ω-triangle T with perimeter P can be
constructed on W if and only if int(Q)∩ int(CP) =
Ø (refer to Figure 4).

2. There exists exactly one T if and only if Q and CP
are tangent.

3. Suppose that more than one T exists.

(a) We have to compare the ω-triangle 4b−qc−
with the smallest side x− = |qb−| and the ω-
triangle 4b+qc+ with the longest side x+ =
|qb+| to find the one with minimum area.
These two candidates are such that b−c− and
b+c+ are tangent to both Q and CP (refer to
Figure 4(a)). Let v− (respectively v+) be the
vertex of Q such that b−c− (respectively b+c+)
is tangent to Q at v− (respectively at v+). We
say that v− and v+ are witness vertices. If
b−c− (respectively b+c+) is flush with an edge
e− (respectively e+) of Q, we define v− (re-
spectively v+) as the vertex on e− = Q∩ b−c−
(respectively on e+ = Q ∩ b+c+) that is the
closest to b− (respectively to b+).

CCCG 2011, Toronto ON, August 10–12, 2011

95

23d Canadian Conference on Computational Geometry, 2011

(b) Any enclosing ω-triangle 4bqc with perime-
ter P strictly between 4b−qc− and 4b+qc+ is
such that bc is tangent to CP and bc does not
touch Q.

(c) If one of these T ’s is isosceles, then it has
maximum area. One of the T ’s is isosceles

if and only if x− ≤ 2−
√
2
√

1−cos(ω)
2(1+cos(ω)) P ≤ x+.

Otherwise, one of 4b−qc− and 4b+qc+ has
minimum area and the other one has maxi-
mum area by unimodality of A(x).

Hence, if there is no witness vertex, then no ω-triangle
T can be constucted on W . If v− = v+, then there
exists exactly one such T . If v− 6= v+, then there exists
infinitely many such T ’s.

For a given ω-wedge W and a given vertex v of Q, it
takes O(1) time to decide whether or not v = v− and
whether or not v = v+ (refer to Subsection 3.1). Thus,
for a given ω-wedge W , it takes O(n) time to compute
v−, v+, x−, x+, 4b−qc− and 4b+qc+.

3.1 Decide Whether a Vertex is a Witness Vertex

Let W = W(ω, q,∆1,∆2) be a fixed ω-wedge enclosing
a convex n-gon Q and v be a vertex of Q. Denote by Γ
the circular arc of Ω such that q ∈ Γ. In this subsection,
we explain how to decide whether v is a witness vertex
of W .

Without loss of generality, Γ is the locus of points q
such that ∠viqvj = ω, where vi and vj are two vertices
of Q (refer to Figure 5). Hence we can take vi = (0, 0),

Γ

q

vi vj
θ

ω

∆1
∆2

r

CP

v

(h, k)

Figure 5: A formula for the center (h, k) of CP .

and vj = (2r sin(ω), 0), where r is the radius of Γ. Let
θ = ∠vjviq. In this setting, the radius of CP is rP =
1
2P tan

(
1
2ω
)

= P sin(ω)
2(1+cos(ω)) by Lemma 2-1 and the center

(h, k) of CP is such that

h =
1

2(1 + cos(ω))
×

(
6r cos2(ω) sin(θ) cos(θ) + 4r cos(ω) sin(θ) cos(θ)

+6r sin(ω) cos(ω) cos2(θ)− P cos(ω) cos(θ)

−2r sin(ω) cos(ω) + P sin(ω) sin(θ)

+2r sin(ω) cos2(θ)− 2r sin(θ) cos(θ)

−P cos(θ) + 2r sin(ω)
)
,

k = −cot(θ)h

−P − 4r cos(ω) sin(θ)− 4r sin(ω) cos(θ)

2 sin(θ)
.

These formulas can be obtained by analytic geome-
try and Lemma 1 in the following way. By geome-
try and trigonometry, we have q = (2r cos(θ) sin(θ +
ω), 2r sin(θ) sin(θ + ω)). Since (h, k) is on the angle bi-

sector of W and rP = P sin(ω)
2(1+cos(ω)) , then the distance

between (h, k) and ∆1 and the distance between (h, k)

and ∆2 are equal to P sin(ω)
2(1+cos(ω)) . Hence, we can find the

equation of ∆1, ∆2 and the angle bisector of W . From
these equations, we deduce the formulas for h and k.

Let e and e′ be the two edges adjacent to v. Denote
by ∆e and ∆e′ the lines through e and e′ respectively.
If e ∩ int(CP) 6= Ø or e′ ∩ int(CP) 6= Ø, then v is not a
witness vertex. Moreover, no enclosing ω-triangle can
be constructed on W . It follows from Observation 1-1.
Suppose that e ∩ int(CP) = Ø and e′ ∩ int(CP) = Ø.

• If CP ∩∆e = Ø and CP ∩∆e′ = Ø, then v is not a
witness vertex.

• If CP ∩∆e 6= Ø or CP ∩∆e′ 6= Ø, then v is a witness
vertex.

It all follows from Lemma 2-1 and Observation 1-3a.
Since we supposed that W is fixed, then r, ω and θ are
fixed. So all these tests can be done in O(1) time.

4 Turning Around the ω-Cloud

Let v− and v+ be the two witness vertices (possibly
v− = v+) of an ω-wedge W = W(ω, q,∆1,∆2) en-
closing Q. Let Γj be the circular arc of Ω such that
q ∈ Γj . As q moves on Γj , 4b−qc− and 4b+qc+ move
continuously around Q. Moreover, there is a circular
arc Γ′j ⊆ Γj (that can be reduced to a single point) for
which the witness vertices remain v− and v+. We say
that v− and v+ are persistent witness vertices of Γ′j .
Among all the enclosing ω-triangles that can be con-
structed on the enclosing ω-wedges having their apex
on Γ′j , we find the one with the smallest x− = |b−c−|
(respectively with the longest x+ = |b+c+|). We de-
note this triangle by Tmin = 4qbmincmin (respectively by
Tmax = 4qbmaxcmax) and we let xmin = |bmincmin| (re-
spectively xmax = |bmaxcmax|). By continuity, for all x
such that xmin ≤ x ≤ xmax, there exists an enclosing ω-
wedge with apex on Γ′j such that an enclosing ω-triangle
4bqc can be constructed with x = |bc|. Therefore, on
Γ′j ,

• the minimum enclosing area ω-triangle that can be
constructed is either 4qbmincmin or 4qbmaxcmax.

23rd Canadian Conference on Computational Geometry, 2011

96

CCCG 2011, Toronto ON, August 10–12, 2011

• – If xmin ≤ 2−
√
2
√

1−cos(ω)
2(1+cos(ω)) P ≤ xmax, then an

isosceles ω-triangle with perimeter P has max-
imum area.

– Otherwise, one of 4qbmincmin and
4qbmaxcmax has minimum area and the
other one has maximum area.

Given an enclosing ω-wedge W = W(ω, q,∆1,∆2)
with q ∈ Γj , it takes O(n) time to compute v−, v+, x−,
x+, 4b−qc− and 4b+qc+ (refer to Section 3). Then it
takes O(1) time to compute Γ′j ⊆ Γj such that Γ′j has
persistent witness vertices v− and v+ (refer to Subsec-
tion 4.1). Then it takes O(1) time to compute xmin,
xmax, Tmin and Tmax (refer to Subsection 4.2).

Once we solved the FIP for Γ′j , we need to compute
the next circular arc together with its persistent witness
vertices. Denote the next circular arc by Γ′′j Note that
since Γ′j ⊆ Γj , then either Γ′′j ⊂ Γj or Γ′′j ⊆ Γj+1. Two
different events can happen:

Event 1 Γ′′j has no persistent witness vertex

Event 2 or Γ′′j has persistent witness vertices and at
least one of v− and v+ is different from the persis-
tent witness vertices of Γ′j .

If Γ′′j has persistent witness vertices, then by continuity,
these persistent witness vertices are adjacent to or equal
to the persistent witness vertices of Γ′j . So there are 8
pairs of vertices to test for persistence (recall that at
least one of v− and v+ is not the same compared to Γ′j).
If none of these 8 pairs is a pair of persistent witness
vertices for Γ′′j , then Γ′′j has no persistent witness vertex.
Therefore, both Event 1 and Event 2 can be detected
in O(1) time (refer to Subsection 4.1).

With this technique, we subdivide the circular arcs
Γj of Ω into subarcs that either have persistent witness
vertices or not. Given a subarc Γ′j , we explained how
to solve the FIP on Γ′j in O(n). Given the witness
vertices of Γ′j , we also explained how to solve the FIP on
every next subarc in O(1). How many of these subarcs
are there? In Section 5, we present an example that
shows that Γj can be subdivided into a linear number of
subarcs. However, we do not know whether a constant
number or a linear number of circular arcs of Ω can be
subdivided into a linear number of subarcs. So the lower
bound on the time of computation of the solution to the
FIP remains an open question.

4.1 Computing Γ′j

Given two vertices v− and v+ and a circular arc Γj of Ω,
we explain how to find Γ′j ⊆ Γj such that Γ′j has v− and
v+ as persistent witness vertices. From the discussion
of Subsection 3.1, Lemma 2-1 and Observation 1, we
need to find the values of θ such that ∆e is tangent
to CP and the values of θ such that ∆e′ is tangent to

CP . We explain how to find the values of θ such that
∆e is tangent to CP (the values of θ such that ∆e′ is
tangent to CP can be found in a similar way). Take
CP : (x−h)2 +(y−k)2 = r2P and ∆e : y = µx+λ. From
analytic geometry, ∆e is tangent to CP if and only if

k ± rP√
µ2 + 1

= µ

(
h− µrP√

µ2 + 1

)
+ λ . (2)

Since µ, λ, P , ω and r are constant, (2) is an equation
of degree 2 in sin(θ) and cos(θ). Therefore, it can be
transformed into an equation of degree 4 in sin(θ). If
(2) has no solution in θ or if the solutions are not sound
with respect to Γj , then there is no Γ′j ⊆ Γj that has
v− and v+ as persistent witness vertices. Thus it can
be solved exactly in O(1) time.

4.2 Compute bmin and bmax

As we did in Section 3.1, let W =W(ω, q,∆1,∆2) be a
fixed ω-wedge enclosing a convex n-gon Q. Let Γ be a
circular arc such that v is a persistent witness vertex of
Γ. Without loss of generality, Γ is the locus of points q
such that ∠viqvj = ω, where vi and vj are two vertices
of Q (refer to Figure 5). Hence we can take vi = (0, 0),
and vj = (2r sin(ω), 0), where r is the radius of Γ. Let
θ = ∠vjviq.

Let b = (α, α tan(θ)) ∈ ∆1 be a point such that 4bqc
has the prescribed perimeter, where c is the intersection
point of the line through bv and the line through qvj .
Therefore, the line ∆ : y = µx + λ through bv satisfies
(2) from the discussion of Subsection 4.1. For a fixed θ,
it is an equation in α. Hence, in order to find bmin or
bmax, we need to optimize |qb| subject to (2). It leads
to a polynomial equation in sin(θ) of high degree. This
can be done with numerical methods. For a given fixed
error tolerance, it takes O(1) time to compute bmin or
bmax.

5 An Interspersing Lemma

If we translate the interspering lemmas of [1, 2, 3, 6] in
terms of the FIP, we get the following statement: “as
q turns clockwise around Ω, v− and v+ turn clockwise
around Q.” This statement implies that the time of
computation of the solution to the FIP is O(n) (when
the input is a convex n-gon) since we only need to go
around once. Unfortunately, this statement is false in
the current setting. In this section, we construct an ex-
ample where q turns clockwise around Ω and v+ turns
counter-clockwise around Q. Because of this example,
the time of computation of our algorithm is O(n2). In-
deed, this example suggests that all circular arcs Γj of
Ω could be subdivided into a linear number of subarcs
(refer to Section 4).

CCCG 2011, Toronto ON, August 10–12, 2011

97

23d Canadian Conference on Computational Geometry, 2011

Consider the example of Figure 6 where ω = 1
2π. Four

vertices of Q appear, namely vi, vk, vi′ and vi′+1. The
circular arc Γj of Ω is built over vi and vk, and we
consider an enclosing 1

2π-wedge W = W(1
2π, q,∆1,∆2)

where q ∈ Γj . T+ = 4b+qc+ is such that b+c+ is flush

q
q′

b+
b′+

c′+

CP
C′P

Γj

vi
vk

vi′

vi′+1

t

t′

c+

∆1
∆′1

∆2

∆′2

Figure 6: As q turns clockwise around Ω, v+ turns
counter-clockwise around Q.

with the edge ei′ = vi′vi′+1 of Q and b+c+ is tangent to
CP at t ∈ ei′ . Therefore, the witness vertex v+ of T+ is
v+ = vi′+1.

Let W ′ = W(1
2π, q

′,∆′1,∆′2) be an enclosing 1
2π-

wedge obtained by a clockwise rotation of q around Γj
and such that vi′ 6∈ ∆′2. T ′+ = 4b′+q′c′+ is such that
b′+c′+ touches Q at vi′ and b′+c′+ is tangent to C′P at
t′ 6∈ Q. Therefore, v′+ = vi′ . Hence, this is an example
where q turns clockwise around Ω and v+ turns counter-
clockwise around Q.

Using the same strategy, we can make v+ turn
counter-clockwise around Q and visit m vertices for
any m ≥ 1. Let q0 = q, q1, ..., qm−1 = q′ ∈ Γj be
a sequence of m different points from q to q′. For
each ql (0 ≤ l ≤ m − 1), consider the wedge Wl =
W(1

2π, ql,∆l,1,∆l,2) and Tl,+ = 4bl,+qicl,+. Put a ver-
tex vi′−l on bl,+cl,+ such that bl,+cl,+ is flush with the
edge ei′−l = vi′−lvi′−l+1 and vi′−l is strictly between
vi′−l+1 and cl,+. This way, vl,+ = vi′−l+1 so as q turns
clockwise around Ω, v+ turns counter-clockwise around
Q and visits m vertices for any m ≥ 1.

This proves that the canonical interspersing lemma
for the FIP does not stand. However, it does not prove
that the lower bound on the the time of computation
of the solution to the FIP is Ω(n2). The construction
we presented works for Γj , but we do not know if it is
possible to do such a construction on all the circular
arcs of Ω simultaneously. This question remains open.

6 Conclusion

We explained in detail how to find an ω-triangle of min-
imum and maximum area with fixed perimeter. Our
solution takes O(n2). If one fixes the area rather than

the perimeter, a similar solution exists by switching the
word “perimeter” with “area”, “minimum” with “max-
imum”, and “perimeter circle” with “area hyperbole”.

Two main questions remain open about the FIP. Is
Ω(n2) the lower bound on the time of computation of the
solution to the FIP? Is it possible to simplify the poly-
nomial equations involved in the computation of bmin

and bmax? As for more general open questions related
to the FIP,

1. What is the time of computation of the solution to
the FIP when there is no angle constraint?

2. What is the time of computation of the solution
to the FIP when we consider shapes with curved
boundary?

3. What is the solution in three dimensions?

References

[1] B.K. Bhattacharya and A. Mukhopadhyay. On
the minimum perimeter triangle enclosing a convex
polygon. In JCDCG, pages 84–96, 2002.

[2] P. Bose and J.-L. De Carufel. Minimum enclosing
area triangle with a fixed angle. In CCCG, pages
171–174, 2010.

[3] P. Bose, M. Mora, C. Seara, and S. Sethia. On com-
puting enclosing isosceles triangles and related prob-
lems. Int. J. Comput. Geometry Appl., 21(1):303–
318, 2011.

[4] E.A. Melissaratos and D.L. Souvaine. Shortest paths
help solve geometric optimization problems in pla-
nar regions. SIAM J. Comput., 21(4):601–638, 1992.

[5] J.S. Mitchell and V. Polishchuk. Minimum-
perimeter enclosures. Inf. Process. Lett., 107(3-
4):120–124, 2008.

[6] J. O’Rourke, A. Aggarwal, S.R. Maddila, and
M. Baldwin. An optimal algorithm for finding mini-
mal enclosing triangles. J. Algorithms, 7(2):258–269,
1986.

[7] G. Polya. Mathematics and Plausible Reasoning Vol.
I. Induction and Analogy in Mathematics. Princeton
University Press, Princeton, New Jersey, 1954.

[8] E. Welzl. Smallest enclosing disks (balls and ellip-
soids). In Results and New Trends in Computer Sci-
ence, pages 359–370. Springer-Verlag, 1991.

[9] Y. Zhou and S. Suri. Algorithms for a minimum
volume enclosing simplex in three dimensions. SIAM
J. Comput., 31(5):1339–1357, 2002.

23rd Canadian Conference on Computational Geometry, 2011

98

CCCG 2011, Toronto ON, August 10–12, 2011

Robust approximate assembly partitioning

Elisha Sacks∗ Victor Milenkovic† Yujun Wu‡

Abstract

We present a robust approximate assembly partitioning
algorithm for polyhedral parts. We achieve robustness
by applying our controlled linear perturbation strategy
to Minkowski sums of polyhedra and to arrangements
of great circle arcs. Our algorithm is far faster than
a prior robust algorithm based on exact computational
geometry. Its error is small even on degenerate input.

1 Introduction

We present a robust approximate assembly partitioning
algorithm. Given a set of polyhedral parts, the task
is to find a direction in which a subset of the parts
can translate unboundedly without touching the other
parts. Assembly partitioning is a key step in the larger
task, called assembly planning, of devising a sequence of
coordinated part translations and rotations that builds
an assembly from a set of parts. An efficient assem-
bly partitioning algorithm is crucial because assembly
planning is computationally intractable. Halperin [7]
presents a real RAM algorithm for generic input. Ac-
tual input is typically degenerate because useful parts
usually have symmetric features. The robustness prob-
lem is how to implement the algorithm accurately, effi-
ciently, and for any input.

Fogel [4] uses exact computational geometry [9] to
implement Halperin’s algorithm. Error is avoided by
exactly evaluating polynomials in the input parameters,
called predicates, whose signs determine the output. Al-
though most predicates can be evaluated quickly via
floating point filtering [1], near-zero predicates require
expensive rational arithmetic. Typical assembly parti-
tioning tasks have many such predicates, which makes
Fogel’s approach slow. Degenerate (zero value) predi-
cates require explicit handling, which complicates the
algorithm. Exact computation also increases bit com-
plexity, hence memory use, which is the computational
bottleneck for large inputs.

We [8] advocate an alternate robustness strategy,
called controlled linear perturbation (CLP), based on
approximate computation with floating point arith-
metic. CLP uses differential calculus to compute a

∗Department of Computer Science, Purdue University,
eps@cs.purdue.edu
†Department of Computer Science, University of Miami
‡Department of Computer Science, Purdue University

P
1

P
2

P
3

y
x

(a)

P
3

P
2

P
1

P
3

P
2

P
1

(b) (c)

Figure 1: Assembly (a) and directional blocking graphs
for x (b) and y (c).

small input perturbation that makes the output accu-
rate. The running time is insensitive to near-zero predi-
cates, degeneracy handling is avoided, and the bit com-
plexity is low. We use CLP to implement the assembly
partitioning algorithm (Sec. 2). The computational ge-
ometry steps are Minkowski sums, using our prior algo-
rithm [8], and arrangements of great circle arcs, using
a plane sweep algorithm (Secs. 3–4). We demonstrate
that our algorithm is far faster than its exact counter-
part (Sec. 5). Its error is small even on degenerate input.
We conclude with a discussion of the two robustness
strategies (Sec. 6).

2 Assembly partitioning algorithm

The input to the algorithm is n disjoint polyhedral
parts, A = {P1, . . . , Pn}. Let Pi + v = {p + v|p ∈ Pi}
denote the translation of Pi by the vector v. A motion
direction is represented by a unit vector. The direction
d is free for 〈Pi, Pj〉 if (Pi+kd)∩Pj = ∅ for every k ≥ 0;
otherwise d is blocked for 〈Pi, Pj〉. Part Pi can translate
unboundedly along a free d without hitting Pj , but not
along a blocked d. We seek a proper subset, S ⊂ A,
and a direction, d, that is free for every 〈Pi, Pj〉 with
Pi ∈ S and Pj 6∈ S. In Fig. 1a, x̂ is free for 〈P2, P1〉,
and blocked for 〈P1, P2〉 and 〈P2, P3〉. One solution is
S = {P3} and d = x̂; another is S = {P1, P2} and d = ŷ.

The algorithm for a fixed d is combinatorial. Form the
directional blocking graph with a node for each part and
with a link from Pi to Pj if d is blocked for 〈Pi, Pj〉. If

CCCG 2011, Toronto ON, August 10–12, 2011

99

23d Canadian Conference on Computational Geometry, 2011

the graph is strongly connected, there is no solution be-
cause every S ⊂ A has a link from some Pi ∈ S to some
Pj 6∈ S. Otherwise, any component without outgoing
links is a solution. In our example, the x̂ graph com-
ponents are {{P1}, {P2}, {P3}} and the ŷ graph compo-
nents are {{P1, P2}, {P3}} (Fig. 1).

The assembly partitioning algorithm computes a sub-
division of the unit sphere such that all the directions
in each face have the same graph. It traverses the faces
of the subdivision, analyzes their graphs, and returns
the first solution or reports failure. The subdivision is
computed in two steps. 1) Partition the unit sphere into
free and blocked faces for each 〈Pi, Pj〉. The graph has
a link from Pi to Pj for d in the blocked faces of 〈Pi, Pj〉.
2) Compute the overlay of the partitions.

We illustrate the algorithm on an assembly comprised
of ring P1, ring P2, and cone P3 with axis z = (0, 0, 1)
(Fig. 2). Faces e–g of the overlay are in the northern
hemisphere, h straddles the equator, and the southern
hemisphere is symmetric. Face e has solutions with S =
{P1} (Fig. 2c). Face f has one more link, from P2 to
P3, and also has solutions with S = {P1}. Face g has
no solutions (Fig. 2d). Face h has one less link, from P2

to P1, and no solutions.

Figure 3 illustrates step 1 of the algorithm in 2D. A
direction, d, is blocked for 〈Pi, Pj〉 if the ray kd inter-
sects the Minkowski sum

Mij = Pj ⊕−Pi = {a− b|a ∈ Pj , b ∈ Pi},

which comprises the vectors, v, such that Pi + v inter-
sects Pj . Let Qij denote the projection of Mij onto the
unit sphere: a vector, v, projects to v̂ = v/||v||. The
projection is defined because the parts are disjoint, so
(0, 0, 0) 6∈ Mij . The connected components of Qij are
the blocked faces of 〈Pi, Pj〉. We compute them for i < j
and handle Qji = −Qij by symmetry.

Figure 4 illustrates projection. The boundary of Q
is a subset of the projected silhouette edges of M . Let
e = ab denote an edge of M with tail a and head b;
its twin is the edge with tail b and head a. Let e have
tangent u, and faces to the left and right with outward
normals m and n. If a · m > 0 and a · n < 0, e is
a silhouette edge. Project it to the arc, ê, with tail â
and head b̂ (Fig. 4a,c) on the great circle defined by

the plane with normal â× b. Label the silhouette arcs
positive and label their twins negative. Compute the
induced subdivision of the unit sphere. A face is in Q
if its boundary contains a positive edge or if the ray
kd intersects M for any point, d, in its interior. The
blocked faces of Q are bounded by the edges that bound
Q, but whose twins do not.

P
2

P
3

P
1

z

(a)

f

h

g

e
z

(b)

P
3

P
2

P
1

P
3

P
2

P
1

(c) (d)

Figure 2: Ring assembly (a), overlay (b), and directional
blocking graphs for faces e (c) and g (d).

P j
P i

kd

(a)

ijM

kd QijQji
d

(b) (c)

Figure 3: Partition: (a) parts; (b) Minkowski sum; (c)
projection.

23rd Canadian Conference on Computational Geometry, 2011

100

CCCG 2011, Toronto ON, August 10–12, 2011

a

b

n mx
y z

u
e

y=0

x=0

Q

(a) (b)

b

â

ê

(c)

Figure 4: Projection: (a) M ; (b) Q; (c) projected edges
with silhouette edges drawn thickly.

y

x

d
ae

hg

y

x

bf

c

(a) (b)

1 3
4

52

y

x
6

(c)

Figure 5: Arrangement algorithm: (a) input arcs; (b)
split points; (c) faces.

3 Arrangement algorithm

We compute arrangements of great circle arcs for pro-
jection and for overlay. The algorithm is a plane sweep,
which splits the arcs at their intersection points to ob-
tain the vertices and edges of the arrangement, followed
by a traversal of the vertex/edge graph, which derives
the faces. Fig. 5 illustrates on the Fig. 4 example.

Preprocessing Split the input arcs (Fig. 5a) at z turn-
ing points (a in Fig. 5b). An arc, e = ab, with normal
n has a turning point if uzvz < 0 with u = n̂× a and

v = n̂× b the tangents at a and b. If uz > 0, e has a
maximum at p̂ with p = sign(nz)(−nx,−ny, 1/nz−nz);
if uz < 0, e has a minimum at −p̂. Splitting the arcs

yields z-monotone edges. Split the edges at intersection
points, q, with the great circle with normal (0, 1, 0) such
that qx < 0 (g and h in Fig. 5b).

Place the incident edges of each vertex, a, in clockwise
order around the outward normal. An edge, e = ab, is
forward or backward if az < bz or bz < az. Forward
edges precede backward edges. An edge with normal
m precedes one with normal n if a · (u × v) < 0 with
u = m̂× a and v = n̂× a the tangents at a. This
predicate is identically zero if a is a z turning point
because u = −v. Instead, the positive edge precedes the
negative edge for aznz > 0 and vice versa for aznz < 0.

Sweep Sweep a plane along the z axis from z = −1 to
z = 1. The plane intersects the unit sphere in a circle.
The sweep list consists of the forward edges that inter-
sect this circle in counterclockwise order. The events
are the input vertices and the intersection vertices (b–
f in Fig. 5b). The z order is calculated by comparing
vertex z coordinates, except that a always precedes or
follows b when a is a z minimum or maximum of e = ab.

An input vertex is handled by removing the twins of
its backward edges from the sweep list, recording the
edge that follows it in the sweep list, inserting its for-
ward edges, and checking if any newly adjacent edges
intersect. Two edges cannot intersect if they come from
the same input arc. Otherwise, edges e = ab with nor-
mal m and f = cd with normal n intersect at an in-
tersection point, p = ±m̂× n, of their great circles if
their tangents at p, m̂× p and n̂× p, have positive z
components and max(az, cz) < pz < min(bz, dz). The
intersection vertex is handled by splitting e into ap and
pb, splitting f into cp and pd, placing the p edges in the
order (pd, pb, pc, pa), replacing e by pd and f by pb in
the sweep list, and checking the newly adjacent edges.

We represent the sweep order as a linear order on
[−π, π]. The transitions between −π and π occur at
vertices because of the preprocessing. If a transition
occurs at a, e = ab is inserted at the start or the end
of the sweep list when by < 0 or by > 0. Otherwise,
e is inserted by repeatedly comparing it to an edge,
f = cd, in the list. If a = c, the sweep order is the
counterclockwise order around a. Otherwise, compute
the sweep order of a and the intersection point, p, of
f with the sweep plane z = az. Edge e precedes f if
ay < 0 and py > 0 or if aypy > 0 and axpy − aypx > 0.

Graph traversal Mark the edges as untraversed. Visit
each vertex in sweep z order and trace an edge loop
starting at each of its untraversed edges. While the
current edge, e = ab, is untraversed, mark it as traversed
and replace it by the successor of its twin among the
edges incident on b. For the first vertex or for a vertex
with an edge that was traversed before it was visited,
each edge loop defines a face. The six faces in Fig. 5c are

CCCG 2011, Toronto ON, August 10–12, 2011

101

23d Canadian Conference on Computational Geometry, 2011

generated in this manner in numerical order. Otherwise,
the first loop is added to the enclosing face and the other
loops define faces. The enclosing face is bounded by the
following edge of the vertex, if defined, or by the first
edge of the previous vertex.

4 Robustness

A direct floating point implementation of the arrange-
ment algorithm is not robust. Even tiny computation
errors can cause a predicate to be assigned the wrong
sign, which can create a combinatorial error in the al-
gorithm output. For this to occur, the predicate must
be unsafe, meaning that its value is on the order of the
computation error. The main cause of unsafe predicates
is degeneracy. A degenerate input manifests itself as a
predicate that evaluates to zero, so approximate com-
putation assigns it an unsafe value.

We prevent unsafe predicates with our controlled lin-
ear perturbation (CLP) algorithm [8]. CLP assigns
signs, si, to a sequence of predicates, fi(x), with in-
put values x = a. It picks a random unit vector, v, and
computes a δ ≥ 0 such that sifi(p) > ε with p = a+ δv
and with ε a safety threshold that depends on f and on
a. If |fi(p)| > ε with the current δ, si = sign(fi(p));
otherwise, si = sign(w) with w = ∇f · v and with ∇f
the gradient, and δ is increased by (sε− f(p))/w to the
minimum value that makes fi safe based on its linear
Taylor series.

We employ the backward error metric: the error in a
computation is the minimum distance from the input to
a perturbed input for which the output is correct. For
a CLP algorithm, the input is a, a perturbed input is
p, and the error is at most ||p − a|| = δ. We assume
that the signs, si, are correct at p, which holds when
the safety thresholds exceed the predicate rounding er-
ror. The rounding error in a single arithmetic operation
is bounded by the rounding unit of µ ≈ 10−16. The
error in a sequence of n operations is exponential in n
in the worst case, but is essentially constant in practice.
We employ a safety threshold of ε = 100µ, which is
conservative by numerical analysis standards given that
n < 50 in our algorithm.

The sign assignment algorithm performs poorly on
singular predicates (∇f = 0). Singularity is much rarer
than degeneracy because both f and ∇f must be zero.
Yet a single singular predicate can invalidate the ar-
rangement computation by increasing δ unacceptably.
The sweep has singularities when vertices coincide with
z turning points. We prevent this by sweeping along a
random axis. This strategy suffices for the arrangement
algorithm. We discuss a general strategy in Sec. 6.

(a)

(b)

(c)

Figure 6: Star puzzle: (a) one part, (b) two parts, (c)
all six parts.

5 Performance

We tested our algorithm on Fogel’s star puzzle example
(Fig. 6). The assembly has six parts that are rotational
images of each other. Each part has 14 boundary tri-
angles. The Minkowski sums and the arrangements are
degenerate because the parts are symmetric, the pairs
consist of isometric parts, and the assembly contains
many isometric pairs. Nevertheless, the backward error
is only δ = 10−12. The running time, on one core of an
Intel Core 2 Duo with 4 GB RAM, is 0.024 seconds with
82% for Minkowski sums, 8% for projection, and 7% for
overlay. This is about 100 times faster than Fogel’s best
time of 5.2 seconds, since our CPU is about 50% faster.

We also tested our algorithm on two engineering ex-
amples. The first is the ring assembly (Fig. 2). Each
ring has 2068 boundary triangles and the cone has 160.
The running time is 3.2 seconds with 94% for the three
Minkowski sums. The error is δ = 4×10−9. The second

23rd Canadian Conference on Computational Geometry, 2011

102

CCCG 2011, Toronto ON, August 10–12, 2011

Figure 7: Hinge assembly.

is a hinge assembly comprised of a bolt and two plates
(Fig. 7). The bolt has 160 boundary triangles, the inner
plate has 596, and the outer plate has 572. The running
time is 1.1 seconds with 85% for the three Minkowski
sums. The error, δ = 10−7, is larger than before be-
cause the parts have many parallel boundary triangles,
each of which causes multiple degeneracies.

6 Discussion

The performance of our assembly partitioning algorithm
supports our thesis that the CLP robustness strategy
is accurate, is far faster than exact computation, and
avoids degeneracy handling. One reason for the speedup
is that floating point arithmetic is faster than ratio-
nal arithmetic. A second reason is that we compute
Minkowski sums, which are the dominant cost in assem-
bly planning, via a convolution algorithm that is output
sensitive in practice. Fogel decomposes the polyhedra
into convex pieces by hand, computes the piece sums,
and forms their union. Since the pieces have many non-
input features, the complexity far exceeds the output
size in typical examples. The same is true of a later al-
gorithm that automates the decomposition [6]. We at-
tribute the lack of a robust exact convolution algorithm
to the daunting degenerate cases, including collinear
faces, identical faces, and edges on faces.

Clearance Fogel’s algorithm has the theoretical advan-
tage that it can find solutions where parts have zero
clearance, meaning their boundaries intersect and their
interiors are disjoint, by examining the degenerate faces
of the overlay. We cannot compute faces whose diame-
ter is less than δ. Since the maximal part clearance for
directions on a face is proportional to its diameter, we
are limited to solutions whose clearance exceeds δ.

We see no practical significance to this limitation.
Parts are subject to manufacturing variation and as-
sembly mechanisms are subject to motion variation. An
assembly plan must handle all parts and mechanisms of

a specified accuracy. A plan with a clearance of 10−6

is unsafe for any conceivable accuracy, whereas δ is al-
ways far smaller. The standard planning strategy is to
replace each ideal part by an expanded part that bounds
its shape variation. The simplest and most common re-
placement is the Minkowski sum of the ideal part and
an s-sphere centered at the origin. The existence of an
exact solution for s = k implies the existence of an ap-
proximate solution for s = k + δ. The solutions are
equivalent in practice because δ is negligible with re-
spect to k.

Designers sometimes consider ideal parts before mod-
eling part variation. Assembly plans with zero clear-
ance are then of interest. For example, the star puzzle
is more elegant when the parts fit together perfectly.
We can approximate zero clearance solutions by dilat-
ing the parts by r1 (subtracting a sphere of radius r1)
until an approximate solution is found, expanding them
by r2 until they overlap, and performing binary search
on [−r1, r2] for the smallest parts that yield an approx-
imate solution. We implemented this procedure for the
star puzzle, but using scaling instead of dilation and ex-
pansion. Scaling by 99% yields a solution, scaling by
101% makes the parts overlap, and 7 iterations yield an
approximate solution with δ = 10−12 in 0.17 seconds,
versus 5.2 seconds for Fogel’s fastest run.

Correctness CLP algorithms can fail due to extreme
rounding error, whereas exact algorithms cannot. On
the other hand, exact algorithms effectively halt when
they run out of memory, which already occurs on mod-
est size Minkowski sums. CLP is correct assuming the
same empirical bounds on rounding error that underlie
every numerical library in the scientific computing com-
munity. We have never observed a CLP failure despite
extensive consistency checking of every Minkowski sum
and spherical arrangement that we compute. We aim to
replace this empirical evidence with a rigorous, yet prac-
tical error analysis. One option is to adjust the floating
point precision to match the worst case rounding error,
using an arbitrary precision floating point library, such
as MPFR [5]. Another option is to derive probabilistic
error bounds by comparing the predicate signs due to
several perturbations.

Algorithm design We conclude with a comparison of
algorithm design using CLP versus exact computation.
An exact algorithm has to address degeneracy, whereas
a CLP algorithm does not. Explicit degeneracy han-
dling appears impractical in most 3D algorithms. The
alternative to explicit handling is symbolic perturbation
[2, 3], which yields predicate signs that are correct for an
arbitrarily small input perturbation. Symbolic pertur-
bation further increases the computational complexity
of exact computation. Neither CLP nor exact compu-

CCCG 2011, Toronto ON, August 10–12, 2011

103

23d Canadian Conference on Computational Geometry, 2011

tation with symbolic perturbation can solve degenerate
problems. We have illustrated that degenerate assem-
bly partitioning problems can be solved approximately
with CLP, but the process is not automated.

A CLP algorithm has to address singularity, whereas
an exact algorithm with explicit degeneracy handling
does not, since singularity is a special case of degen-
eracy. An exact algorithm with symbolic perturbation
has to address singularity because it computes the first
non-vanishing derivative of degenerate predicates. The
computational complexity rises sharply with the degree
of singularity.

We classify singularities as artifacts, coincidences,
and special cases. Artifacts occur in algorithms that
impose extra structure on the input, such as the z or-
der in our sweep algorithm. They can be avoided by
randomization. Coincidences occur when combinatori-
ally distinct elements are numerically equal, for example
a · (b × c) with a = b = c. We replace u = b × c by û.
A generalization of this strategy handles any rank defi-
cient determinant predicate. Special cases occur when
the parameters of a predicate are related. We exploit
the parameter relationship to derive an equivalent reg-
ular predicate, such as the clockwise edge order at a z
turn (Sec. 3). We have employed this strategy in several
complicated 3D algorithms and aim to automate it.

Acknowledgment

Milenkovic supported by NSF grant CCF-0904707.
Sacks supported by NSF grant CCF-0904832.

References

[1] Exact computational geometry.
http://cs.nyu.edu/exact.

[2] H. Edelsbrunner and E. P. Mücke. Simulation of
simplicity: a technique to cope with degenerate
cases in geometric algorithms. ACM Transactions
on Graphics, 9(1):66–104, 1990.

[3] I. Emiris, J. Canny, and R. Seidel. Efficient pertur-
bations for handling geometric degeneracies. Algo-
rithmica, 19(1–2):219–242, 1997.

[4] E. Fogel and D. Halperin. Polyhedral assembly par-
titioning with infinite translations or the importance
of being exact. In Eighth International Workshop on
the Algorithmic Foundations of Robotics, pages 417–
432, 2009.

[5] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and
P. Zimmermann. MPFR: A multiple precision bi-
nary floating point library with correct rounding.
ACM Transactions on Mathematical Software, 33,
2007.

[6] P. Hachenberger. Exact minkowski sums of polyhe-
dra and exact and efficient decomposition of poly-
hedra into convex pieces. Algorithmica, 55:329–345,
2009.

[7] D. Halperin, J.-C. Latombe, and R. H. Wilson.
A general framework for assembly planning: The
motion space approach. Algorithmica, 26:577–601,
2000.

[8] V. Milenkovic, E. Sacks, and M.-H. Kyung. Ro-
bust minkowski sums of polyhedra via controlled
linear perturbation. In Solid Modeling, pages 23–
30. Springer, 2010.

[9] C. Yap. Robust geometric computation. In J. E.
Goodman and J. O’Rourke, editors, Handbook of
discrete and computational geometry, chapter 41,
pages 927–952. CRC Press, Boca Raton, FL, second
edition, 2004.

23rd Canadian Conference on Computational Geometry, 2011

104

CCCG 2011, Toronto ON, August 10–12, 2011

Approximation Algorithms for a Triangle Enclosure Problem

Karim Doüıeb∗ Matthew Eastman∗ Anil Maheshwari∗ Michiel Smid∗

Abstract

Given a set S of n points in the plane, we want to find
a triangle, with vertices in S, such that the number of
points of S enclosed by it is maximum. A solution can
be found by considering all

(
n
3

)
triples of points in S. We

show that, by considering only triangles with at least 1,
2, or 3 vertices on the convex hull of S, we obtain various
approximation algorithms that run in o(n3) time.

1 Introduction

Let S be a set of n points in the plane. A triangle4pqr,
with vertices p, q, r ∈ S, is defined to be optimal if the
number of points of S enclosed by it is maximum. Epp-
stein et al. [1] have shown that this optimal triangle can
be computed in O(n3) time: They present an algorithm
that preprocesses the set S in O(n2) time so that, for
any triple (p, q, r) of points in S, the number of points
enclosed by 4pqr can be computed in O(1) time. By
considering all

(
n
3

)
triples, we find an optimal triangle

in O(n3) time.
Since it is not known if an optimal triangle can be

computed in o(n3) time, we consider the problem of
approximating it. That is, we will present several sub-
cubic algorithms that compute triangles with vertices in
S that enclose at least 1/c times as many points as an
optimal triangle with vertices in S, for some approxi-
mation ratio c.

Our main approach is based on the simple fact that
if a triangle 4 can be covered by c triangles, then one
of them is a c-approximation of 4.

We show that, by considering only triangles that con-
tain at least 1, 2, or 3 vertices on the convex hull of S,
we obtain approximation algorithms, for various values
of c, that run in o(n3) time. Let h denote the number
of vertices on the convex hull of S. A summary of our
results is given in Table 1.

2 Preliminaries

We will assume that no three points in S are collinear
and that no two points have the same y-coordinate.

∗School of Computer Science, Carleton University, Ot-
tawa, Ontario K1S 5B6, Canada. This work was sup-
ported by the Natural Sciences and Engineering Re-
search Council of Canada. Emails: kdouieb@ulb.ac.be,

{meastma2,anil,michiel}@scs.carleton.ca.

vertices on the approximation runtime
convex hull ratio
≥ 1 2 O(n2)
≥ 2 3 O(nh2 log n)

≥ 2 4 O(n log2 n)
3 4 O(nh2 log h)

3 8 O(n log2 h)
3 3 log h O(n log h)

Table 1: Summary of results.

The number of points enclosed by a triangle 4pqr is
the number of points contained in the interior of 4pqr.
We say that 4pqr, with p, q, r ∈ S, is optimal if the
number of points of S enclosed by it is maximum.

A triangle 4 is a c-approximation of a triangle 4pqr
if 4 encloses at least 1/c times as many points as 4pqr.
Observation 1 If a triangle 4pqr can be covered by a
set of c triangles then at least one of these triangles is
a c-approximation of 4pqr.

In order to show that an algorithm gives a c-
approximation of a triangle 4pqr it is enough to show
that the algorithm counts the number of points enclosed
by each of the c triangles that cover 4pqr.

Let l(p, q) denote the directed line through points p
and q, and let pq denote the line segment between p and
q. Define the wedge of a vertex p in a triangle 4pqr as
the area bounded by the lines l(q, p) and l(r, p) opposite
the interior angle ∠rpq.

Lemma 1 The three wedges of an optimal triangle with
vertices in S cannot contain any points of S.

Proof. Let 4pqr be an optimal triangle with vertices
in S. Assume that the wedge of p contains a point
p′ as in Figure 1. Then the triangle 4p′qr encloses
more points than 4pqr, as it encloses all of the points
enclosed by 4pqr in addition to the point p, giving a
contradiction. �

We refer to the three wedges of an optimal triangle
as the empty regions of the optimal triangle.

3 Counting points in triangles with two fixed ver-
tices on the convex hull

In order to approximate an optimal triangle in o(n3)
time we need to be able to count the number of points

CCCG 2011, Toronto ON, August 10–12, 2011

105

23rd Canadian Conference on Computational Geometry, 2011

p

q

r

p′

Figure 1: The wedge of p cannot contain any points.
The shaded regions denote the empty regions of 4pqr.

in a set of triangles in o(n3) time. Fixing two vertices
of every triangle on the convex hull of S allows us to
count the number of points enclosed by these triangles
in O(n log n) time, or O(n log h) time if we only consider
triangles with the third vertex on the convex hull.

Lemma 2 Given two points ti and tj on the convex
hull of S we can count the number of points enclosed by
every triangle 4titjs, s ∈ S, in O(n log n) time.

Proof. Without loss of generality assume that ti is be-
low tj . Let SL be the set of points of S lying to the left
of l(ti, tj) and let SR be the set of points of S lying to
the right of l(ti, tj).

The following algorithm counts the number of points
enclosed by every triangle 4titjs, s ∈ SL. Counting
the number of points enclosed by every triangle 4titjs,
s ∈ SR, is symmetric.

For each point s ∈ SL, let s′ be the intersection be-
tween the horizontal line through s and l(ti, tj). Let S−L
be the set of points in SL lying below the horizontal line
through ti and let S+

L be the set of points lying above
the horizontal line through ti.

Let T be an initially empty balanced binary search
tree such that every node in T stores the size of its
subtree. Rotate a line anchored at ti clockwise over the
set S−L . When this line intersects a point s ∈ S−L insert
s into T using its y-coordinate as the key. The number
of points enclosed by 4tiss′ is the number of successors
of s in T immediately after inserting s.

To see why this is true let u be a successor of s in T
found immediately after inserting s into T . Since u was
inserted before, s the angle ∠utis′ is less than ∠stis′.
Since u is a successor of s in T , u is higher than s.
Therefore u is enclosed by 4tiss′ (see Figure 2).

The number of points enclosed by every triangle
4tiss′, s ∈ S+

L , is found using the same technique, ex-
cept that the line is rotated counter-clockwise over S+

L

and the number of points in each 4tiss′, s ∈ S+
L , is

the number of predecessors of s in T immediately after
inserting s.

Counting the number of points enclosed by every tri-
angle 4tjss′, s ∈ SL, is symmetric.

For each point s ∈ SL let ai,s be the number of points
enclosed by 4tiss′ and let aj,s be the number of points
enclosed by4tjss′. Then the number of points enclosed

ti

tj

s s′

u
6 s′tis

6 s′tiu

u′

Figure 2: Point u is enclosed by 4tiss′.

by 4titjs is either (1) −ai,s + aj,s if s is below ti, (2)
ai,s − aj,s if s is above tj , or (3) ai,s + aj,s otherwise.
These cases are shown in Figure 3.

ti

tj

s s′

ti

tj
s s′

ti

tj

s s′

(1) (3)(2)

Figure 3: The three cases encountered when calculating
the number of points enclosed by 4titjs.

It takes O(n log n) time to sort the points by angle
about ti and tj . Inserting each point into the binary
search tree takes O(log n) time. Since the binary search
tree keeps track of the size of each subtree we can cal-
culate the number of predecessors or successors of a
point in the tree in O(log n) time. The total runtime
is O(n log n). �

If we fix two vertices on the convex hull of S we can
count the number of points enclosed by every triangle
containing these two vertices, with the third vertex on
the convex hull, without sorting the entire set S. This
lets us count the number of points enclosed by every
such triangle in O(n log h) time.

Lemma 3 Given two points ti and tj on the convex
hull of S we can count the number of points enclosed by
every triangle 4titjtk where tk, 1 ≤ k ≤ h, is a point
on the convex hull of S, in O(n log h) time.

Proof. Without loss of generality assume that ti is be-
low tj . Let SL be the set of points of S lying to the left
of l(ti, tj) and let SR be the set of points of S lying to
the right of l(ti, tj).

The following algorithm counts the number of points
enclosed by every triangle 4titjtk, where tk ∈ SL is a
point on the convex hull between ti and tj . Counting
the number of points enclosed by every triangle4titjtk,
where tk ∈ SR is a point on the convex hull, is symmet-
ric.

23rd Canadian Conference on Computational Geometry, 2011

106

CCCG 2011, Toronto ON, August 10–12, 2011

The number of points enclosed by 4titjtk, with tk ∈
SL, is found by subtracting the number of points in SL
lying to the left of l(ti, tk), or to the right of l(tj , tk),
from the number of points in SL.

A point s ∈ SL lies to the left of l(ti, tk) if the line
l(ti, s) intersects the convex hull between ti and tk. Sim-
ilarly, s lies to the right of l(tj , tk) if l(tj , s) intersects
the convex hull between tk and tj (see Figure 4).

tj

ti

tk tj

ti

tk

Figure 4: Lines through ti and the points lying to the
left of l(ti, tk) intersect the convex hull between ti and
tk. Lines through tj and points lying to the right of
l(tj , tk) intersect the convex hull between tk and tj .

Let ai,k be the number of lines l(ti, s), s ∈ SL, that
intersect the edge tktk+1 of the convex hull and let aj,k
be the number of lines l(tj , s), s ∈ SL, that intersect the
edge tktk+1 of the convex hull.

Let bi,k be the total number of lines l(ti, s), s ∈ SL,
that intersect the convex hull between points ti and tk
and let bj,k be the total number of lines l(tj , s), s ∈ SL,
that intersect the convex hull between tk and tj .

The number of points enclosed by triangle 4titjtk is
|SL| − (bi,k + bj,k − 1).

The sets SL and SR are found in O(n) time. The
convex hull can be found in O(n log h) time and the in-
tersection of a line and the convex hull can be found
in O(log h) time by performing a binary search on the
edges of the convex hull. Then the a-variables are com-
puted in O(n log h) time and the b-variables are com-
puted in O(h) time. The total runtime is O(n log h). �

4 Triangles with one fixed vertex on the convex hull

Lemma 4 Let z be the lowest point in S. Let x and y
be points in S such that 4xyz encloses the maximum
number of points of S. Then 4xyz is a 2-approximation
of an optimal triangle with vertices in S.

Proof. Let 4pqr be an optimal triangle with vertices
in S. Draw a line from z to each vertex of 4pqr. By
Lemma 1 the point z cannot lie in any of the empty
regions of 4pqr. Then one of the lines from z must
cross an edge of 4pqr.

Without loss of generality assume that zp crosses the
edge qr. Then the two triangles 4pqz and 4rpz cover

4pqr (see Figure 5). By Observation 1 one of these
triangles is a 2-approximation of 4pqr. �

p q

r

z

Figure 5: Triangles 4pqz and 4rpz cover 4pqr.

Theorem 5 A 2-approximation of an optimal triangle
with vertices in S can be found in O(n2) time.

Proof. Let z be the lowest point in S. Count the num-
ber of points enclosed by every triangle containing ver-
tex z and return the triangle found that encloses the
most points.

There are
(
n
2

)
triangles containing vertex z so this

takes O(n2) time using the data structure from [1]. The
approximation ratio follows from Lemma 4. �

5 Triangles with at least two vertices on the convex
hull

In this section we consider triangles with at least two
vertices on the convex hull of S.

Lemma 6 Let 4 be a triangle, with vertices in S, such
that at least two of its vertices are on the convex hull
of S, that encloses the maximum number of points of
S. Then 4 is a 3-approximation of an optimal triangle
with vertices in S.

Proof. Let 4pqr be an optimal triangle with vertices
in S. Assume that none of the vertices of 4pqr lie
on the convex hull of S. Then there exist edges titi+1,
tjtj+1 and tktk+1 of the convex hull that cross the empty
regions of4pqr. Figure 6 shows how we can use the end
points of two of these edges, and one vertex of 4pqr, to
cover 4pqr with three triangles. By Observation 1 one
of these triangles is a 3-approximation of 4pqr. �

This approximation factor is tight. Figure 7 shows
an example of a set of points where 4pqr encloses three
times as many points as any triangle 4, with vertices
in S, with at least two vertices on the convex hull of
S. There is no such triangle 4 that covers more than
one of the shaded regions in Figure 7. If we put m
points in each of these regions then 4pqr will enclose
3m points while any triangle with at least two vertices
on the convex hull of S can enclose at most m+1 points.

CCCG 2011, Toronto ON, August 10–12, 2011

107

23rd Canadian Conference on Computational Geometry, 2011

p q

r

ti

ti+1
tj

tj+1

tktk+1

Figure 6: Three triangles that cover 4pqr.
p

qr

p

qr

p

qr

p

qr

p

qr

p

qr

Figure 7: A set S, with an optimal triangle 4pqr, such
that there are no triangles with at least two vertices on
the convex hull of S that enclose more than 1/3 times as
many points as 4pqr. Symmetric cases are not shown.

Theorem 7 A 3-approximation of an optimal trian-
gle with vertices in S can be found in O(min(n2 +
nh2, nh2 log n)) time.

Proof. Count the number of points enclosed by every
triangle with at least two vertices on the convex hull
of S and return the triangle found that encloses the
most points. There are (n − h)

(
h
2

)
such triangles so

this takes O(n2 + nh2) time using the data structure
from [1] or O(h2n log n) time using the algorithm pre-
sented in Lemma 2. The approximation ratio follows
from Lemma 6. �

Theorem 8 A 4-approximation of an optimal triangle
with vertices in S can be found in O(n log2 n) time.

Proof. Consider the following algorithm: Sort the
points of S clockwise by angle about the lowest point z
in S. Let sm be the median of S by angle and let titi+1

be the edge of the convex hull that intersects l(z, sm).
Count the number of points enclosed by every trian-
gle 4ztis and 4zti+1s, s ∈ S, using the algorithm in
Lemma 2. Let SL be the set of points lying to the left of
l(z, sm) and let SR be the set of points lying to the right
of l(z, sm). Recursively run the algorithm on the sets
SL and SR and return the triangle found that encloses
the most points.

To prove the approximation ratio, let 4pqr be an op-
timal triangle with vertices in S. Let x and y be points

in S such that 4xyz encloses the maximum number of
points of S. From Lemma 4 4xyz is a 2-approximation
of 4pqr.

Consider the recursive call where x and y lie on op-
posite sides of the line l(z, sm). At least one of ti and
ti+1 must lie above l(x, y), otherwise titi+1 wouldn’t
be an edge of the convex hull. If ti lies above l(x, y)
then 4xyz is covered by triangles 4zxti and 4yzti (as
in Figure 8). Otherwise if ti+1 lies above l(x, y) then
4xyz is covered by triangles 4zxti+1 and 4yzti+1. By
Lemma 1 one of these triangles is a 2-approximation of
4xyz and, therefore, a 4-approximation of 4pqr.

z

sm

ti

ti+1x
y

Figure 8: Triangles 4zxti and 4yzti cover 4xyz.

Sorting the points by angle takes O(n log n) time.
Finding the edge of the convex hull that intersects the
line through z and the median takes O(log h) time if we
perform a binary search on the precomputed edges of
the convex hull. Counting the number of points en-
closed by every triangle 4ztis and 4zti+1s, s ∈ S,
takes O(n log n) time using the algorithm presented in
Lemma 2. The total amount of work done at each step
is O(n log n). SL and SR each contain half of the points
of S so the complexity of this algorithm satisfies the
equation T (n) = 2T (n/2) + O(n log n) which solves to
O(n log2 n). �

6 Triangles with three vertices on the convex hull

In this section we consider triangles with three vertices
on the convex hull of S.

Lemma 9 Let 4 be a triangle, whose vertices are on
the convex hull of S, that encloses the maximum num-
ber of points of S. Then 4 is a 4-approximation of an
optimal triangle with vertices in S.

Proof. Let 4pqr be an optimal triangle with vertices
in S. Assume that none of the vertices of 4pqr lie
on the convex hull of S. Then there exist edges titi+1,
tjtj+1 and tktk+1 of the convex hull that cross the empty
regions of 4pqr. Figure 9 shows how we can use the
end points of these edges to find a set of at most four
triangles that cover 4pqr. By Lemma 1 one of these
triangles is a 4-approximation of 4pqr. �

23rd Canadian Conference on Computational Geometry, 2011

108

CCCG 2011, Toronto ON, August 10–12, 2011

p q

r

ti

ti+1
tj

tj+1

tktk+1

Figure 9: Four triangles that cover 4pqr.

This approximation factor is tight. Figure 10 shows
an example where 4pqr encloses four times as many
points of S as any triangle 4, whose vertices are on the
convex hull of S. There is no such triangle4 that covers
more than one of the four shaded regions in Figure 10.
If we put m points in each of these regions then 4pqr
will enclose 4m points while any triangle whose vertices
are on the convex hull of S can enclose at most m + 1
points.

p

qr

p

qr

p

qr

Figure 10: A set S, with an optimal triangle 4pqr,
such that there are no triangles, whose vertices are on
the convex hull of S, that cover more than 1/4 times as
many points as 4pqr. Symmetric cases are not shown.

Theorem 10 A 4-approximation of an optimal trian-
gle with vertices in S can be found in O(min(n2 +
h3, h2n log h)) time.

Proof. Count the number of points enclosed by every
triangle with three vertices on the convex hull of S and
return the triangle found that encloses the most points.
There are

(
h
3

)
such triangles so this takes O(n2 + h3)

time using the data structure in [1] or O(h2n log h) time
using the algorithm presented in Lemma 3. The approx-
imation ratio follows from Lemma 9. �

Theorem 11 An 8-approximation of an optimal trian-
gle with vertices in S can be found in O(n log2 h) time.

Proof. Consider the following algorithm: Let t1 . . . th
be the vertices of the convex hull of S given in clockwise
order starting at the lowest point z = t1 and let tm be
the median of the convex hull. Count the number of
points enclosed by every triangle containing vertices z
and tm, with the third vertex on the convex hull of S,
using the algorithm described in Lemma 3. Let SL be
the set of points of S lying on or to the left of l(z, tm) and

let SR be the set of points of S lying on or to the right
of l(z, tm). Recursively run the algorithm on the sets
SL and SR and return the triangle found that encloses
the most points.

To prove the approximation ratio, let 4pqr be an op-
timal triangle with vertices in S. Let x and y be points
in S such that 4xyz encloses the maximum number of
points of S. From Lemma 4 4xyz is a 2-approximation
of 4pqr.

Assume that x and y are not on the convex hull. Then
there exist edges titi+1 and tktk+1 that cross the empty
regions of 4xyz. Let tj be any point on the convex hull
between ti+1 and tk. Figure 11 shows how we can use
the points z, ti, ti+1, tj , tk and tk+1 to construct four
triangles that cover 4xyz. By Lemma 1 one of these
triangles is a 4-approximation of 4xyz and, therefore,
an 8-approximation of 4pqr.

ti

ti+1

tj
tk

tk+1

z

x

y

Figure 11: Four triangles that cover 4xyz.

Consider the recursive call where x and y lie on op-
posite sides of l(z, tm). When this occurs tm is on the
convex hull between ti+1 and tk. Thus, in the previous
argument, we can take tj = tm. Then in this call we
count the number of points in triangles 4ztjti+1 and
4ztjtk.

In another recursive call either ti or ti+1 is the median
of the convex hull and we count the number of points
enclosed by the triangle 4ztiti+1. Similarly there is a
recursive call where either tk or tk+1 is the median and
we count the number of points enclosed by 4ztktk+1.

The convex hull of S can be found in O(n log h)
time [2] and does not need to be computed at each step.
Each step requires O(n) time to find SL and SR and
O(n log h) time to count the number of points enclosed
by every triangle with vertices z and tm, with the third
vertex on the convex hull of S, by Lemma 3. When
we recursively call the algorithm on the sets SL and
SR the size of the convex hulls of SL and SR are half
the size of the convex hull of S and the total number
of points in SL and SR is the number of points in S.
The complexity of this algorithm satisfies the equation
T (h, n) = T (h/2, n1) + T (h/2, n − n1) + O(n log h)
for some 1 ≤ n1 < n. The solution to this equation
is O(n log2 h). �

CCCG 2011, Toronto ON, August 10–12, 2011

109

23rd Canadian Conference on Computational Geometry, 2011

We can obtain an O(log h)-approximation of the op-
timal triangle with vertices in S in O(n log h) time by
triangulating the convex hull of S and choosing the tri-
angle in this triangulation that encloses the maximum
number of points of S.

Let T = ∅ be an initially empty set of triangles. Ini-
tialize R = r1, r2, . . . , rh to the points of the convex hull
of S given in clockwise order. For each point ri ∈ R
such that i is odd add the triangle 4riri+1ri+2 to T
and remove ri+1 from R. Renumber the elements of R
as r1, r2, . . . and repeat the previous steps until R has
less than 3 points. This gives a triangulation T of the
convex hull of S (see Figure 12). At each iteration we
remove half of the points in R, so T is constructed in
O(h) time after constructing the convex hull of S in
O(n log h) time [2].

Figure 12: Triangulation of the convex hull of a set of
points.

Lemma 12 Any line crosses at most 2 log h triangles
of T .

Proof. Let Ri denote the sequence of points in R at
the ith iteration of the triangulation algorithm.

Observe that Ri and Ri+1 are convex polygons and
that any triangle added to T in the ith iteration has
edges in Ri and Ri+1 only (see Figure 13). Then any
line can intersect at most two of the triangles of T added
during the ith iteration of the triangulation algorithm.

There are log h iterations of the algorithm, so any line
crosses at most 2 log h triangles in T . �

Lemma 13 Any triangle 4, with vertices in S, can be
covered by at most 3 log h triangles in T .

Proof. Observe that any triangle in T that partially
covers 4 must cross at least two edges of 4, since every
triangle in T has vertices on the convex hull of S. By
Lemma 12 each edge of 4 can cross at most 2 log h
triangles in T . Then the edges of 4 can cross at most
6/2 log h different triangles in T . Therefore 4 can be
covered by at most 3 log h triangles in T . �

Theorem 14 A 3 log h-approximation of an optimal
triangle with vertices in S can be found in O(n log h)
time.

Figure 13: Any line can cross at most two of the tri-
angles added during the ith iteration of the algorithm.
The shaded regions denote triangles added to T during
the ith iteration.

Proof. For each point s ∈ S we can find the triangle in
T enclosing s in O(log h) time: Start with the innermost
triangle 4titjtk. If s is in this triangle we are done.
Otherwise s lies to the left of one of the lines l(ti, tj),
l(tj , tk) or l(tk, ti). Without loss of generality let s lie to
the left of l(ti, tj). Repeat the previous steps with the
triangle immediately to the left of the line l(ti, tj). At
each step we remove 2/3 of the triangles. Since there are
O(h) triangles it takes O(log h) time to find the triangle
of T that encloses s. Therefore it takes O(n log h) time
to find the triangle in T that encloses the maximum
number of points of S. The approximation ratio follows
from Observation 1 and Lemma 13. �

7 Conclusion

It is not known whether the O(n3) time algorithm used
to find the triangle enclosing the most points is optimal.
Similarly it is unclear if the runtimes of our approxima-
tions are optimal.

Eppstein et al. [1] studied the more general problem
of finding a convex k-gon that is optimal for some weight
function, for example the minimum or maximum num-
ber of points, or the minimum perimeter. Their algo-
rithm runs in O(kn3) time. It would be interesting to
see if any of our results can be applied to these prob-
lems.

References

[1] D. Eppstein, M. Overmars, G. Rote, and G. Woegin-
ger. Finding minimum area k-gons. Discrete Comput.
Geom., 7(1):45–58, 1992.

[2] D.G. Kirkpatrick and R. Seidel. The ultimate planar
convex hull algorithm. SIAM Journal on Computing,
15(1):287–299, 1986.

23rd Canadian Conference on Computational Geometry, 2011

110

CCCG 2011, Toronto ON, August 10–12, 2011

Finding the Maximum Area Parallelogram in a Convex Polygon

Kai Jin⇤ Kevin Matulef⇤

Abstract

We consider the problem of finding the maximum area
parallelogram (MAP) inside a given convex polygon.
Our main result is an algorithm for computing the MAP
in an n-sided polygon in O(n2) time. Achieving this
running time requires proving several new structural
properties of the MAP, and combining them with a ro-
tating technique of Toussaint [10].

We also discuss applications of our result to the
problem of computing the maximum area centrally-
symmetric convex body (MAC) inside a given convex
polygon, and to a “fault tolerant area maximization”
problem which we define.

1 Introduction

A common problem in computational geometry is that
of finding the largest figure of one type contained in a
given figure of another type. Over the last 30 years re-
searchers have looked at several instances of this prob-
lem, such as finding the largest convex polygon con-
tained in an arbitrary polygon [2], the largest axis-
parallel rectangle in an arbitrary polygon [3] , the largest
triangle inscribed in a convex polygon [4], the largest k-
gon in a convex polygon [1], or the largest square in a
convex polygon [7].

In this work, we consider the problem of finding the
maximum area parallelogram (MAP) inside a convex
polygon. Our main result is the following:

Theorem 1 There is an algorithm for computing the
MAP in a convex polygon with n sides in O(n2) time.

As we shall see, achieving an O(n2) running time is
not straightforward; it requires proving several struc-
tural properties of the MAP. We discuss the challenges
involved, and our techniques for overcoming them, in
Section 1.2.

1.1 Applications

The MAC. One reason why the parallelogram case
is of special interest is because parallelograms are the

⇤IIIS, Tsinghua University, cscjjk@msn.com and
matulef@gmail.com. Supported in part by the National Basic Re-
search Program of China Grant 2007CB807900, 2007CB807901,
and the National Natural Science Foundation of China Grant
61033001, 61061130540, 61073174.

simplest polygons that are “centrally-symmetric” (i.e.
for which there exists a “center” such that every point
on the figure, when reflected about the center, pro-
duces another point on the figure). It is natural to
ask whether we can, in general, compute the Maximum
Area Centrally-symmetric convex body (MAC) inside
a given convex polygon or convex curve. Although it
seems di�cult to compute the area of the MAC exactly,
it is known that the MAP serves as an approximation:1

Theorem 2 [5, 8] For a convex curve Q, the area of
the MAP inside it is always at least 2

⇡ ⇡ 0.6366 times
the area of Q, Moreover, this bound is tight; the worst
case is realized when the given convex curve is an ellipse.

Theorem 2 follows from two results.2 The first result
of Dowker [5] says that for any centrally-symmetric con-
vex body K in the plane, and any even n � 4, among
the inscribed (or contained) convex n-gons of maximal
area in K, there is one which is centrally-symmetric.
The second result of Sas [8] says that for convex bodies
in Rd, the hardest to approximate with inscribed n-gons
are exactly the ellipsoids.

By combining Theorem 2 with our Theorem 1, we get
the following corollary.

Corollary 3 There is a 2
⇡ -approximation algorithm for

computing the area of the MAC in O(n2) time.

Fault Tolerant Area Maximization. Consider the
following general problem: you are allowed to place k
points inside a polygon P , then an adversary removes
j of them (where j < k). Your goal is to maximize
the area of the convex hull of the remaining points. We
call this the Fault Tolerant Area (FTA) Maximization
Problem.

Let FTA(k, j) be the maximum area you can achieve
in the worst case. It is easy to see that FTA(k, 0) is
equivalent to finding the maximum area k-gon inside P .
Boyce et. al. give a clever algorithm for solving this in
O(knlgn + nlg2n) time [1]. However, when j > 0, the
problem seems much less trivial. Perhaps the simplest

1We may give the simplest credit to squares in some sense,
but with only one constrain of been centrally-symmetric, paral-
lelograms are simpler (more flexible) than squares in the less-
constrains (flexible) sense. As a result, parallelograms are more
suitable for approximating the MAC than squares.

2An earlier version of this paper contained an alternative proof
of Theorem 2, see http://itcs.tsinghua.edu.cn/zh/kaijin/

CCCG 2011, Toronto ON, August 10–12, 2011

111

23rd Canadian Conference on Computational Geometry, 2011

non-trivial case is FTA(4, 1). In this case, we show
that computing FTA(4, 1) reduces to the problem of
computing both the maximum area triangle (which can
be done using Boyce et. al.’s algorithm) and the MAP.
Thus, we get the following corollary to our main theo-
rem (due to space limitations, we present the proof of
this corollary in the Appendix).

Corollary 4 (Reduction) Computing FTA(4, 1) in a
convex polygon P can be done in O(n2) time.

1.2 Techniques

We start by proving the relatively simple fact that the
MAP inside a convex polygon P must have all of its cor-
ners on the perimeter of P . This suggests the possibility
of an algorithm that works by enumerating all 4-tuples
of edges of P , and for each 4-tuple finding the largest
parallelogram with one corner on each edge. Such an
algorithm would, at best, run in O(n4) time.

To reduce the search space, we further prove that the
MAP must be anchored on P . In other words, it must
have at least one corner on a vertex of P . We prove this
via a lemma we call the “hyperbola lemma” which may
be of independent interest (see Section 2.2). We then
divide the computation of the MAP into two cases: one
where the MAP has two opposite, non-anchored corners,
and one where it has two adjacent, anchored corners.

For the first case, we prove that for every pair of edges
of P , finding the MAP with opposite non-anchored cor-
ners on those edges involves checking only O(n) possi-
bilities for the placement of the other corners. As there
are O(n2) pairs of edges, in total this yields an O(n3)
algorithm. In order to speed it up further, we employ a
rotating technique of Toussaint [Tou83]. The main idea
is to show that if the pairs of edges are processed in the
right order, the amortized cost of computing the best
placement for the other corners is only O(1). Proving
this requires proving additional structural properties of
the MAP (see Section 3.1).

For the second case, when the MAP has two adjacent
corners anchored on P , the algorithm is slightly more
complicated, but uses similar ideas and still has running
time O(n2) (see Section 3.2).

1.3 Related Work

In [2], Chang and Yap gave an algorithm for the “potato
peeling” problem, or the problem of finding the largest
convex polygon Q inside a given simple polygon P with
n sides. They showed that this problem is computable
in polynomial time, by giving algorithms computing the
maximum area Q in O(n7), and the maximum perime-
ter Q in O(n6). Their investigation led them to define
the general notion of “inclusion” problems for arbitrary
classes of polygons P and Q. The goal of the inclusion

problem on P and Q is to find the largest polygon from
Q inside a given polygon from P (here “largest” can
be with respect to area, perimeter, or other measures).
Chang and Yap surveyed several results on the inclu-
sion problem for specific P and Q, although to date no
unified solution exists. For di↵erent P and Q, it seems
di↵erent techniques must be employed. The problem we
solve in this work is the specific case where P is the set
of convex polygons, and Q is the set of parallelograms.

For the case where P is the set of convex polygons,
the inclusion problem has been studied for several dif-
ferent Q. For example, given a convex polygon P with n
vertices, Shamos [9] gave an algorithm for finding the di-
ameter of P in linear time (this corresponds to Q being
the set of “one-edge” polygons). Dobkin and Snyder [4]
gave a linear time algorithm for finding the maximum
area triangle; Boyce, Dobkin, Drysdale and Guibas [1]
gave an algorithm for finding maximum area/perimeter
k-gons in time O(knlgn + nlg2n). De Pano Ke and
O’Rourke [7] gave an algorithm for finding the largest
inscribed square in time O(n2); Fekete [6] gave an al-
gorithm for finding all anchored squaresin O(n log2 n)
time; For the case where P is the set of all simple poly-
gons, Daniels, Milenkovic and Roth [3] gave an algo-
rithm for finding the maximum area axis-parallel rect-
angle in time O(n log2 n).

2 Preliminaries

2.1 Basic notations and lemmas

We will use symbols A, B, A0, B0 to denote the four cor-
ners of a parallelogram Q = ABA0B0 (the pairs A, A0

and B, B0 denote opposite corners). We will use the
symbol E to denote the center of Q.

Definition 5 (Inscribed) We say a parallelogram Q
is inscribed on a polygon P if and only if all four cor-
ners of Q are on the boundary of P .

Definition 6 (Anchored) We say a parallelogram Q
is anchored on a polygon P if it is inscribed on P and
at least one of its corners lies on a vertex of P .

Definition 7 (Narrow side & Broad side)
Suppose b, b0 are two nonparallel edges of P . They
divide the other edges of P into two sets, the edges in
the Narrow side (where the extended lines of b and
b0 intersect) and the edges in the Broad side (where b
and b0 are further apart), illustrated in Figure 1.

Lemma 8 The parallelogram inside P with the maxi-
mum area must be inscribed on P .

Proof. We prove this by contradiction. Suppose Q =
ABA0B0 is a parallelogram which has maximal area in

23rd Canadian Conference on Computational Geometry, 2011

112

CCCG 2011, Toronto ON, August 10–12, 2011

Figure 1: Broad side and Narrow side

P but is not inscribed in P (See Figure 2). Without
loss of generality, assume A is a vertex which is not
on the boundary of P . First, we slide segment AB
along direction ~BA for a su�ciently small distance to
create A1B1. Next we slide it along direction ~B0A1

for a su�ciently small distance to create A2B2 where
A2 and B2 are still inside P . It’s easy to see that
Area(ABA0B0) < Area(A2B2A

0B0). ⇤

Figure 2: Illustration of Theorem 8

Lemma 8 says if a parallelogram Q = ABA0B0 is the
MAP of a polygon P , then all its corner must lie on the
boundary of P . For points A, B, A0, B0 that do not lie
on vertices of P , we will use the lowercase letters a, b,
a0, b0 respectively to denote the edges of P they lie on.

Lemma 9 (Two Lines Lemma) Given two nonpar-
allel lines b, b0 and one point E not on them, there is
exactly one segment connecting b and b0 with midpoint
E. Moreover, the endpoints of this segment, denoted as
B and B0, can be computed in constant time.

This lemma is simple; we omit its proof. Next we
introduce the segment version of Lemma 9, it will be
used many times in our algorithm.

Suppose there are two segments b = B1B2 and b0 =
B3B4 which, when extended, intersect at point O. For
1 i 4, let Mi be the midpoint of OBi (see Figure 3).
We draw a parallelogram P (b, b0) such that one pair of
sides is parallel to b and crossing M3 and M4, and the
other pair of sides is parallel to b0 and crossing M1 and
M2.

Lemma 10 (Two Segments Lemma) There is a
segment connecting b and b0 with midpoint E, if and
only if E is inside of P (b, b0).

The proof of Lemma 10 is also simple; due to space
constraints we omit it.

Figure 3: Two lines lemma and two segments lemma

Note that for a parallelogram Q with center E and
opposite corners B and B0 located on b and b0 respec-
tively, we know E 2 P (b, b0) because E is the midpoint
of the diagonal BB0.

2.2 The Hyperbola Lemma

Definition 11 For two nonparallel lines b1, b2 inter-
secting at O, and a point A strictly in-between them,
there is a unique hyperbola asymptotic to b1 and b2 and
intersecting A, denoted as hb1,b2

A (or hA for short). Let

Cb1,b2
A (or CA for short) denote the distance from O to

the nearest point on hA.

Lemma 12 (Hyperbola Lemma) Suppose b, b0 are
two nonparallel lines which intersect at origin O. Let h1

and h2 be two hyperbolas which are both asymptotic to
b and b0. Then all parallelograms Q = ABA0B0, where
A, B, A0, B0 lie on h1, b, h2, b

0 respectively, have the same
area.

Figure 4: Hyperbola Lemma (orthogonal case)

Proof. We will prove the lemma in the case when b and
b0 are orthogonal. The general case follows from a linear
transformation.

CCCG 2011, Toronto ON, August 10–12, 2011

113

23rd Canadian Conference on Computational Geometry, 2011

Build a Cartesian coordinate system with origin O
and let b0, b be the x-axis and y-axis (see Figure 4).
Suppose the coordinates of A and A0 are (x1, y1) and
(x2, y2) respectively. The center E is the midpoint
of AA0, and thus has coordinates (x1+x2

2 , y1+y2

2). By
Lemma 9, the coordinates of B and B0 are uniquely
determined, and are easily verified to have coordinates
(0, y1 + y2) and (x1 + x2, 0). Thus, we can compute
area(Q) = x2y2�x1y1. Since h1 and h2 are hyperbolas
asymptotic to b and b0, this means x1y1 = C2

A/2 and
x2y2 = C2

A0/2. Hence, area(Q) = C2
A0/2�C2

A/2, which
is invariant. ⇤

We will apply the hyperbola lemma with b and b0

equal to extensions of edges of the original polygon P .
Note that to find the maximum area parallelogram in
P with one vertex on b and another on b0, we should
choose A and A0 so as to maximize CA0 and minimize
CA. However, this is trickier than it seems, since if we
are allowed to choose A and A0 arbitrarily, the resulting
B and B0 may not actually lie on the original edges of
the polygon (which are just segments, not lines). We
discuss this complication further in Section 3.1.

Definition 13 Let b, b0 be two nonparallel edges, and
let c be an edge in the broad side. Then we use Xc to
denote the intersection point of b and the extended line
of c, Yc to denote the intersection point of b0 and the
extended line of c, and Zc to denote the midpoint of
XcYc.

Lemma 14 Suppose D is a point on segment XcYc.
Then CD increases while D goes from Xc to Zc, and
while D goes from Yc to Zc.

Proof. We only need to prove it in the case when b and
b0 are orthogonal, for the same reason used in Lemma 12.
Without loss of generality, assume b, b0 are on the x, y-
axis respectively, Xc = (x0, 0), Yc = (0, y0). Assume
D = (x, y0 � x(y0/x0)). It’s not hard to show that
CD =

p
2 ⇤ x ⇤ [y0 � x(y0/x0)]. Note x⇤ [y0�x(y0/x0)]

is a quadratic equation maximized when x = x0

2 . ⇤

2.3 The Anchor Theorem

Theorem 15 (Anchor Theorem) The MAP in P
must be anchored on P .

Proof. Suppose Q = ABA0B0 is a parallelogram in-
scribed but not anchored on P . We will show that Q
is not the MAP in P . First, assume neither pair a, a0

nor b, b0 is parallel to each other, otherwise the theorem
is trivial to prove. Assume a is in the narrow side. We
can construct a new parallelogram as follows. Since A
is not on an endpoint of a, we can move A a little bit
along a so that CA decreases (see Lemma 14). We keep

the position of A0 so that CA0 doesn’t change. After-
ward we replace the new center E by the midpoint of
segment AA0. Then according to Lemma 9, B and B0

can be computed since b0, b0, and E are all fixed. We can
make sure that B, B0 will still be inside segments b, b0 re-
spectively by only moving A for a su�ciently small dis-
tance. We know that the area of this new parallelogram
is larger than the area of Q according to Lemma 12.
Hence Q is not the MAP in P . ⇤

Theorem 15 leads one to wonder whether the MAP
must always be double-anchored on P (that is, whether
the MAP must have two of its corners on vertices of
P). Unfortunately, this is not the case. Figure 9 in
the Appendix illustrates an example where the double-
anchored MAP is smaller than the actual MAP.

To design our algorithm for finding the MAP, we di-
vide anchored parallelograms into two cases, described
by the following definitions:

Definition 16 We say that a parallelogram Q is
adjacent-double-anchored on a polygon P if it is in-
scribed on P and two adjacent corners lie on the vertices
of P .

Definition 17 We say that a parallelogram Q is
opposite-free-anchored on a polygon P if it is an-
chored on P but has two opposite corners which are not
anchored.

Note that for a parallelogram Q anchored on P , it
must either be adjacent-double-anchored, or opposite-
free-anchored; it cannot be both.

3 The Algorithm

In this section we describe our algorithm for finding the
MAP in a convex polygon. Our general algorithm will
actually consist of two algorithms, one to handle the
case when the MAP is opposite-free-anchored, and the
other to handle the case when the MAP is adjacent-
double-anchored. Both algorithms use similar ideas,
and have running time O(n2).

3.1 The Opposite-Free-Anchored Case

First we give an algorithm for finding the MAP when
the MAP is opposite-free-anchored. Without loss of
generality, assume that B, B0 are not anchored, and
are inscribed on b, b0 respectively. Let A be the ver-
tex in the narrow side and A0 in the broad side. Let
Mb1,b2 (M for short) be the point in P such that

Cb1,b2
M = max{Cb1,b2

V |V 2 P}. For fixed b and b0, the
following corollary of Lemma 14 helps us compute the
optimal placement of M .

23rd Canadian Conference on Computational Geometry, 2011

114

CCCG 2011, Toronto ON, August 10–12, 2011

Figure 5: Either M = Zc (pictured at left), or M is on
a vertex of P (pictured at right)

Corollary 18 There is at most one edge c in the broad
side such that Zc actually lies on c. When there is such
an edge, then M = Zc. When there is not such an edge,
then M is on a vertex formed by two edges denoted c
and d. The point Zc lies to the right of M , and the
point Zd lies to the left of M (see Figure 5).

We are now ready to prove one of the main theorems
behind our algorithm in the opposite-free-anchored case.
Suppose B and B0 are non-anchored vertices on fixed
edges b and b0. The following theorem reduces the com-
putation of the optimal placement of A and A0 to a finite
set of possibilities:

Theorem 19 Suppose Q is the opposite-free-anchored
MAP on P , where B and B0 are located on (non-
endpoints) of b and b0, A is in the narrow side and A0

is in the broad side. Then A0 = M , and A is anchored
on P .

Proof. From Corollary 18, we know that if a dynamic
point D goes from one end in the broad side to another,
CD will increase before D reaches M , and decrease after
D reaches M . So if A0 6= M , there exists an A⇤ 2 P
near A0 such that CA⇤ > CA0 . Then, as in the proof of
Theorem 15, we should be able to slightly adjust B and
B0 (still on b and b0) to construct a new parallelogram
with vertices A⇤, A, and two vertices on b, b0, which has
area bigger than that of Q. This is a contradiction.

Similarly, suppose A is not anchored on P . There ex-
ists a point A⇤ near A such that CA⇤ < CA. Again, this
means we should be able to slightly adjust A, and then
B, B0, to construct a new parallelogram with vertices
A⇤, A0 and two vertices on b, b0 with area bigger than
that of Q. This is also a contradiction. ⇤

Theorem 19 suggests a simple enumerative algorithm
in the opposite-free-anchored case: for each pair of edges
(b, b0), compute the optimal A0 and A by cycling through
all possibilities. This is described in Algorithm 1.

If implemented naively, the time complexity of Al-
gorithm 1 is O(n3). In order to speed up it further,
we employ a rotating technique of Toussaint [10]. The
main idea is to show that it isn’t necessary to spend
O(n) time calculating A and A0 for every pair of edges
(b, b0). In fact, it can be done in amortized O(1) time.

foreach edge b 2 P ,b0 2 P do1

foreach vertex V 2 P , V not on b or b0 do2

A0 V if CV > CA0 .3

end4

foreach edge c 2 P, c 6= b, c 6= b0 do5

A0 Zc if CZc
> CA0 and Zc 2 P .6

end7

foreach vertex A 2 P , A not on b or b0 do8

E the midpoint of AA0.9

Compute B, B0 by Lemma 9.10

Q ABA0B0 if Area(ABA0B0) > Area(Q)11

and ABA0B0 is inside P .
end12

end13

Algorithm 1: opposite-free-anchored

Suppose we fix an edge b, and consider the sequence of
pairs (b, b01), (b, b

0
2), (b, b

0
3), . . . , where the edge sequence

b01, b
0
2, b
0
3, . . . is formed by walking counter-clockwise

along the boundary of P . Let Ai and A0i be the
optimal values computed for the pair (b, b0i). Then it is
possible to show that the sequences A1, A2, A3, . . . , and
A01, A

0
2, A

0
3, . . . , also move counter-clockwise along the

boundary of P . Thus, for a fixed b, we only spend O(n)
time calculating all values of Ai and A0i. Repeating
with all other edges in place of b yields an O(n2) time
algorithm.

To prove this, there are two stages in Algorithm 1
that need to be analyzed carefully. For every pair (b, b0),
the first stage (lines 2-7) takes O(n) time to find A0,
the second stage (lines 8-12) also takes O(n) time to
enumerate all the vertices in the narrow side to find A.

To show that the first stage can be made to have small
amortized cost, we cite the following lemma:

Lemma 20 (A monotone property of A0)
Suppose b is fixed, and b0 moves counter-clockwise
along P . Then the distances between A0 and b are
non-decreasing. In other words, A0 can also only
move counter-clockwise around P (see Figure 7 for an
example).

The proof of Lemma 20 is simple. We omit it due to
space limitations.

For the second stage, let PA0(b, b0) be a 2-scaling of
P (b, b0) around point A0. We claim that A 2 PA0(b, b0),
because E 2 P (b, b0) and E is the midpoint of AA0 (see
Figure 6).

Lemma 21 The parallelograms PA0
1
(b, b01), PA0

2
(b, b02),

PA0
3
(b, b03), . . . are all non-overlapping. Additionally,

their distance to line b is decreasing (see Figure 7 for
an example).

CCCG 2011, Toronto ON, August 10–12, 2011

115

23rd Canadian Conference on Computational Geometry, 2011

Figure 6: PA0(b, b0) is the region where A might lie.

Proof. First, PA0
i
(b, b0i) are parallelograms, two sides of

which are parallel to b. While b0 is shifting, the dis-
tances between P (b, b0i) and line b is decreasing, and the
distances between A0i and line b is non-decreasing, so the
distances between PA0

i
(b, b0i) and b is decreasing. Thus,

they do not overlap with each other. ⇤

In line 8 of Algorithm 1, if we replace “A 2 P” with
“A 2 PA0(b, b0)”, then for a fixed b each vertex A will
be enumerated at most once. Hence the this stage can
be reduced to O(1) time on average, and therefore Al-
gorithm 1 can be implemented in O(n2) time total.

Figure 7: Illustration of Algorithm 1

3.2 The Adjacent-Double-Anchored Case

Next we give an algorithm for finding the MAP when
the MAP is double-adjacent-anchored.

While it is tempting to just run Algorithm 1 and hope
that it works in this case too, unfortunately it does not.
The reason is that Theorem 19 crucially assumes that
B and B0 are flexible on b and b0, in order to reduce
the space of possible values for A and A0. Without the
guarantee that B and B0 are not anchored, it is possible

that the best choice of A0 is not equal to M , or that the
best choice of A is not on a vertex of P .

Nevertheless, when we assume the MAP has two ad-
jacent anchored vertices, we can still prove some con-
straints on the placement of the other vertices. This al-
lows us to develop an algorithm similar to Algorithm 1
that enumerates over all choices of anchored vertex B
and opposite edge b0. If implemented correctly, this al-
gorithm can be made to run in O(n2) by showing an
amortized analysis similar to the one we used before.

Due to space limitations, we present the full details
of our algorithm in the adjacent-double-anchored case
in the Appendix.

Acknowledgments

The authors are grateful to the anonymous reviewers
of an earlier version of this paper for pointing out the
references [5, 8] and for other helpful comments.

The authors would also like to thank Xiaoming Sun,
Tiancheng Lou, and Zhiyi Huang for taking part in
fruitful discussions.

References

[1] J. E. Boyce, D. P. Dobkin, R. L. Drysdale, III, and
L. J. Guibas. Finding extremal polygons. In Proc. of
the 14th annu. ACM symp. on Theory of comp., STOC
’82, pages 282–289, New York, NY, USA, 1982. ACM.

[2] J. Chang and C. Yap. A polynomial solution for the
potato-peeling problem. Discrete and Computational
Geometry, 1:155–182, 1986. 10.1007/BF02187692.

[3] M. Daniels and Roth. Finding the largest area axis-
parallel rectangle in a polygon. CGTA: Computational
Geometry: Theory and Applications, 7, 1997.

[4] D. Dobkin and L. Snyder. On a general method for
maximizing and minimizing among certain geometric
problems. In Proceedings of the 20th Annual Symposium
on FOCS, pages 9–17. IEEE Computer Society, 1979.

[5] C. Dowker. On minimum circumscribed polygons. Bull.
Amer. Math. Soc, 50:120–122, 1944.

[6] S. P. Fekete. Finding all anchored squares in a con-
vex polygon in subquadratic time. In Proc. 4th Canad.
Conf. Comput. Geom., pages 71–76, 1992.

[7] J. O. N. Adlai De Pano, Yan Ke. Finding largest in-
scribed equilateral triangles and squares. In Proc. Aller-
ton Conf., pages 869–878, 1987.

[8] E. Sas. über ein extremumeigenschaft der ellipsen.
Compositio Math, 6:468–470, 1939.

[9] M. Shamos. Computational geometry. 1978.

[10] G. Toussaint. Solving geometric problems with the ro-
tating calipers. In Proc. IEEE Melecon, volume 83,
pages 1–4. Citeseer, 1983.

23rd Canadian Conference on Computational Geometry, 2011

116

CCCG 2011, Toronto ON, August 10–12, 2011

Illumination problems on translation surfaces with planar infinities

Nikolay Dimitrov ∗

Abstract

In the current article we discuss an illumination prob-
lem proposed by Urrutia and Zaks. The focus is on
configurations of finitely many two-sided mirrors in the
plane together with a source of light placed at an arbi-
trary point. In this setting, we study the regions unillu-
minated by the source. In the case of rational-π angles
between the mirrors, a planar configuration gives rise to
a surface with a translation structure and a number of
planar infinities. We show that on a surface of this type
with at least two infinities, one can find plenty of unillu-
minated regions isometric to unbounded planar sectors.
In addition, we establish that the non-bijectivity of a
certain circle map implies the existence of unbounded
dark sectors for rational planar mirror configurations
illuminated by a light-source.

1 Introduction

Consider a planar domain with a light reflecting bound-
ary. Place a source of light at a point inside the do-
main. Assume that the source emits rays in all direc-
tions. Each ray follows a straight line and whenever it
reaches the boundary it is reflected according to the rule
that the angle of incidence equals the angle of reflection.
A point from the domain is considered illuminated by
the source whenever there is a ray that reaches the point
either directly or after a series of reflections. In this set-
ting, one can ask the following questions, also known as
illumination problems.

Question 1 If we place the source of light at any point
in the domain, will all of the domain be illuminated?
If not, what could be said about the non-illuminated re-
gions?

Question 2 Is there a point from which the light source
can illuminate the entire domain?

These problems are often attributed to E. Straus
who posed them sometime in the early fifties and first
published by V. Klee in 1969 [5]. Some famous ex-
amples and interesting results are Penrose’s room [1],
Tokarsky’s example [5] as well as the article [3] by Hu-
bert, Schmoll and Troubetzkoy on illumination on Veech
surfaces.

∗Department of Mathematics and Statistics, McGill Univer-
sity, dimitrov@math.mcgill.ca

In 1991, J. Urrutia and J. Zaks proposed the follow-
ing problem [6]. Assume we are given a finite number
of disjoint compact line segments in the plane each rep-
resenting a mirror that reflects light on both sides (a
two-sided mirror). Let p0 be any point on the plane not
incident to any of the segments. Then, the complement
of the set of mirrors is an unbounded domain with light-
reflecting boundary and if we place a source of light S
at p0 we can pose questions 1 and 2. Figure 1a depicts
an example of a two-sided mirror configuration with a
light emitting source S. The convex hull of the mirrors
is a polygon. If S is in the convex hull, one can con-
struct a triangle P unilluminated by S, like the shaded
one on figure 1b. To do that, it is sufficient for a mirror
segment to be an edge of the convex hull.

S S

a) b)

P

Figure 1:

In this paper we are interested in finite two-sided mir-
ror configurations with the following property: any pair
of lines determined by the mirror segments are either
parallel or intersect at an angle which is a rational mul-
tiple of π. We will call such a configuration a rational
mirror configuration and the domain obtained as a com-
plement of the mirrors will be called rational mirror do-
main. For those, we will find conditions that will guar-
antee the existence of unbounded unilluminated sectors
in the plane (see definition 2).

A rational mirror domain can be ”unfolded” into a
surface that carries a flat metric with conical singulari-
ties and trivial holonomy group (see section 3 or [2, 4]).
This means that the surface has a special atlas, called
a translation atlas, with the property that away from
the cone points, the transition maps between two charts
from the atlas are Euclidean translations (section 3 or
[2, 4]). As a result, the piecewise linear trajectory of
a light ray in the original domain becomes a smooth

CCCG 2011, Toronto ON, August 10–12, 2011

117

23rd Canadian Conference on Computational Geometry, 2011

geodesic on the flat surface. Thus, one can think of a
light source placed at a nonsingular point on the surface,
emitting geodesic rays in all directions. Any other point
is considered illuminated if there is a smooth geodesic
connecting the source to the point. In this way, one can
ask questions 1 and 2 for the surface. Notice that there
are regions on it isometric to complements of compact
sets in the plane. We will call a surface with such a
geometry a translation surface with planar infinities.

A translation surface with planar infinities gives rise
to a pair (X,ω) where X is a closed surface with a com-
plex structure and ω is a meromorphic differential on
X with only double poles and zero residues. The ze-
roes of ω are the cone points of the flat structure [2, 4],
and around each pole the surface looks like the com-
plement of a compact set in the plane. The converse
is also true. A pair (X,ω) of a closed Riemann surface
and a meromorphic differential with only double poles
and zero residues induces a translation structure on X
with planar infinities. We have provided more details,
definitions and constructions in section 3. For a good
introduction to the theory of polygonal billiards and
translation surfaces, we recommend [2] and [4].

Definition 1 The pair (X,ω) is called a translation
surface with planar infinities whenever the following
conditions hold:

(1) X is a closed surface with a complex structure;

(2) ω is a meromorphic differential on X;

(3) Every pole of ω is of order exactly 2 and the residue
at that pole is zero. We will refer to the poles of ω as
planar infinities.

In this study we would like to show non-illumination
of a special type of domains both on a translation sur-
face with planar infinities and in the plane.

Definition 2 a) Let l1 and l2 be two half-lines in the
plane both starting form a point p0 and going to infinity.
Let θ be the angle between l1 and l2 at the vertex p0,
measured counterclockwise from l1 to l2. Then, the open
region C bounded by l1 and l2, whose internal angle at
p0 is θ, is called an infinite sector of angle θ (see figure
2a).

b) An open subdomain C of a translation surface with
planar infinities (X,ω) is called an infinite sector of an-
gle θ whenever there exists a chart from the translation
atlas of (X,ω) that maps C isometrically to a planar
infinite sector of angle θ like the one defined in point a.

On any translation surface (X,ω) one can always
find an orientable foliation Fω with singularities, whose
leaves are geodesics. Indeed, let us foliate the Euclidean
plane into horizontal straight lines, oriented as usual
from left to right. Since each transition map between

two charts is a Euclidean translation, it sends horizon-
tal lines to horizontal lines (line orientation preserved).
Thus, pulling back onto the surface the planar horizon-
tal foliation from all translation charts defines globally
the desired foliation Fω. Moreover, the singularities of
Fω are the cone points of the surface (X,ω), i.e. the
zeroes of the differential ω. We call Fω the horizontal
foliation of the surface and its leaves - the horizontal
geodesics of the surface. At each non-singular point p0
of (X,ω) the oriented horizontal geodesic lp0(0) from Fω
defines a positive horizontal direction at p0. The coun-
terclockwise angle α between lp0(0) and an arbitrary
oriented geodesic lp0(α) through p0 is called the direc-
tion of lp0(α) at p0 (see figure 2b). From now on, lp0(α)

p
0

l2

l1
θ

C

a) b)

p
0

q

llq p
0

α

α

(α) (α)=

lq(0)

lp
0
(0)

Figure 2:

denotes the geodesic ray on (X,ω) starting from p0 ∈ X
and going in the direction of angle α. It is important to
emphasize that, since we are working with a translation
surface, the intersection of the geodesic lp0(α) with any
other horizontal geodesic lq(0) will always form the same
angle α, as shown locally on figure 2b. In other words,
just like in the plane, a geodesic on (X,ω) does not
changes its angle with respect to the horizontal direc-
tion. Since a direction at any non-singular point p ∈ X
is defined as an angle α ∈ R mod 2π, we can iden-
tify the set of all directions at p with the unit circle
S1 = {z ∈ C : |z| = 1}. The point 1 ∈ S1 gives the
horizontal direction α = 0.

2 Results

It is natural to ask questions about the behavior of the
geodesics on a surface. The first question we will address
is the following. On a translation surface with planar
infinities, where do most geodesics emanating from a
nonsingular point go? As it turns out, almost all of
them fall onto the poles of the surface. Same is true for
any rational mirror configuration in the plane.

Theorem 1 The following two statements are true:

(1) Let (X,ω) be a translation surface with planar in-
finities and let p0 ∈ X be non-singular. Then the set
of all directions α ∈ S1, for which the geodesic passing

23rd Canadian Conference on Computational Geometry, 2011

118

CCCG 2011, Toronto ON, August 10–12, 2011

through p0 in direction α goes to one of the poles of ω,
is open and dense in the circle S1;

(2) Assume we are given a rational mirror configuration
in the plane and let p0 be a point not lying on any of the
mirrors. Then the set of all directions α ∈ S1, for which
the piece-wise linear reflected trajectory starting from p0
in direction α goes to infinity, is open and dense in the
circle S1.

The next result establishes the existence of infinite
unilluminated sectors and large unbounded regions on
translation surfaces with more than one planar infinity.

Theorem 2 Let (X,ω) be a translation surface with
at least two planar infinities. Then, for any point p0
on X \ (zeroes(ω) ∪ poles(ω)) there exists an infinite
sector C on (X,ω) unilluminated by p0, i.e. for any
point p ∈ C there is no smooth geodesic on (X,ω) that
connects p0 to p. Moreover, there exists a region on
(X,ω) consisting of unilluminated, non-overlapping in-
finite sectors of total angle 2π(k − 1), where k is the
number of poles of ω.

The main ideas used in the proof of theorem 2 can be
adjusted to the study of illumination problems for ra-
tional mirror configurations in the plane. For instance,
an interesting question put in an every day language, is
the following. How big of an object can be hidden from
a stationary observer in a rational mirror domain? Can
we hide a car? A whole parking lot of cars? Precisely
speaking, we would like to find a basic condition that
will ensure the existence of an infinite unilluminated sec-
tor for a light source placed at a point inside a rational
mirror domain.

Let D be a rational mirror domain and let p0 ∈ D.
Draw a large enough circle K, so that its interior con-
tains the mirrors from the configuration and the light
source at the point p0. Denote by Up0 the open dense
set of all directions which go to infinity, provided by the-
orem 1. For an angle α ∈ Up0 ⊂ S1 follow the straight
line lp0(α) starting form p0 in direction of α. Whenever

α

horizontal
direction

p
0

S1

D

K

α

fp
0
α

fp
0
α

S1

fp
0

Figure 3:

the line reaches a mirror it is reflected, changing its
direction. In this way, a piecewise linear trajectory is

formed, which at some point leaves the disc bounded by
K never to come back to it. Denote by fp0(α) the angle
between the horizontal direction of C and the portion
of the trajectory that is outside the circle K. As a re-
sult, we obtain a map fp0 : Up0 −→ S1. For a picture
of the construction of fp0 see figure 3. The map fp0 is
defined almost everywhere on the unit circle. In fact,
its domain Up0 is open and dense in S1. Moreover, fp0
is a rotation when restricted to any connected compo-
nent of Up0 . Our hope is that finding ways to study the
combinatorial properties of fp0 may facilitate the search
for unbounded unilluminated sectors in rational mirror
domains.

Theorem 3 Assume we are given a rational mirror
configuration. For an arbitrary point p0 not on any of
the mirrors, consider the circle map fp0 (see figure 3).
If fp0 is not injective, then there exists an infinite sector
in the plane unilluminated by p0.

3 Translation surfaces.

In the current section we discuss translation surfaces
and show how to construct one from a rational mirror
configuration. To illustrate the idea better, we apply
the procedure to an example.

Various descriptions. A translation surface is a closed
surface X with a finite set of points Σ ⊂ X, called
singularities, and a cover of X \ Σ by open charts
{(Wa, ϕa) | Wa ⊆ X \ Σ , ϕa : Wa → C} having the
property that whenever Wa ∩ Wb 6= ∅ the transition
map between the two charts (Wa, ϕa) and (Wb, ϕb) is a
Euclidean translation, i.e. zb = ϕ−1b ◦ ϕa(za) = za + c.
In our study, Σ partitions into two subsets Σ0 and Σ∞.
Each point from Σ0 has a cone angle of 2πN , where N is
a positive integer. Each point p∞ form Σ∞ has an open
neighborhood W ′ ⊂ X with a map ϕ∞ : W ′\{p∞} → C
such that (W ′ \ {p∞}, ϕ∞) is a translation chart from
the atlas and the set C \ ϕ∞(W ′ \ {p∞}) is compact.
Thus, the collection Σ∞ contains all planar infinities on
the surface.

Since translations are holomorphic maps, the transla-
tion atlas induces a complex structure on X (for details
see [2] and [4]). Moreover, the differential dza in each
ϕ(Wa) ⊂ C can be pulled back as a holomorphic dif-
ferential ωa = ϕ∗adza in the corresponding Wa. But if
zb = ϕ−1b ◦ ϕa(za) = za + c then dzb = dza. Hence,
ωa = ωb in any intersection Wa ∩Wb 6= ∅ which gives
rise to a global holomorphic differential ω on X \ Σ.
Moreover, ω extends to the singular set Σ so that Σ0

becomes the set of zeroes of ω and Σ∞ becomes the set
of all poles of ω. The latter are all double and with
residue 0. So we see that a translation surface with
planar infinities induces a pair (X,ω) of a compact Rie-

CCCG 2011, Toronto ON, August 10–12, 2011

119

23rd Canadian Conference on Computational Geometry, 2011

mann surface without boundary together with an ap-
propriate meromorphic differential.

To recover the translation atlas from a pair (X,ω),
one can cover X \(zeroes(ω)) with topological discs Wa.
On each of them define the chart ϕa(p) =

∫ p
pa
ω, where

pa ∈ Wa is fixed and p varies in Wa. As ω is either
holomorphic or meromorphic with a double pole and
residue 0 inside the topological disc Wa, the path of
integration in Wa\poles(ω) is arbitrary. If Wa∩Wb 6= ∅
then zb =

∫ p
pb
ω =

∫ p
pa
ω+
∫ pa
pb
ω = za+c for p ∈Wa∩Wb.

Thus, we have obtained the desired translation atlas. As
we can see, the description of a translation surface with
planar infinities which we gave in the beginning of the
current section is equivalent to definition 1.

The horizontal foliation Fω on X, mentioned in the
introduction, is defined as follows. Let FC be the fo-
liation of horizontal lines {z ∈ C | Im(z) = s}, s ∈ R
in C oriented from left to right (see figure 2b). Define
the pulled-back local foliation Fa = ϕ∗aFC in each Wa.
Observe that FC is invariant with respect to any trans-
lation, i.e. the translations map any horizontal line to a
horizontal line. Hence, Fa = Fb on each Wa ∩Wb 6= ∅.
Thus, all local foliations fit together in a global foliation
Fω on X with geodesic leaves and singularities Σ. The
oriented leaves of Fω determine globally a horizontal
direction on (X,ω). Since translations are Euclidean
isometries, the Euclidean metric on C induces a Eu-
clidean metric on X \ Σ. In this metric geodesics that
do not go through singularities are isometric to straight
lines in C. The notion of a direction at a non-singular
point p ∈ X is as defined in the introduction. It is the
counterclockwise angle between the horizontal leaf and
an oriented geodesic both passing through p. Finally, an
oriented geodesic always forms the same angle with any
horizontal leaf it intersects, so it never self-intersects,
except possibly to close up.

z1 z2

I2

D1
*

z1

z2 z1= +c
I2
+-

I1
-

σ1reflect with in a horizontal line

glueσ1

+σ1

D
2
*σ1()

I1
-

σ1()

I2
+σ1()

Figure 4:

Construction. Assume we have a configuration of dis-
joint compact line segments I1, ..., Im in the plane C,
which we regard as two-sided mirrors. The angle be-
tween any two of them is a rational-multiple of π. Ob-
serve that if one of the mirrors forms a rational-π angle
with the rest of the mirrors, then immediately follows

that any pair of mirrors forms a rational-π angle. This
is a consequence of the fact that in an Euclidean triangle
the angles at the vertices sum up to π.

To understand better the construction that follows,
one could have a simple toy-example in mind. Let us
have two perpendicular mirrors I1 and I2 in the plane
C like the ones depicted on figure 4.

Begin by slicing C along the segments I1, ..., In to
obtain a closed slitted domain D∗ in which every mirror
segment Ik is doubled in order to obtain two parallel
copies I+k and I−k that form the boundary component
of the surface D∗ around the slit Ik. For an intuitive
geometric picture of D∗ in the case of the toy-example,
look at figure 4. Then D∗ is homeomorphic to a once-
punctured sphere with n disjoint open discs removed, as
shown on figure 5 for the case of two orthogonal mirrors.
In particular, ∂D∗ = tnk=1(I+k ∪ I−k).

α1

2α

α

α3

4

∞1

∞∞

∞

2
3

4

Figure 5:

For each segment Ik, fix the line lk ⊂ C through 0 ∈
C parallel to Ik. Denote by σk the reflection of C in
lk. The group G generated by all σk, k = 1, .., n is
a finite group. If α1 is a generic direction in C, then
G(α1) = {g(α1) | g ∈ G} = {α1, ..., αm} is an orbit of
maximal length m ≤ n. In our example G ∼= Z4 and a
generic orbit has 4 elements. Pick m copies D∗j of D∗

each with a choice of a direction αj in it. If you prefer
more formally, let D∗j = (D∗, αj). On figure 5, in the
case of the toy-example, we can see a topological model
of these four slitted planes with a choice of direction on
each of them. We glue D∗i to D∗j if and only if there
is a segment Ik ⊂ C whose corresponding reflection σk
satisfies σk(αi) = αj . The gluing is done in the following
way. Take D∗i and σk(D∗j). Glue the edge I+k ⊂ D∗i to

the edge σk(I+k) ⊂ σk(D∗j) and the edge I−k ⊂ D∗i to

the edge of σk(I−k) ⊂ σk(D∗j). On figure 4 of the toy-
example, we have chosen i = 1 and j = 2. The upper
edge I+1 ⊂ D1 of the cut I1 is glued to the lower edge
σ1(I+1) ⊂ σ1(D∗2) of the cut σ1(I1). Analogously, the
lower edge I−1 from D∗1 is glued to upper edge σ(I−1)
from σ1(D∗2).

Both D∗i and σk(D∗j) are naturally translation sur-
faces with piecewise geodesic boundaries, global coor-
dinates zi and zj , and differentials dzi and dzj respec-
tively. Segments Ik and σk(Ik) are equal and parallel,
hence the gluing map is a translation zj = zi + c (see

23rd Canadian Conference on Computational Geometry, 2011

120

CCCG 2011, Toronto ON, August 10–12, 2011

the gluing of the shaded pieces on figure 4). There-
fore the resulting surface made out of D∗i and σk(D∗j)
has a translation structure. Moreover, dzj = dzi along
the gluing locus, so there is a well-defined holomorphic
differential on the new surface which extends meromor-
phically to both of its infinity points.

Now, follow the described gluing procedure for all cuts
on the pieces D∗j , where j = 1, ..,m. The final result is a
closed Riemann surface X and a meromorphic differen-
tial ω with only double poles and zero residues, as well
as simple zeroes with cone angle 4π. For the example
of the two orthogonal mirrors, figure 5 illustrates how
the four pieces D∗1 , ..., D

∗
4 fit together to form a compact

torus X with a complex structure and a meromorphic
differential ω on X. There are eight simple zeroes of
ω and four double poles. The zeroes are obtained from
identifying pairs of black vertices on the segments Ik
form figure 4. The cone angle at each zero is 4π and the
residue at each pole is 0 as desired.

4 Proofs

Proof of theorem 1. From now on (X,ω) is an ar-
bitrary translation surface with planar infinities and
p0 ∈ X \ (zeroes(ω)∪poles(ω) any fixed point. The idea
is to cut out a rectangle around each pole∞j ∈ poles(ω)
and replace it by a one-handle. Indeed, choose a small

∞ j ∞ j

ω(X,) ω(X,)~
~

φ

φ 1- W

Figure 6:

topological disc W around ∞j and map it to C by
ϕ(p) =

∫ p
q0
ω where p varies in W and q0 ∈ W is fixed.

Notice, ϕ is well defined as the residue at∞j is 0, so the
path of integration is irrelevant. The image ϕ(W) ⊂ C
is the complement of a compact set (the total shaded
region on figure 6 stretching to infinity). Draw a rect-
angle Q ⊂ ϕ(W) as shown on figure 6 and remove its
exterior (the darker region). On the surface, we remove
the darker rectangular domain containing ∞j . Then
glue together the lower horizontal edge of Q to the up-
per and the left to the right, like gluing a torus. The
gluing maps are clearly a vertical and a horizontal trans-
lation respectively. Therefore we obtain a handle with a
translation structure compatible with the structure on
the rest of the surface (see figure 6). By doing this for
each∞j , we obtain a compact translation surface (X̃, ω̃)

of genus(X̃) = genus(X) +](poles(ω)), where ω̃ is now
holomorphic (has no poles). A lot is known about the
behavior of the geodesics on such surfaces [2], [4], [7], so

we use this knowledge in our advantage. Let Λ̃p0 be the

set of all directions θ ∈ S1 for which the geodesic l̃p0(θ)

on X̃ is closed or hits a zero of ω̃. Also, let Ξ̃ be the set
of all directions θ ∈ S1 for which the geodesic flow of
(X̃, ω̃) in direction of θ is minimal [4] (e.g. an ergodic
flow is minimal [2],[4]). Then Λ̃p0 is countable but dense

in S1 (see [7]) and Ξ̃ is dense and of full measure in S1

(see [4], [2]). As a result, the set Θ̃p0 = Ξ̃ \ Λ̃p0 consists

of all θ ∈ S1 for which the geodesic ray l̃p0(θ) is dense

in X̃. Moreover, Θ̃p0 is dense and of full measure in S1.

Therefore, for any θ ∈ Θ̃p0 the corresponding geodesic
ray lp0(θ) on the original surface (X,ω) hits a pole of ω.

Let Up0 ⊂ S1 be the set of all directions θ ∈ S1 with
the property that the geodesic ray lp0(θ) on (X,ω) in
the direction of θ reaches a pole of ω. Since the geodesic
flow on (X,ω) depends continuously on the initial point
and direction, the condition that a geodesic ray reaches
a planar infinity is open. Therefore, for each θ ∈ Up0
there exists an open circular interval (α, β) ⊂ Up0 that
contains θ and for any θ′ ∈ (α, β) the ray lp0(θ′) also
reaches the same infinity. Hence, Up0 is open in S1.

Moreover, the dense set of full measure Θ̃p0 is contained
in Up0 . Therefore, Up0 is open and dense set of full
measure in S1.

The second part of theorem 1 follows from the first
one. If we are given a rational mirror configuration,
unfold it into a translation surface with planar infinities
(X,ω) as described earlier. Then, the infinity of the
mirror domain lifts to the set of poles of ω on X and we
apply the first part of the theorem.

Proof of theorem 2. As an open dense subset of S1,
the constructed Up0 is a countable disjoint union of open
circular intervals (αj , βj) ⊂ S1, i.e. Up0 = t∞j=1(αj , βj).
By construction, the geodesic rays lp0(θ) emitted from
p0 in all directions θ ∈ (αj , βj) go to the same pole of ω.
Fix some j and take a subinterval (α∗, β∗) ⊆ (αj , βj) (it
may even be convenient to choose (α∗, β∗) = (αj , βj)).
Choose (α∗, β∗) so that its measure is less than π. No-
tice, that for every θ ∈ (α∗, β∗), each ray lp0(θ) on
X goes to the same ∞∗ ∈ poles(ω). In particular,
∞∗ =∞3 on figure 7. As](poles(ω)) ≥ 2, take another
∞ ∈ poles(ω)\{∞∗} and call it∞1 just like on our pic-
ture below. Choose a ”small” topological disc W around
∞1 with the property W ∩ (zeroes(ω) ∪ poles(ω)) =
{∞1}. Define the translation chart ϕ(p) =

∫ p
q0
ω, where

p varies in W and q0 ∈ W is fixed. The zero residue at
∞1 guaranties independence of the integral on the path
between q0 and p in W . On figure 7 we have also pro-
vided an analogous chart ψ around p0. From now on,
we use the same notations in W as the ones in ϕ(W).
Thus, we identify W with ϕ(W). In C the domain W
looks like the complement of a compact set (the shaded
region on figure 7). Let K ⊂ W be a Euclidean circle
in C centered at O and containing C \W in its interior.

CCCG 2011, Toronto ON, August 10–12, 2011

121

23rd Canadian Conference on Computational Geometry, 2011

Abusing notation, let α∗ and β∗ be the two points
on the circle K such that the counter-clockwise angles
between the positive horizontal line through O in C and
the radii Oα∗ and Oβ∗ are respectively α∗ and β∗. Let
points T1 and T2 on K be such that counter-clockwise
]α∗OT1 =]T2Oβ∗ = π

2 . Draw the lines t1 and t2
tangent to circle K at T1 and T2 respectively. Then
they bound an infinite sector C, depicted on figure 7 as
a darker shaded region.

∞1

∞2

∞3

∞4

p
0

W φ

ψ

β*
θ

lp
0
()β*

lp
0
()α*

Figure 7:

We claim that that C ⊂ X is not illuminated by
p0. Assume that for some point p ∈ C there exists
θ ∈ S1 such that the geodesic lp0(θ) ⊂ X staring from
p0 in the direction of θ passes through p. Then, clearly
lp0(θ) goes to ∞1. As already commented in the intro-
duction, any smooth geodesic on a translation surface
forms the same angle with the horizontal direction at
every point it passes through. In particular, the angle
between lp0(θ) and the horizontal direction in the chart
W as well as near the point p0 is always θ. By looking
at the picture of the chart W on figure 7, we see that
θ ∈ (α∗, β∗) in W . Hence θ ∈ (α∗, β∗) ⊂ S1 at the
point p0 as well. By the choice of the circular interval
(α∗, β∗), the geodesic ray lp0(θ) should go to∞∗ 6=∞1.
But a geodesic ray can only reach one pole of ω, so we
get to a contradiction. Therefore, the infinite sector C
on (X,ω) is not illuminated by p0 ∈ X.

To conclude the proof, notice that for each circular
interval (α∗, β∗) ⊂ Up0 the unilluminated sector C near
∞1 can be also constructed around any other pole∞ 6=
∞∗ of ω, i.e. there are k − 1 unilluminated copies of
C. Partition Up0 into disjoint subintervals for which
we can apply the construction of unilluminated infinite
sectors from the preceding two paragraphs. Thus, the
the total sum of the angles of all unilluminated sectors
constructed on (X,ω) is k−1 times the total measure of
Up0 ⊂ S1 which is 2π. Hence, the total angle is 2π(k−1).

Proof of theorem 3. Let D ⊂ C be a rational mir-
ror domain and p0 ∈ D (see figure 1 or 3). Recall the
finite group G generated by all reflections in the lines
through 0 ∈ C parallel to the mirrors. It acts on S1 by

rotations. Let fp0 : Up0 → S1 be the map described at
the end of subsection ”Main results” (see also figure 3)
and assume it is not injective. Then, there are θ1 6= θ2
from Up0 such that fp0(θ1) = fp0(θ2). Take the finite
orbit G(θ1) = {g(θ) ∈ S1 | g ∈ G}. Then θ ∈ G(θ1)
if and only if fp0(θ) ∈ G(θ1) so θ2 ∈ G(θ1). Hence,
the restriction f|G(θ1)

: G(θ1) → G(θ1) is not bijective

and there is θ∗ ∈ G(θ1) such that θ∗ ∈ Up0 \ fp0(Up0).
Since fp0 is a restriction of a rotation on each con-
nected component of Up0 , there is (α∗, β∗) 3 θ∗ such
that (α∗, β∗) ⊂ Up0 \ fp0(Up0). Remember the circle
K from figure 3 that encompasses the mirrors and p0.
Using the circular interval (α∗, β∗), we can carry out ab-
solutely the same construction as the one in the chart
W described in the proof of theorem 2. For a picture
of this construction look at the rightmost large shaded
area W on figure 7. Observe that the notations of the
current proof match the picture’s notations so that we
can use it directly, thinking that the set of mirrors is in
the little white elliptic region containing the center O.
We claim that the infinite sector C (the darker shaded
area) is not illuminated by the source p0 ∈ D. Indeed,
assume there is a light ray emitted by p0 that reaches
some p ∈ C. Then, from the picture, the direction of
this ray is θ ∈ (α∗, β∗). But the light ray started from
p0 in some direction θ0 ∈ S1, so θ = fp0(θ0) which is a
contradiction.

References

[1] Croft, H. T.; Falconer, K. J.; and Guy, R. K., “Un-
solved Problems in Geometry”, New York, Springer-
Verlag, 1991

[2] Hubert, P.; Schmidt, T. A., An introduction to
Veech surfaces, Handbook of dynamical systems.
Vol. 1B, Elsevier B. V., Amsterdam, 2006, pp. 501-
526

[3] Hubert, P.; Schmoll, M.; Troubetzkoy, S., Modular
fibers and illumination problems, Int. Math. Res.
Not. IMRN 2008, no. 8, Art. ID rnn011, 42 pp.

[4] Masur, H., Ergodic theory of translation surfaces,
Handbook of dynamical systems. Vol. 1B, Elsevier
B. V., Amsterdam, 2006, pp. 527-547

[5] Tokarsky, G. W., Polygonal rooms not illuminable
from every point, Amer. Math. Monthly 102, 1995,
pp. 867–879.

[6] Urrutia, J., Open problems on mirrors, personal
website of Jorge Urrutia, URL: http://www.matem
.unam.mx/∼urrutia/openprob/Mirrors/

[7] Vorobets, Y., Planar structures and billiards in ra-
tional polygons: the Veech alternative, Russ. Math.
Surv. 51, 1996, no. 5, pp. 779-817 ,

23rd Canadian Conference on Computational Geometry, 2011

122

CCCG 2011, Toronto ON, August 10–12, 2011

Detecting VLSI Layout and Connectivity Errors in a Query Window

Ananda Swarup Das∗ Prosenjit Gupta † Kannan Srinathan ‡

Abstract

The VLSI layout designing is a highly complex process
and hence a layout is often subjected to Layout Verifi-
cation that includes (a) Design Rule Checking to check
if the layout satisfies various design rules and (b) Con-
nectivity Extraction to check if the components of the
layout are properly electrically connected. In this work
we study two geometric query problems which have ap-
plications in the above layout verification phase.

1 Introduction

A VLSI chip consists of millions of transistors. Often
for the ease of fabrication, these transistors are grouped
together to form blocks. Each block has pins on its pe-
riphery. Each pin is supposed to carry a signal which is
denoted by a net id associated with it. All the pins of
the same net id should be connected by wires which is
done in the routing phase of VLSI physical design life cy-
cle. The routing phase is again divided into two phases
namely (a) global and (b) detailed. In the global routing
phase the regions through which the routing is to be car-
ried out are decided. The actual wiring is done in the
detailed routing phase. The detailed routing phase is
again of two types namely (i) detailed unrestricted rout-
ing and (ii) detailed restricted routing. In the detailed
restricted routing phase, either channels or switch-boxes
are used for routing. In this work, we will assume that
channels are used for routing. However, our work has
applications even when switch-boxes are used. In fact
our first problem has applications even when detailed
unrestricted routing is used.

Channels are basically routing regions and are ab-
stracted as rectangles with two sides being open. We
present a pictorial representation of channels in Figure
1. In a channel, pins are placed on the either side of the
boundaries. The dotted horizontal lines in Figure 1 are
the tracks. The thick black horizontal segments on the
tracks are the trunks. Pins are connected to the trunks
using branches and two trunks on two different tracks
are connected using doglegs.

∗International Institute of Information Technology , Hyder-
abad, India, anandaswarup@gmail.com
†Heritage Institute of Technology, Kolkata, India , prosenjit

gupta@acm.org
‡International Institute of Information Technology , Hyder-

abad, India, srinathan@iiit.ac.in

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

channel boundary

track

track

track

(a)

channel boundary

doglegbranches

trunk

Figure 1: The figure depicts a channel. Pins are on
either of the boundaries of the channel.

It should be noted that no two pins of different signal
ids should be connected to the same trunk. Also, no
two trunks being connected to pins of different signal
ids should be connected. As stated before, all the pins
of same net id should be electrically connected. Con-
sider Figure 1. Let all the pins are of same signal id
and hence they are connected. Once the routing phase
is over, a designer is often interested to find (a) if there
exist two pins which should have been connected but are
not (b) if two pins of different signal ids are connected
to the same trunk and (c) no two trunks connected to
pins of different signal ids are connected by a dogleg.
While working with a layout editor, a designer often
zooms into a particular section of the layout to find er-
rors within his/her window of interest. In this work we
design data structures using which a designer can effi-
ciently decide the presence of any of the three conditions
within the query of interest.

2 Assumptions

In an abstract sense, each pin can be considered as a
node of a graph. Two nodes of the graph share an undi-
rected edge if they are directly connected by wires. As-
sume a, b, c to be the nodes of a graph where a, b share an
edge and b, c share an edge. We consider that the nodes
a, b, c all are connected as a signal originating from the
pin a can reach c through b. See Figure 2 (1).
Each graph is like a connected component. It can be
noticed that if two pins are not connected, they will
belong to two different connected components. Each
connected component can be assigned a unique id. In
our work, we assume that (a) each pin is given to us
as a point in plane, its net id as sid and the id of the

CCCG 2011, Toronto ON, August 10–12, 2011

123

23rd Canadian Conference on Computational Geometry, 2011

a

dcba e f

G1
G2

e
f

b

c d
(1)

(2)

Figure 2: (1) The black nodes are the pins. The pins
a, b, c are connected, so are the pins d, e, f . (2) G1 is
the graph with the nodes a, b, c and G2 is the graph
corresponding to d, e, f .

connected component to which it belongs as the gid,
(b) each trunk is given as a horizontal segment and is
assigned a color which is equal to the sid of one of the
pins it is connected to, (c) each branch is given as a
vertical segment and is assigned a color which is equal
to the sid of the only pin it is connected to and (d) each
dogleg is given as a vertical segment and is assigned a
color which is equal to the sid of one of the two trunks
it is connected to.

3 Problem Definitions

In the rest of the paper, we refer to the following
condition as Condition 1:

Condition 1: sid(p1) = sid(p2), but gid(p1) 6= gid(p2).

In this work, we study the following two problems

Problem 3.1 We are given a set S of n points in R2.
Each point p ∈ S has two colors,namely, sid(p) and
gid(p), associated with it along with its coordinates. We
need to preprocess them into a data structure such that
given a query rectangle q = [a, b]× [c, d] we can decide if
there exist two points (p1, p2) ∈ S∩q such that sid(p1) =
sid(p2) but gid(p1) 6= gid(p2).

Problem 3.2 Let H and V be respectively the sets of
horizontal and vertical segments in R2. Each horizontal
segment h ∈ H (resp. v ∈ V) has a color namely,
sid(h) (resp. sid(v)) associated with it. The sid(h)
(resp sid(v)) is not necessarily unique. We need to pre-
process H and V into a data structure such that given a
query rectangle q = [a, b] × [c, d], we can efficiently de-
cide if there exists a pair of horizontal-vertical segments
(h, v) such that h ∩ v ∩ q 6= ∅ and sid(h) 6= sid(v).

4 Solutions for the Problem 3.1

4.1 Solution 1: A Simple Idea

4.1.1 Preprocessing

We divide the points of the set S into subsets S1, . . . , Sk
where the subset Si contains the points with sid equal
to i. Next, we sort the points in Si according to their
gids. For every pair of points p,m ∈ Si, we create a
4-d point (px, py,mx,my) if gid(p) 6= gid(m) and store
it into a data structure D for range searching in R4.

4.1.2 Query Algorithm

Given a query rectangle q = [a, b] × [c, d], we search
the data structure D with the query q′ = [a, b]× [c, d]×
[a, b]×[c, d]. If we find any point in q′, we return “YES”,
else we return “No”.

Lemma 1 Using the data structure of [8] for range
searching in R4, a data structure of size O(n2(logn

log logn)3)
can be constructed such that given a query rectangle q we

can decide in O(log2 n
log logn) time, if there is any instance

of Condition (1) inside q.

4.2 Solution 2: Improving the Storage Space While
Trading-off Query Time

4.2.1 Preprocessing:

For each point p ∈ S we create two points namely p1 and
p2. We set the coordinates of both the points to (px, py).
We then color p1 with the color sid(p). The point p2
is colored with a composite color which uniquely repre-
sents the chromatic pair < sid(p), gid(p) >. We store
the points p1 in a set SL and the points p2 in SB . We
preprocess the points in SL and SB into two data struc-
turesDL andDB respectively. DL andDB are instances
of generalized two-dimensional orthogonal range count-
ing.

4.2.2 Query Algorithm:

Given a query rectangle q, we first find the distinct col-
ors of the points of the set SL that are present in q.
This is done by querying DL with q. Let the number of
distinct colors of the points of the set SL present in q
be nL. Next, we find the distinct colors of the points of
the set SB that are present in q by searching the data
structure DB . We call this value as nB . If nL < nB , we
return “YES”. Else, we return “No”.

Lemma 2 There exists an instance of Condition (1)
inside the query rectangle iff nL < nB.

Hence we have the following result

23rd Canadian Conference on Computational Geometry, 2011

124

CCCG 2011, Toronto ON, August 10–12, 2011

Lemma 3 There exists a data structure ([1]) of size
O(n2 log2 n) such that given a query rectangle q we can
decide in O(log2 n) time, if there is any instance of Con-
dition (1) inside q. A space-time trade of data structure
([3]) with a space bound of O((n/r)2 log6 n + n log4 n)
and a query time of O(r log7 n) such that 1 ≤ r ≤ n is
also possible.

4.3 Solution 3: Further Improving the Storage
Space

3

4

down ray

right ray

left ray right ray

up ray

down ray

1

2

Figure 3: The arrow marks indicate that each of the
rays are extending towards ∞. The right ray will be
allocated to all the nodes marked black. The down ray
will be allocated to the nodes marked 1, 2, 3 and 4

In this section, we propose a solution which needs O(n2)
storage space. Using the data structure, we can solve
the Problem 3.1 in O(log2 n) time.

4.3.1 Preprocessing Stage 1→ Assignment of rays:

1. Consider the point set S. From each point p ∈
S, we shoot four rays namely two horizontal rays,
one traveling −∞, the other traveling +∞ and two
vertical rays one traveling −∞, the other traveling
+∞.

2. We call the horizontal rays traveling towards −∞
as left rays, horizontal rays traveling towards +∞
as right rays, vertical rays traveling towards +∞ as
up rays and the vertical rays traveling −∞ as down
rays. See Figure 3.

3. Let us sort the points of the set S in terms of their
x coordinates. Construct a balanced binary search

tree Tx whose leaf nodes corresponds to the elemen-
tary intervals being induced by the x coordinates
of the points of the set S.

4. Each internal node µ ∈ Tx stores an interval Int(µ)
which is union of the elementary intervals being
stored in the leaf nodes of the subtree rooted at µ.

5. Now consider all the right rays, up rays and the
down rays. To the node µ ∈ Tx, we allocate the
right ray emanating from the point p if Int(µ) ∩
[px,∞) 6= ∅ where px is the x coordinate of the
point p. Refer to Figure 3.

6. For each up ray (resp. down ray), we first find the
leaf node storing the x coordinate of the up ray or
the down ray. Then, starting from the leaf node
τ , we allocate it to all the ancestors of the leaf node.

4.3.2 Preprocessing Stage 2→ Classification of rays
at the node w :

seg 2

Segments allocated to node w

Int(w)

(vx,vy)

seg 4

seg 1

seg 3

Figure 4: In this figure, seg 1 is a right ray completely
covering Int(w). seg 2 is a right ray partially overlap-
ping with Int(w). seg 3 is an up ray and seg 4 us a
down ray.

1. Consider a node w ∈ Tx and a ray assigned to the
node w. Let the x coordinate of the end point of the
ray be px. With the concerned ray, the following
are the possibilities:

• Int(w) ⊆ [px,∞) that is the interval of node
w is completely contained in the semi-infinite
interval [px,∞), the horizontal projection of
the ray.

• Int(w) ∩ [px,∞) 6= ∅, that is the interval
Int(w) is not completely contained in [px,∞)
but they are overlapping.

CCCG 2011, Toronto ON, August 10–12, 2011

125

23rd Canadian Conference on Computational Geometry, 2011

• The ray is an up ray or a down ray.

2. Let Lw,F is the list of rays whose horizontal projec-
tion completely contains Int(w). Let Lw,P is the
list of rays whose horizontal projections are par-
tially overlapping with Int(w). Let Lverti,w be the
list of up and down rays allocated to w or in other
words whose x coordinates are stored in the leaf
nodes of the subtree rooted at w.

See Figure 4. In that figure, the horizontal ray denoted
by seg 1 belongs to Lw,F , seg 2 belongs to Lw,P . The
up ray and the down ray will belong to Lverti,w.

4.3.3 Preprocessing Stage 3 → Creation of 2-d and
3-d points:

1. Consider any horizontal ray h ∈ Lw,F . Let the
coordinates of the end point of the h be (hx, hy).

2. Check if there is any vertical ray v ∈ Lverti,w such
that sid(h) = sid(v) but gid(h) 6= gid(v).

3. Let there be some vertical rays v. We will denote
the coordinates of the end points of v as (vx, vy).

• Among all the down rays (respectively up
rays) select the one whose vy is just above
(respectively just below) hy. Let that vy be
denoted as vy,1 for the down ray and vy,2 for
the up ray.

• We create two 3-d points (hx, hy, vy,1),
(hx, vy,2, hy).

4. Similarly, for each horizontal ray h ∈ Lw,P which
is partially overlapping with Int(w),

• check if there is any vertical ray v ∈ Lverti,w
such that sid(h) = sid(v) but gid(h) 6= gid(v)
and h ∩ v 6= ∅.

• Among all the down rays (respectively up
rays) select the one whose vy is just above (re-
spectively just below) hy. We will denote that
as vy,1 for the down ray and vy,2 for the up ray.

• We create two 2-d points (hy, vy,1), (vy,2, hy).

See Figure 4. In that figure, the seg 1 will contribute to
3-d points and the seg 2 will contribute to 2-d points.

4.3.4 Preprocessing Stage 4 → Storing the 2-d and
3-d points:

1. We store the 3-d points in a 3-d dominance report-
ing data structure D3,w of [5].

2. The 2-d points are stored in a priority search tree
TPST,w [7].

Lemma 4 The storage space needed by the above data
structure is O(n2).

4.3.5 Query Algorithm:

a b

seg 1

(a,c)

up ray

query rectangle

seg 2

seg 3

Fig (a) Fig (b)

(b,d)

Int(w)

node w

At node w

Figure 5: The segment [a, b] of the query rectangle q =
[a, b]× [c, d] is allocated to the nodes marked black. The
scenario at a node w to whom [a, b] is allocated.

1. Given a query rectangle q = [a, b] × [c, d] we first
allocate the segment [a, b] to the nodes of Tx. The
rule that we follow for allocating [a, b] to the node
µ is Int(µ) ⊆ [a, b] but Int(parent(µ)) * [a, b]. It
should be noted that the way the segment [a, b] is
allocated is not the same as the way we allocate
the horizontal rays. It should also be mentioned
that the segment [a, b] will be allocated to O(log n)
nodes of the tree Tx.

2. Let Scan be the set of O(log n) canonical nodes
to which the segment [a, b] is allocated. At each
node w ∈ Scan first search the priority search tree
TPST,w with the query [c,∞)× (−∞, d].

• If we find a point in TPST,w∩ [c,∞)×(−∞, d],
we return “YES”.

• Else we search the 3-d dominance data struc-
ture D3,w with the query [a,∞) × [c,∞) ×
(−∞, d]. If we find a point in D3,w ∩ [a,∞)×
[c,∞)× (−∞, d], we return “YES”.

Lemma 5 The query time of the above algorithm is
O(log2 n).

We therefore summarize the results of the Problem 3.1
with the following theorem

Theorem 6 Given a set S of n points in R2 such
that each point p = (px, py) has two associated colors
gid(p), sid(p) associated with it,

1. There exists a data structure of size
O(n2(logn

log logn)3) can be constructed such that given

a query rectangle q we can decide in O(log2 n
log logn)

time, sid(p1) = sid(p2) but gid(p1) 6= gid(p2).

23rd Canadian Conference on Computational Geometry, 2011

126

CCCG 2011, Toronto ON, August 10–12, 2011

2. There exists a data structure of size O(n2 log2 n)
such that given query rectangle q, in O(log2 n) time
we can decide if there exist two points p1, p2 in q
such that sid(p1) = sid(p2) but gid(p1) 6= gid(p2).

3. A space-time trade off data structure with storage
bound O((n/r)2 log6 n + n log4 n) and query time
O(r log7 n) is also possible. Here r is a user defined
parameter.

4. We also have a data structure with storage space
requirement of O(n2) and query time O(log2 n) to
answer the same query.

5 Solution for the Problem 3.2

Consider a horizontal vertical segment intersection
inside a query rectangle. There are two possible
scenarios
(a) at least one end point of either of the segments
is inside the query rectangle. We call this kind of
intersections as intersections of type 1.
(b) Both the end points of both the segments are
outside q that is the segments completely cross the
query rectangle. We call this kind of intersections as
intersections of type 2.

For dealing with the first situation, we consider the case
where the lower end point of the vertical segment is
inside the query rectangle. Similar arrangements have
to be done for the upper end point.

5.1 Preprocessing a data structure

5.1.1 Preprocessing Phase 1→ Creation of 2-d
points:

Consider the lower end point p′′ of a vertical segment v.
Let the y coordinate of p′′ be vy. We find the horizon-
tal segment h whose y projection is just above vy and
sid(v) 6= sid(h). Let the y projection of h be hy. We
create a 2-d point (vy, hy). The step has to be repeated
for all the vertical segments of the set V .

5.1.2 Preprocessing Phase 2→ Constructing a Seg-
ment tree:

Let M ′ be the sorted list of the x coordinates of the end
points of the horizontal and vertical segments in H and
V respectively. We construct a segment tree Tx whose
leaf nodes correspond to the elementary intervals in-
duced by the x coordinates of the set M ′. Each internal
node µ ∈ Tx stores an interval Int(µ) which is union of
the elementary intervals being stored in the leaf nodes
of the subtree rooted at µ. A horizontal segment h ∈ H
is allocated to a node µ ∈ Tx if Int(µ) is completely
contained in the horizontal projection of the h whereas

Int(parent(µ)) is not. For each vertical segment v we
locate the leaf node in Tx which stores the x coordinate
of v.Then starting from that leaf node, we store a copy
of v in all the ancestors of the leaf node including the
root of Tx.

5.1.3 Preprocessing Phase 3→ Auxiliary dominating
set finding data structures:

Consider a node µ ∈ Tx. Let LH,µ and LV,µ be the
set of horizontal and vertical segments allocated to the
node µ. At the node µ, we do the following:

1. Consider a vertical segment v ∈ LV,µ and consider
the point (vy, hy) we have created in phase 1. We
store the point in a priority search tree Tµ,1. This
has to be done for all the vertical segments in LV,µ.

2. Next, for each v ∈ LV,µ whose y projection is
[vy1 , vy2], we create a 2-d point (vy1 , vy2). We store
these points in a priority search tree Tµ,2.

3. Finally, for each v ∈ LV,µ, we create a 3-d point
(vy1 , vy2 , sid(v)). We store these points in a 3-
d dominance reporting data structure Tµ,3 of [5].
The Tµ,3 will support queries of the form [x,∞)×
(−∞, y]× [z,∞) and [x,∞)× (−∞, y]× (−∞, z].

5.1.4 Preprocessing Phase 4→ Range Minima data
structure:

Consider any node µ ∈ Tx. Consider the horizontal
segments h ∈ LH,µ. We store the y coordinates of these
horizontal segments in an array Ysort,µ in a sorted order.
Next, we create a 1-d range minima data structure RMµ

[6] such that given two indices of the array Ysort,µ, we
can decide in O(1) time if all the horizontal segments
whose y coordinates are stored in between the two query
indices in the array Ysort,µ have the same sid.

5.2 Query Algorithm

Given a query rectangle [a, b] × [c, d], allocate the seg-
ment [a, b] to a node µ of the segment tree Tx if Int(µ) ⊆
[a, b] but Int(parent(µ)) * [a, b]. The segment [a, b] will
be allocated to O(log n) nodes of the tree Tx.

5.2.1 Intersections of type 1

Let Scan be the set of such nodes. Let us first focus
on the intersections of type 1 that is when at least one
of the end points of the intersecting segments are inside
the query rectangle. We will explain our steps assuming
that our focus is on the lower end points of the vertical
segments.

1. Any vertical segment that intersects the query rect-
angle q is present in any of the nodes u ∈ Scan. We

CCCG 2011, Toronto ON, August 10–12, 2011

127

23rd Canadian Conference on Computational Geometry, 2011

therefore search the priority search tree Tu,1 ∀u ∈
Scan with the query q′ = [c,∞)× (−∞, d].

2. While searching Tu,1 with q′, if we find any point p
in q′, we return “Yes” and Exit.

5.2.2 Intersections of type 2

(a) (b)

Figure 6: (a) All the line segments except the dotted
horizontal segment are of same sid. (b) All the hori-
zontal segments are of same sid. The dotted vertical
segment is of different sid.

When the end points of the intersecting horizontal
and vertical segments are outside the query rectangle,
we do the following:

1. At each node µ ∈ Scan and the ancestors of the
node µ up to root in the tree Tx, we search the
array Ysort at the respective nodes to find the the
indices i, j such that c ≤ Ysort[i] < Ysort[j] ≤ d.

2. By using the range minima data structure RM at
that respective node, we then decide if all the hori-
zontal segments whose y projections are in between
the indices i and j have the same sid.

3. If we find that all the horizontal segments allocated
to the node µ or its ancestors are not of same sid,
we come back to the node µ and search the data
structure T2,µ with the query (−∞, c] × [d,∞). If
there is any point inside (−∞, c]×[d,∞), we return
“YES” and Exit. See Figure 6 (a).

4. Suppose all the horizontal segments allocated to the
node µ or its ancestors are of same sid, we then
find that particular sid. Next, We come back to
the node µ and search Tµ,3 with (−∞, c]× [d,∞)×
[sid+1,∞) and (−∞, c]× [d,∞)×(−∞, sid−1]. If
we find any point in either of the queries, we return
“YES” and Exit. See Figure 6 (b).

Lemma 7 The algorithm returns a “YES” iff there ex-
ist a pair of horizontal-vertical segments h,v, such that
h ∩ v ∩ q 6= ∅ and sid(v) 6= sid(h).

Theorem 8 There exists a data structure D of size
O(n log n) such that given a query axes parallel rect-
angle q, we can decide in O(log2 n) time if there exists
a pair (h, v) where h is a horizontal segment and v is
a vertical segment such that h intersects v inside q and
sid(h) 6= sid(v).

References

[1] P. Gupta, R. Janardan, and M. Smid. Further
results on generalized intersection searching prob-
lems: counting, reporting, and dynamization. In
Journal of Algorithms, 19 , pp. 282–317, 1995.

[2] A. Agrawal, P. Gupta. Incremental Analysis of
Large VLSI Layouts. In Integrations, 42(2), 205–
210, 2009.

[3] H. Kaplan, N. Rubin, M. Sharir, E. Verbin. Count-
ing colors in boxes. In Proceedings of ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp.
785–794, 2008.

[4] B. Chazelle, H. Edelsbrunner, L. J. Guibas and
M. Sharir. Algorithms for Bichromatic Line Seg-
ment Problems and Polyhedral Terrains. In Algo-
rithmica, 11, pp. 116–132, Springer Verlag, 1994.

[5] P. Afshani. On Dominance Reporting in 3D Pro-
ceedings of 16thEuropean Symposium on Algo-
rithms (ESA), pp. 41–51, 2008.

[6] H. Yuan, M. Atallah. Data Structures for Range
Minimum Queries in Multidimensional Arrays. In
Proceedings of SODA, pp. 150–160, 2010.

[7] E. M. McCreight. Priority Search Trees. In SIAM
Journal of Computing. vol. 14(2), pp. 257–276,
1985.

[8] P. Afshani, L. Arge, K. D. Larsen Orthogonal range
reporting: query lower bounds, optimal structures
in 3-d, and higher-dimensional improvements In
Proceedings of Symposium on Computational Ge-
ometry, pp. 240–246, 2010.

[9] www.bwrc.eecs.berkeley.edu/Classes/icbook
/magic/index.html

23rd Canadian Conference on Computational Geometry, 2011

128

CCCG 2011, Toronto ON, August 10–12, 2011

Finding The Maximum Density Axes Parallel Regions for Weighted Point
Sets

Ananda Swarup Das ∗ Prosenjit Gupta † Kannan Srinathan ‡ Kishore Kothapalli §

Abstract

In this work we study the problem of finding axes-
parallel regions of maximum density for weighted point
sets in IR2 and IR3. The 2-d variant is motivated by
applications in thermal analysis of VLSI chips.

1 Introduction

We are given a set of n weighted points in IR2 (respec-
tively in IR3). Our goal is to find the highest density
axes parallel rectangle in IR2 (in IR3 we find the highest
density axes parallel 3-dimensional box) where density
of a region is defined as the sum of weights per unit
area (respectively per unit volume). The problem for
finding the highest density axes parallel rectangle for
IR2 was introduced by Majumder et al. in [1] and has
applications in thermal analysis of VLSI chip.

Preliminaries and Problems: Let us first define the
term density formally. The definition that we are pro-
viding here has been mentioned in [1].

Definition 1 Let F be a rectangular floor containing
a set S of n points such that no two points lie on the
same horizontal or vertical line. Each point pi ∈ S is
associated with a positive real weight wi. The density of
an axes parallel region R with area A(R) is defined as∑

pi∈R wi

A(R) .

It should be mentioned that in case of unweighted points
(or when points are of equal weight), the density is
|S∩R|
A(R) . Next, we introduce the main problem that we

study in this work.

Problem 1.1 Given a set S of n points in a plane such
that each point has a positive weight associated with it,
find the cluster of k ≥ 2 points in S such that the mini-
mum area axes parallel rectangle covering them attains
the highest density.

∗International Institute of Information Technology , Hyder-
abad, India, anandaswarup@gmail.com
†Heritage Institute of Technology, Kolkata, India ,

prosenjit gupta@acm.org
‡International Institute of Information Technology , Hyder-

abad, India, srinathan@iiit.ac.in
§International Institute of Information Technology , Hyder-

abad, India, kkishore@iiit.ac.in

Our Contribution:
In this work we first show that if the coordinates of
the n points are integers in [0, U] × [0, U], and the
points have distinct positive weights w(p), then finding
the highest density axes parallel rectangle can be done
in O(n log n logU) time using O(n log2 n) storage.
We then present another data structure which solves

Problem 1.1 in O(n log n logU) time using O(n log2 n
log logn)

storage. We finally discuss how to find the highest
density axes parallel 3-dimensional box provided the
coordinates of the n weighted points are integers in
[0, U]× [0, U]× [0, U].

Special note: We assume that all the coordinates of
the points are distinct. This particular assumption of
distinctness is important for the correctness of the so-
lution as because, if there are two points whose x co-
ordinates (or y coordinates) are the same, the area of
the axes parallel rectangle induced by them is zero and
hence the corresponding density will be ∞.

2 Solution

In [1], Majumder et al. proved the following,

Lemma 1 Let each point pi ∈ S be associated with a
positive weight wi and there exists a cluster S′ ⊆ S
of k ≥ 2 points such that no two of them lie in the
same horizontal (vertical) line. Then there exists a pair
pi, pj ∈ S′ such that the density of the smallest area axes
parallel rectangle containing (pi, pj) is greater than the
density of the axes parallel rectangle containing S′.

In short, the Lemma 1 says the following: let the clus-
ter S′ contains k > 2 points and let the density D′ of
S′ is the sum of the weights of the k points in S′ di-
vided by the smallest area of the axes parallel rectangle
bounding all the points of S′. Also assume that S′ is
the cluster of highest density among all possible clus-
ters for the points of S. Then as a contradiction, it can
be shown that there exist two points pi, pj ∈ S′ such
that the density of the smallest area axes parallel rect-
angle containing (pi, pj) is greater than the density of
the axes parallel rectangle containing S′. It therefore
means that the maximum density occurs for a cluster
C ⊆ S containing only two points. Though Majumder
et al. proved the Lemma 1, they solved the unweighted

CCCG 2011, Toronto ON, August 10–12, 2011

129

23rd Canadian Conference on Computational Geometry, 2011

version of the problem in which case, the problem gets
reduced to finding the smallest area axes parallel rect-
angle enclosing two points of S as diagonally opposite
corners. No efficient solution is however known for the
problem with a weighted point set. In this work, we
show a simple “divide and conquer” technique for the
problem assuming that the coordinates of the weighted
points are integers in [0, U]× [0, U].

p
adv

p
t

(b)

p
1

p =(p (x), p
t t t

(y))

p =(p p
2 2

(x),
2

(y))

p =(p (x), p
1 1 1 (y))

(a)

p
y_mid

Figure 1: (a) The y coordinate of the end point of
the dotted semi infinite horizontal segment is py mid =
p1(y)+pt(y)

2 . (b) The rectangle enclosing the points p1, pt
as diagonally opposite corner points cannot be a candi-
date for highest density rectangle as it contains the point
padv in it.

2.1 Our Algorithm

1. Consider a point p1 ∈ S. Let p1 =
(p1(x), p1(y)). Consider the northeast quadrant
NE(p) = (P1(x),∞]× (P1(y),∞].

2. Let the weight of p1 be w(p1). Create a query box
q = [p1(x),∞)× [p1(y),∞)× [w(p1),∞).

3. Find the point with the smallest x coordinate in
the query box q. Let this point be denoted by pt =
(pt(x), pt(y)).

4. Consider the axes parallel rectangle R1,t enclosing
the points p1, pt as the diagonally opposite cor-
ners. Check if the rectangle R1,t contains any point
padv ∈ S. See Figure 1 (b).

(a) If R1,t ∩ S = ∅, then R1,t is a candidate for
being the highest density rectangle.

(b) Else, as per Lemma 1, R1,t cannot be the high-
est density rectangle.

5. Repeat the above steps but this time with the

query box q = [p1(x),∞) × [p1(y), bp1(y)+pt(y)2 c] ×
[w(p1),∞). The reason for this step is explained in
Lemma 2.

6. Stop the algorithm if bp1(y)+pt(y)2 c = p1(y).

7. Follow a similar procedure for the southeast quad-
rant SE(p1), southwest quadrant SW (p1), and
northwest quadrant NW (p1) for the point p1.

8. Repeat the steps (1) to (7) for all the points in S.

Consider the query box q = [p1(x),∞)× [p1(y),∞)×
[w(p1),∞) mentioned in the step (2) of the algorithm
and let SNE(p1) be the set of all the points in S lying
in the northeast quadrant of p1 such that these points
have their respective weight greater than the weight of
p1. Then we have the following lemma.

Lemma 2 Let pt, p2 ∈ SNE(p1) be two points such that
(a) pt = (pt(x), pt(y)) has the smallest x coordinate
among all points in SNE(p1) and (b) the axes parallel
rectangle R1,2 enclosing p1 and p2 as diagonally oppo-
site corners has the highest density in SNE(p1). Then

the y coordinate of p2 must be less than p1(y)+pt(y)
2 .

Proof: See Figure 1 (a). Since p2(x) > pt(x) >
p1(x), p2(x) − pt(x) < p2(x) − p1(x). By Lemma 1,
p2(y) < pt(y) or else the rectangle R1,2 will also con-
tain the point pt and hence cannot have highest den-

sity. If p2(y) ∈ [p1(y)+pt(y)2 , pt(y)], then pt(y)− p2(y) ≤
p2(y) − p1(y). Therefore the area of the rectangle
Rt,2, the one enclosing pt, p2 as the diagonally oppo-
site points will have its area A(Rt,2) < A(R1,2). Since

w(pt) > w(p1), w(pt)+w(p2)
A(Rt,2)

> w(P1)+w(P2)
A(R1,2)

, a contradic-

tion to the fact that R1,2 has the highest density.�
We therefore conclude the section by stating the follow-
ing lemma.

Lemma 3 When the coordinates of the points are in-
tegers and in the range of [0, U] × [0, U], the maxi-
mum number of candidate rectangles we generate for
any point p1 is O(logU). The total number of candi-
date rectangles thus generated is O(n logU).

3 The Choice of Data Structures

As evident from our algorithm in Section 2.1, we need
two particular data structures namely (a) a 2-d range
aggregate data structure D such that given a query rect-
angle q we can efficiently decide if q∩D = ∅ or not, and
(b) a 3-d range successor data structure for efficient ex-
ecution of our algorithm. We skip the discussion on 2-d
range queries as they are very well studied [8] and focus
on 3-d range successor problem. Formally the problem
can be defined as follows.

Problem 3.1 Given a set S of n points in IR3 prepro-
cess them into a data structure such that given an axes
parallel d-box q for d = 3, one can efficiently report the
point with the smallest x coordinate in q ∩ S.

23rd Canadian Conference on Computational Geometry, 2011

130

CCCG 2011, Toronto ON, August 10–12, 2011

The above problem has been studied in [3, 7].
The data structure presented in [7] takes ex-
pected O(n log n log log n) preprocessing time, oc-
cupies O(n log2 n) space and can be queried in
O(log n log log n) time. The data structure presented
in [3] can be built in O(n1+ε) time, occupies O(n1+ε)
space and can be queried in O(1) time. For any data
structure for the range successor problem let P (n) be
the preprocessing time and let Q(n) be the query time.
Since we may need to answer O(n logU) range successor
queries in the worst case for solving Problem 1.1, the
total time required to answer range successor queries
is R(n) = P (n) + O(n logU)Q(n). Hence we propose
a data structure RSQ to solve the 3-dimensional range
successor problem so that the R(n) value is smaller than
that obtained by using the solutions from [3] and [7].
RSQ is a variant of range aggregate tree with fractional
cascading [8] and is also a variant of [4].

3.1 The Preprocessing Algorithm

1. Let x1, x2, . . . , xn be a sorted list of points on the
real line, being the x-projections of the points in S.
Consider the elementary intervals created by the
partitioning of the real line induced by these points.
Construct a balanced binary tree Tx, associating
the above elementary intervals with its leaves.

2. To each internal node µ, assign an interval int(µ)
which is union of the elementary intervals of the
points associated with the leaf nodes of the subtree
rooted at µ.

3. At each internal node µ ∈ Tx maintain an array Aµ
which stores the y coordinates of the points present
in the leaf nodes of the subtree rooted at µ.

4. Also maintain a range minima data structure
RMAµ (see [6]) such that given two indices i, j
of Aµ, we can return the maximum weight among
the points whose y coordinates are stored between
Aµ[i] to Aµ[j].

5. Let w and v be the two children of µ. Since
Aµ = Aw ∪Av, each index i of Aµ has two pointers
one pointing to the smallest value in Aw which is
greater than equal to Aµ[i] and the other pointing
to the smallest value in Av greater than equal to
Aµ[i]. Similarly each index i of Aµ has two point-
ers one pointing to the largest value in Aw which
is smaller than equal to Aµ[i] and the other point-
ing to the largest value in Av smaller than equal to
Aµ[i].

6. Now, at the node µ, construct a height balanced
binary search tree Tµ,y on the points of Aµ.

7. At each node φ ∈ Tµ,y, store a sorted array Wφ

which stores the weights of the points whose y co-
ordinates are stored in the leaf nodes of subtree
rooted at φ.

8. Maintain a range minima data structure RM ′φ such
that given two indices i, j of Wφ, we can return
the minimum x coordinate among the points stored
between Wφ[i] to Wφ[j].

Lemma 4 The data structure RSQ for range successor
queries can be built in O(n log2 n) time and occupies
O(n log2 n) space.

3.2 The Query Algorithm

Let our query be q = [x1,∞) × [y1, y2] × [wt,∞). We
wish to find out the the point p ∈ S with the smallest
x coordinate and fitting inside q.

1

2

3

leaf

Figure 2: The nodes marked black are the ones to which
the interval [x1,∞) is allocated

1. Find the leaf node leaf ∈ Tx such that it contains
the value x1. Trace the path π from the node leaf
to the root node of the tree Tx.

2. For any node v which is a right sibling of any node
u on the path π, its interval int(v) ⊂ [x1,∞). Allo-
cate the semi-infinite interval [x1,∞) to the nodes
v. See Figure 2. The nodes marked black are the
ones to which the interval [x1,∞) is allocated. In
general, the interval [x1,∞) will be allocated to
O(log n) canonical nodes of Tx. Since [x1,∞) is a
semi-infinite interval, it will be allocated to at most
one node at each level of the tree. For l ∈ O(log n),
let us number these nodes as v1, . . . , vl, starting
from the leaf level of the tree Tx. See Figure 2.

3. Search the array Aroot to find the indices i and j
such that y1 ≤ Aroot[i] < Aroot[j] ≤ y2. Then find
the smallest value greater than y1 and the largest
value smaller than y2 in the all the arrays starting
from A1, . . . , Al. This can be done by chasing the
pointers starting from Aroot.

CCCG 2011, Toronto ON, August 10–12, 2011

131

23rd Canadian Conference on Computational Geometry, 2011

4. As v1 is a leaf node, |Av1 | = 1. Check if the y co-
ordinate stored in the node marked 1 is in between
y1 and y2. If so, check if the weight of the point is
greater than wt. If so, we have our desired point in
the node 1.

5. Else we move to the node marked 2. Let i′, j′ be
the indices such that y1 ≤ A2[i′] < y2 ≤ A2[j′].

6. Using Range Minima data structure RMA2
, find

the maximum weight w′ among the points stored
in between A2[i′] and A2[j′].

7. Let w′ > wt. It means we have our desired point
at the node 2. We move to the node 2.

• Consider the data structure Tµ,y for µ = 2,
created in steps (6) to (8) of the preprocess-
ing step. By repeating steps similar to (4) to
(7) of the query algorithm on the tree Tµ,y , on
required auxiliary arrays Wφ and on required
range minima data structures RM ′φ, we can
find out the point with the smallest x coordi-
nate present in S ∩ q.

• Return the point discovered in the previous
step

8. On the other hand, if w′ < wt, we move to the next
node that we have marked as node 3.

9. For any query q, the above steps continue until

• we discover the point with the smallest x co-
ordinate in q or

• we have visited all the l nodes and have failed
to find the point p ∈ S with the smallest x
coordinate and fitting in q .

Lemma 5 The data structure RSQ supports 3-
dimensional range successor queries in O(log n) time.

Proof: Finding the leaf node leaf ∈ Tx needs O(log n)
time. Next, searching the indices i, j such that y1 ≤
Aroot[i] < Aroot[j] ≤ y2, needs another O(log n) time.
Once the indices i, j of the root node are found, find-
ing the respective indices in all the arrays of the nodes
marked black in Figure 2 needs O(log n) time. Next,
we check if the point in the node marked 1 fits our re-
quirement. If so, our job is done in O(log n) time. Else,
we move to the node marked 2 and find the maximum
weight among the points which are stored between A2[i′]
to A2[j′] where y1 ≤ A2[i′] < A2[j′] ≤ y2. This needs
O(1) time using the range minima data structure. If
we find the maximum weight to be greater than wt, we
restrict our searching only at node 2. Next, we repeat
similar searches at the tree T2,y. This needs another
O(log n) time. Hence the result. �
From Lemma 4 and Lemma 5, we conclude the following
theorem.

Theorem 6 A set S of n points in IR3 can be prepro-
cessed in time O(n log2 n) into a data structure of size
O(n log2 n) so that given a query axes-parallel rectangle
q, the range successor query can be answered in O(log n)
time.

By using Lemma 3 and Theorem 6, we can conclude the
following:

Lemma 7 If the points are in the range [0, U]× [0, U],
O(logU) candidate rectangles for the point P1 are gen-
erated in O(logU log n) time. Hence the total time
needed to find the highest density axes parallel rectangle
is O(n logU log n+ n log2 n).

The above lemma will also hold when the coordinates
of the points are integers in IR× [0, U].

3.3 A Reduced Spaced Data Structure

Next we present RSL, a reduced space data structure
for the 3-dimensional range successor problem.
Steps of Preprocessing :

1. Let us change the degree of the internal nodes of
the tree Tx to O(

√
log n) instead of two. The height

of the tree is therefore O(logn
log logn).

2. In each internal node µ ∈ Tx, we create the aux-
iliary array Aµ. The array Aµ stores the sorted y
coordinates of the points whose x coordinates are
associated in the leaf nodes.

3. Any element of Aµ will now have with 2 pointers
pointing to two elements in each of the auxiliary
arrays belonging to the

√
log n children of µ. One

pointer will point to the smallest value in the array
Aw greater than the element and the other pointer
will point to the largest element in the array Aw
smaller than the element. Here w is a child of µ.
Hence any element in Aµ will have 2

√
log n point-

ers. The construction of Aµ is discussed later.

4. Repeat the steps (3), (6), (7), (8) of the preprocess-
ing algorithm in sub section 3.1.

3.3.1 Construction of the array Aµ

Building the array Aµ is easy. Let Aw1
, . . . , Aw√logn

are

the sorted arrays present at the
√

log n children of the
node µ. From each array Awi ∀i = 1, . . . ,

√
log n, take

its smallest element and construct a min-heap. The
height of the heap will be O(log log n). Now the root
node of the heap will contain the smallest element of
the heap. We will store the element of the root to the
first available index of Aµ and this element will have a
pointers to the elements currently present in the heap at

23rd Canadian Conference on Computational Geometry, 2011

132

CCCG 2011, Toronto ON, August 10–12, 2011

G2

G1

G3

n1 n2
n3

Figure 3: The nodes marked black are the ones to which
the interval [x1,∞) is allocated

their respective arrays. It will also have a pointer to the
next value of the array Awi from which it originated.
From the array Awi take the next element and insert
it into the heap. This method has been used in [5] for
reporting the top k weights in a query rectangle.

Lemma 8 The data structure RSL for range successor

queries can be built in O(n log2 n
log logn) time and occupies

O(n log2 n
log logn) space.

3.4 The Query Procedure

Let our query q = [x1,∞) × [y1, y2] × [wt,∞) and we
would like to find the point with the smallest x coordi-
nate in it. Let us denote the tree Tx as the primary tree.
This tree is a variant of the range tree used by [2] and [3].
As mentioned in [2], an interval [a, b] can be represented
as a union of node ranges of some nodes v1, . . . , vk that
can be grouped into logn

log logn groups G1, . . . , Gh. Each
group Gi contains a set of children vli , vli+1

, . . . , vlr for
some node vl. There are at most two groups in each
level. Hence there are O(logn

log logn) groups. Consider

the interval [x1,∞). We can also write this interval
as [x1, xmax] where xmax is the maximum x coordinate
among all the points of the set S. See Figure 3. Let
[x1, xmax] is equal to the union of the intervals of the
black nodes. These black nodes are divided into three
groups and are assigned to the nodes marked G1, G2

and G3.
Let p1 be the point with the smallest x coordinate in q.
Let us also suppose that p1 is not present in the nodes
marked by the groups G1 and G2. Now suppose we
are at the node marked G3. We need to decide, among
the three children of G3 marked as n1, n2, n3, which
node should we visit ? It can be noticed that if there
is even a single point from the node marked n1 fitting
inside the query q, the point p1 has to be present in n1.
Therefore, we need a way to decide if it is profitable
to visit the node n1 (or in fact any node). Remember
that we have an array AG3

at the node marked G3 such
that AG3

sorts all the points that are stored at the leaf
nodes of the subtree rooted at G3. The array AG3

is
sorted according to the y coordinates of the points that

are present in the leaf nodes of the tree rooted at node
marked G3. Moreover each index i of the array AG3

has
a pointer to the smallest value greater than AG3 [i] and
the largest value smaller than AG3 [i] in the array An1 .
So if we find the smallest value greater than y and the
largest value smaller than y1 for the array AG3

, then we
can easily do the same for An1

. Once we discover the
two indices of the array An1 , using range minima query
we can find the largest weight w′ for the points whose
y coordinates are stored in the array An1

in between
those two indices in O(1) time. If w′ > wt, we focus our
searching only at the node n1. We move to the node n1
and follow steps similar to that of the query algorithm
in subsection 3.2 to find out the point with the smallest
x coordinate present in S∩q and return it as an answer.
On the other hand, if wt < w′, we move to the next node
(n2 as per our Figure 3).

Lemma 9 The data structure RSL supports 3-
dimensional range successor queries in O(log n) time.

Theorem 10 A set S of n points in IR3 can be prepro-

cessed in time O(n log2 n
log logn) into a data structure of size

O(n log2 n
log logn) so that given a query axes-parallel rectangle

q, the range successor query can be answered in O(log n)
time.

Using the above theorem, we conclude the following

Theorem 11 Given a set of n weighted points whose
coordinates are integers in [0, U] × [0, U], the highest
density axes parallel rectangle can be found in time

O(n log2 n
log logn + n logU log n) using space of O(n log2 n

log logn).

4 On Finding the Highest Density Axes Parallel 3-
dimensional box

Before we start the section, we define our density as
follows:

Definition 2 Let S be a set of n points in IR3. The
density of the axes parallel d-box R (for d = 3) with
volume V (R) and covering the points in R, is defined

as
∑
pi∈R wi

V (R) .

In this section, we wish to solve the following problem

Problem 4.1 We are given a set of n weighted points
such that their coordinates are integers in the range of
[0, U] × [0, U] × [0, U]. We wish to find the cluster of
k ≥ 2 points such that the minimum area axes parallel d-
box for d = 3 covering them attains the highest density.

Before we try to solve the Problem 4.1, we refer to the
following fact proved by Majumder et al. in [1].

CCCG 2011, Toronto ON, August 10–12, 2011

133

23rd Canadian Conference on Computational Geometry, 2011

Fact 1 Let Q =
∑n
i=1 ai∑n
i=1 bi

for ai, bi > 0, then

Minni=1
ai
bi
≤ Q ≤Maxni=1

ai
bi

Now, assuming that all the coordinates of the points are
distinct, we propose the following lemma

R1
R3

R2

p2

p4

p1

p3

Figure 4: The case of axes parallel 3-dimensional box
for d = 3

Lemma 12 The highest density axes parallel 3-
dimensional box will consist of two points.

Proof: The proof is similar to the proof of Lemma
1 provided in [1]. See Figure 4. Let our highest
density axes parallel 3- dimensional box contains k
points p1, p2, . . . , pk. We partition the box into k − 1
smaller pieces as shown in the Figure 4. The density

of our box is wt(p1)+wt(p2)+...+wt(pk)
V (R) ≤ wt(p1)+wt(p2)

V (R1)
+

wt(p2)+wt(p3)
V (R2)

+ . . . + wt(pk−1)+wt(pk)
V (Rk−1)

, where V (Ri) de-

notes the volume of the rectangular axis parallel d-box
Ri. Using Fact 1, we can prove the lemma. �
The highest density axes parallel 3-dimensional box will
contain two points of the set S as diagonally opposite
corners. Using the Lemma 12 and the ideas of Section
2.1 and data structure similar to 3.1, we have the fol-
lowing theorem.

Theorem 13 Given a set of n weighted points whose
coordinates are integers in range of [0, U]×[0, U]×[0, U],
the highest density axes parallel 3-dimensional box can
be found in O(n logU log3 n) times using O(n log3 n)
space.

References

[1] S. Majumder, B. B. Bhattacharya, On the den-
sity and discrepancy of a 2D point set with applica-
tions to thermal analysis of VLSI chips. Informa-
tion Processing Letters 107 (2008), pp. 177–182.

[2] Y. Nekrich, Orthogonal Range Searching in Linear
and Almost-Linear Space. Computational Geome-
try: Theory and Applications 42(4) (2009), pp.
342–351.

[3] C. C. Yu, W. K. Hon, B. F. Wang, Improved
Data Structures for Orthogonal Range Successor

Queries. Computational Geometry: Theory and
Applications 44 (2011), pp. 148– 159.

[4] S. Saxena, Dominance made simple. Information
Processing Letters 109 (2009), pp. 419–421.

[5] S. Rahul, P. Gupta, R. Janardan K. S. Rajan, Ef-
ficient top-k queries for orthogonal ranges, In Proc.
International Workshop on Algorithms and Com-
putation, Springer Verlag Lecture Notes in Com-
puter Science No. 6552, pp. 110–121.

[6] H. Yuan, M. Atallah, Data Structures for Range
Minimum Queries in Multidimensional Arrays. In
Proceedings of SODA 2010, pp. 150–160.

[7] H. P. Lenhof, M. H. M. Smid, Using Persistence
for adding range restrictions to searching problems.
RAIRO Theoretical Informatics and Applications.
28(1) (1994), pp. 25–49.

[8] M. de. Berg, M. van Kreveld, M. Overmars and
O. Schwarzkopf. Computational Geometry: Algo-
rithms and Applications. Springer, Verlag, 2000.

23rd Canadian Conference on Computational Geometry, 2011

134

CCCG 2011, Toronto ON, August 10–12, 2011

Bichromatic Line Segment Intersection Counting in O(n
√
log n) Time

Timothy M. Chan∗ Bryan T. Wilkinson†

Abstract

We give an algorithm for bichromatic line segment in-
tersection counting that runs in O(n

√
log n) time under

the word RAM model via a reduction to dynamic prede-
cessor search, offline point location, and offline dynamic
ranking. This algorithm is the first to solve bichromatic
line segment intersection counting in o(n log n) time.

1 Introduction

We consider bichromatic line segment intersection
counting : given a set of disjoint blue line segments and a
set of disjoint red line segments in the plane, output the
number of intersections of blue segments with red seg-
ments. Bichromatic line segment intersection problems
arise in applications such as map overlay in GIS. We give
an algorithm that runs in O(n

√
log n) time, where n is

the total number of segments, under the standard word
RAM model with w-bit words. The input segments are
specified by their endpoints, which are given as O(w)-
bit integer or rational coordinates. Our result answers
an open question of Chan and Pǎtraşcu [6] by showing
that bichromatic line segment intersection counting can
be solved in o(n log n) time. Thus, the problem finally
joins the ranks of many other problems in computa-
tional geometry that have Ω(n log n) lower bounds un-
der the comparison model but o(n log n) upper bounds
under the word RAM model. Recent examples include
2-d Voronoi diagrams [2], 3-d convex hulls [6], and 3-d
layers-of-maxima [12]. The word RAM model is im-
portant because its power corresponds very closely to
that of actual programming languages (our algorithm
uses only standard operations, such as arithmetic and
bitwise logical operations) and it includes only the rea-
sonable assumption that each input value is an integer
(or rational) that fits in a word.

Chazelle et al. [7] give algorithms based on segment
trees for bichromatic segment intersection reporting in
O(n log n + k) time, where k is the number of inter-
sections reported, and for counting in O(n log n) time.
Chan’s trapezoid sweep algorithm [3] for the report-
ing problem also achieves O(n log n + k) time, but has

∗David R. Cheriton School of Computer Science, University of
Waterloo, tmchan@uwaterloo.ca
†David R. Cheriton School of Computer Science, University of

Waterloo, b3wilkin@uwaterloo.ca. Supported by NSERC.

smaller constant factors and can be extended to curve
segments. Mantler and Snoeyink [11] modify the trape-
zoid sweep to use operations of algebraic degree at most
2 and also to support counting in O(n log n) time.

Our algorithm follows the high-level idea of Mantler
and Snoeyink [11] but reduces the low-level computa-
tions to dynamic predecessor search, offline point loca-
tion, and offline dynamic ranking. Note that we cannot
base similar reductions on just any high-level algorithm;
the algorithm of Mantler and Snoeyink [11] gives par-
ticularly exploitable structure to the bichromatic line
segment intersection counting problem. The algorithm
of Chazelle et al. [7] inherently requires O(n log n) time
due to the use of segment trees, and Chan’s trapezoid
sweep does not address the counting problem.

Recently, efficient algorithms have arisen for both of-
fline point location and offline dynamic ranking under
the word RAM model. Chan and Pǎtraşcu [6] give an
algorithm for offline point location that locates O(n)
points in a subdivision of the plane defined by O(n) seg-

ments in n · 2O(
√
log logn) time. Chan and Pǎtraşcu [5]

also give an algorithm for offline dynamic ranking that
processes O(n) queries and updates in O(n

√
log n) time.

We use both of these algorithms as subroutines.

In Section 2 we give an overview of Mantler and
Snoeyink’s algorithm [11] and describe a 1-d data struc-
ture problem to which it reduces. In Section 3 we discuss
a rank space reduction which is integral to achieving
speed ups under the word RAM model. In Section 4 we
describe our data structure, which we analyse in Sec-
tions 5 and 6.

2 High-Level Algorithm

We assume that the endpoints of all of the given seg-
ments are in general position. Otherwise, perturbation
techniques can be used to handle any degeneracies [10].
We begin with an overview of the algorithm of Mantler
and Snoeyink [11], simplified under our non-degeneracy
assumption. The algorithm is a plane sweep that keeps
track of all of the segments that intersect the vertical
sweep line. The efficiency of the algorithm is achieved by
storing the segments in maximal monochromatic bun-
dles of segments. The algorithm keeps an alternating
list of red and blue bundles. The order of the bundles in
this list may not be consistent with the order of the seg-
ments along the sweep line. However, the order of the

CCCG 2011, Toronto ON, August 10–12, 2011

135

23d Canadian Conference on Computational Geometry, 2011

bundles of a single colour in the list is always consistent
with the order of segments of the same colour along the
sweep line. Figure 1 shows the grouping of segments
into bundles at various positions of an example plane
sweep.

1

2

3

4

1

2

3

4

1

2

e1

2e

Figure 1: Ordering of red (dashed) and blue (solid) bun-
dles before and after processing endpoints e1 and e2.

When the plane sweep reaches an endpoint e, our
goal is to swap red and blue bundles until all blue bun-
dles below e are below all red bundles above e, and all
blue bundles above e are above all red bundles below e.
When we swap a red bundle br and a blue bundle bb it
is because all segments of br intersect with all segments
of bb. So, whenever we perform a swap, we add |br| · |bb|
to our bichromatic segment intersection counter.

First, we find the red bundles immediately above and
below e. If e is inside a red bundle, we split this bundle
into two bundles such that one is above e and the other
is below e. If br is the red bundle above e, we check if
the blue bundle bb that follows br in our list of bundles
is below e. If so, we swap br and bb. Doing so may result
in two adjacent red bundles and/or two adjacent blue
bundles. We merge these adjacent bundles of the same
colour. We repeat this process until bb is not below e. In
the last repetition, e may be inside bb, in which case we
split bb around e before swapping. We follow a similar
process in the other direction.

After all of the bundle swapping has occurred, we still
need to handle the inclusion or exclusion of the segment
with endpoint e. If e is a left endpoint, we insert the
segment into a new bundle which is placed between the
lowest bundle above e and the highest bundle below e.
If e is a right endpoint, we delete the segment. If the
segment is the only segment in its bundle, deleting the
segment removes its bundle. In either the insertion or
deletion case, we merge adjacent bundles of the same
colour as necessary.

For a proof of correctness, we refer the reader to
Mantler and Snoeyink’s paper [11]. The main idea of the
proof is that the order of the bundles is always consistent

with the order of a certain deformation of the segments
along the sweep line. This deformation pushes inter-
sections as far to the right as possible without moving
endpoints, adding intersections, or removing intersec-
tions.

The low-level computations of the algorithm can be
encapsulated into a data structure that supports the
following operations:

Insert(s, b`, bh)
Inserts a new bundle containing only segment s be-
tween bundles b` and bh.

Delete(s)
Deletes segment s, removing its bundle b if s is the
only segment in b.

IsAbove(e, b) / IsBelow(e, b)
Determines whether or not endpoint e lies above or
below all segments in bundle b.

Split(e, b)
Splits bundle b into two bundles b` and bh such
that b` contains all segments below endpoint e and
bh contains all segments above endpoint e. Figure 2
shows an example of a bundle being split.

b

e

hb

bℓ

Figure 2: Splitting bundle b at endpoint e.

Merge(b`, bh)
Merges two adjacent bundles b` and bh of the same
colour into a single bundle.

Swap(b`, bh)
Swaps the order of two adjacent bundles b` and bh
of different colours.

HighestBelow(e) / LowestAbove(e)
Finds the highest (lowest) red bundle in which all
segments are below (above) endpoint e.

Next(b) / Previous(b)
Finds the bundle that follows or precedes bundle b
in sorted order.

23rd Canadian Conference on Computational Geometry, 2011

136

CCCG 2011, Toronto ON, August 10–12, 2011

Size(b)
Calculates the number of segments in bundle b.

The analysis presented by Mantler and Snoeyink [11]
reveals that each of these operations is invoked at most
O(n) times. The main idea of their analysis is that dur-
ing the processing of each endpoint, there is a constant
upper bound on the number of bundle splits, and thus
there are a linear number of bundles over the course
of the algorithm. All of the other operations can be
charged to bundles.

3 Rank Space Reduction

Before we describe our data structure, we discuss a pre-
processing step in which we perform rank space reduc-
tion. Rank space reduction is important under the word
RAM model to, for example, reduce the cost of pre-
decessor search with van Emde Boas trees [14] from
O(log logU), where U is the size of the universe, to
O(log log n). In particular, we want to assign ids to
segments such that segment s1’s id is greater than seg-
ment s2’s id if and only if s1 is above s2. Since red and
blue segments can intersect, there may be no mapping
that is consistent for all segments throughout the en-
tire plane sweep. However, Palazzi and Snoeyink [13]
give a topological ordering that is consistent for a set
of disjoint segments. We can thus assign ids that are
consistent with aboveness to all red segments and all
blue segments separately, based on their own separate
topological orderings. The topological sort involves a
plane sweep that runs in O(n log n) time, since it uses a
balanced search tree in order to find the segment above
the current endpoint.

Instead of using this balanced search tree, we can find
the segment above every endpoint in advance by com-
puting the trapezoidal decomposition of the segments.
Chan and Pǎtraşcu [4] reduce general offline 2-d point
location to offline 2-d point location in a vertical slab
that is divided into regions by disjoint segments that
cut across the slab. We call this latter problem the slab
problem. The same techniques (persistence and expo-
nential search trees) can be used to reduce trapezoidal
decomposition of disjoint segments to the slab problem.
Chan and Pǎtraşcu [6] give an algorithm for the slab
problem that yields an algorithm for trapezoidal decom-
position of disjoint segments that runs in n·2O(

√
log logn)

deterministic time. The topological sort thus has the
same runtime.

4 Data Structure

All segments have ids, as assigned by the rank space
reduction described in Section 3. We keep a doubly
linked list of bundles. A bundle stores pointers to its
top and bottom segments. Only segments which are

top or bottom segments of a bundle have pointers back
to their bundle. In addition to this doubly linked list,
we keep two predecessor search data structures that
use segment ids as keys. These trees, T and B, con-
tain only those red segments that are at the tops and
bottoms of their bundles, respectively. If we were to
use van Emde Boas trees [14], updates would run in
O(log logU) expected time. Since we want to avoid ran-
domization, we use instead a data structure of Anders-
son and Thorup [1], which supports queries and updates
in O(log log n log logU

log log logU) deterministic time. Due to the
rank space reduction, these operations actually run in

O(log2 logn
log log logn) time. Finally, we keep dynamic ranking

data structures Rr and Rb, also using segment ids as
keys, for all red segments and blue segments, respec-
tively, that intersect the sweep line. We defer our selec-
tion of a particular dynamic ranking data structure to
Section 5.

Lemma 1 After a preprocessing step that runs in n ·
2O(
√
log logn) time, we can find the segment of a given

colour above or below endpoint e along the sweep line in
O(1) time.

Proof. Assume without loss of generality that e is red.
The red segments above and below e can be found in
O(1) time by navigating the red trapezoidal decomposi-

tion that was computed in n · 2O(
√
log logn) time in Sec-

tion 3. Finding the blue segments above and below e is
equivalent to locating e within the blue trapezoidal de-
composition. So, in the preprocessing step, we perform
offline planar point location of all red endpoints in the
blue trapezoidal decomposition. The blue trapezoidal
decomposition has linear complexity and has vertices
with O(w)-bit rational coordinates. We can perform of-
fline planar point location of the red endpoints in such
a subdivision of the plane in n · 2O(

√
log logn) time using

another algorithm of Chan and Pǎtraşcu [6]. �

We now describe how we implement all of the opera-
tions of the data structure, using the ability to find the
segments above and below an endpoint in constant time
via Lemma 1 as a primitive.

Insert(s, b`, bh)
We create a new bundle b in which s is both the top
and bottom segment and rewire the next/previous
bundle pointers between b, b`, and bh. We insert s
into Rc, where c is the colour of s. If s is red, we
also insert it into both T and B.

Delete(s)
If s is both the top and bottom segment of its
bundle b, s has a pointer to b. We rewire the
next/previous bundle pointers around b to ex-
clude b. If s is only the top (bottom) segment of b,
we can find the new boundary of b by finding the

CCCG 2011, Toronto ON, August 10–12, 2011

137

23d Canadian Conference on Computational Geometry, 2011

segment of the same colour below (above) the end-
point of s on the sweep line. If s is red, we delete
s from T and/or B, as necessary. In any case, we
delete s from Rc, where c is the colour of s.

IsAbove(e, b) / IsBelow(e, b)
We check in constant time whether or not e is above
(below) the top (bottom) segment of b. The end-
point e must then be above (below) all other seg-
ments of b.

Split(e, b)
We find the segments of b’s colour above and be-
low e. The segment below e becomes the top seg-
ment of b, which we relabel to b`. The original top
segment of b becomes the top segment of a new
bundle bh. The bottom segment of bh is the seg-
ment above e. We rewire the next/previous bundle
pointers to include bh after b`. If b was red, we add
the segment below e to T and the segment above e
to B.

Merge(b`, bh)
If b` and bh are red, we remove the top segment of b`
from T and the bottom segment of bh from B. We
replace the top segment of b` with the top segment
of bh and rewire the next/previous bundle pointers
to exclude bh.

Swap(b`, bh)
We rewire next/previous bundle pointers to swap
the order of b` and bh.

HighestBelow(e) / LowestAbove(e)
We find the red segment immediately below e and
find its predecessor in T . The bundle of the result-
ing top segment is the highest bundle below e. A
similar process finds the lowest bundle above e.

Next(b) / Previous(b)
We follow b’s next or previous bundle pointer.

Size(b)
We query Rc, where c is the colour of b, for the
ranks of the top and bottom segments of b. We
obtain the size of b by subtracting the latter from
the former and adding 1.

5 Handling Dynamic Ranking

Dynamic ranking can be solved using Dietz’s data struc-
ture [8], which supports both queries and updates in
O(logn

log logn) time. The high-level algorithm described in

Section 2 must determine the sizes of at most O(n) bun-
dles. Also, each endpoint causes a single insertion or
deletion from a rank query data structure. Thus, if
we were to use Dietz’s data structure, dynamic rank-
ing would contribute O(n logn

log logn) time to the runtime

of our algorithm. However, by considering the purpose
of our rank queries, it turns out that we can do better.

We use dynamic ranking data structures to determine
the sizes of bundles. The high-level algorithm requires
these sizes for a single purpose: to calculate the total
number of bichromatic intersections between a red bun-
dle and a blue bundle that intersect. It is important
to note that the results of these calculations have no
effect on future decisions of the algorithm. In fact, the
results only affect the algorithm’s output value. An-
other way to calculate the same output value is to per-
form all of the rank queries and updates offline at the
end of the algorithm. Offline dynamic ranking can be
solved faster than its online counterpart. Specifically,
Chan and Pǎtraşcu [5] give an algorithm for offline dy-
namic ranking that handles O(n) queries and updates
in O(n

√
log n) time.

6 Analysis

The plane sweep requires that all endpoints are sorted
by their x-coordinate, which can be performed in
O(n log log n) deterministic time [9]. The rank space

reduction of Section 3 is performed in n · 2O(
√
log logn)

time. The preprocessing step of Lemma 1 also runs in
n · 2O(

√
log logn) time. The high-level algorithm invokes

each operation of our data structure at most O(n) times.
All operations consist of a constant number of pointer
assignments, queries and updates to dynamic predeces-
sor search data structures, and queries and updates to
dynamic ranking data structures. The queries and up-
dates to the dynamic predecessor search data structures

contribute at most O(n log2 logn
log log logn) deterministic time

to the runtime of the algorithm, using Andersson and
Thorup’s data structure [1]. As discussed in Section 5,
the queries and updates to the dynamic ranking data
structures can be handled offline in O(n

√
log n) time.

This final contribution to the algorithm’s runtime dom-
inates all others; thus, the algorithm as a whole runs in
O(n
√

log n) time.

References

[1] A. Andersson and M. Thorup. Dynamic ordered sets
with exponential search trees. J. ACM, 54, June 2007.

[2] K. Buchin and W. Mulzer. Delaunay triangulations in
O(sort(n)) time and more. J. ACM, 58:6:1–6:27, April
2011.

[3] T. M. Chan. A simple trapezoid sweep algorithm for
reporting red/blue segment intersections. In In Proc.
6th Canad. Conf. Comput. Geom, pages 263–268, 1994.

[4] T. M. Chan and M. Pătraşcu. Transdichotomous re-
sults in computational geometry, I: Point location in
sublogarithmic time. SIAM J. Comput., 39:703–729,
July 2009.

23rd Canadian Conference on Computational Geometry, 2011

138

CCCG 2011, Toronto ON, August 10–12, 2011

[5] T. M. Chan and M. Pătraşcu. Counting inversions, of-
fline orthogonal range counting, and related problems.
In Proceedings of the Twenty-First Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’10, pages
161–173, Philadelphia, PA, USA, 2010. Society for In-
dustrial and Applied Mathematics.

[6] T. M. Chan and M. Pǎtraşcu. Transdichotomous results
in computational geometry, II: Offline search. CoRR,
abs/1010.1948, 2010. Also in Proceedings of the Thirty-
Ninth Annual ACM Symposium on Theory of Comput-
ing, STOC ’07, pages 31–39, New York, NY, USA, 2007.
ACM.

[7] B. Chazelle, H. Edelsbrunner, L. J. Guibas, and
M. Sharir. Algorithms for bichromatic line-segment
problems and polyhedral terrains. Algorithmica,
11:116–132, 1994. 10.1007/BF01182771.

[8] P. F. Dietz. Optimal algorithms for list indexing and
subset rank. In Proceedings of the Workshop on Algo-
rithms and Data Structures, WADS ’89, pages 39–46,
London, UK, 1989. Springer-Verlag.

[9] Y. Han. Deterministic sorting in O(n log log n) time and
linear space. In Proceedings of the Thiry-Fourth Annual
ACM Symposium on Theory of Computing, STOC ’02,
pages 602–608, New York, NY, USA, 2002. ACM.

[10] H. Mairson and J. Stolfi. Reporting and counting inter-
sections between two sets of line segments. In Theoret-
ical Foundations of Computer Graphics and CAD, vol-
ume 40 of Proceedings of the NATO Advanced Science
Institute, Series F, pages 307–326. Springer-Verlag,
1988.

[11] A. Mantler and J. Snoeyink. Intersecting red and
blue line segments in optimal time and precision. In
J. Akiyama, M. Kano, and M. Urabe, editors, Discrete
and Computational Geometry, volume 2098 of Lecture
Notes in Computer Science, pages 244–251. Springer
Berlin / Heidelberg, 2001. 10.1007/3-540-47738-1 23.

[12] Y. Nekrich. A fast algorithm for three-dimensional lay-
ers of maxima problem. CoRR, abs/1007.1593, 2010.

[13] L. Palazzi and J. Snoeyink. Counting and reporting
red/blue segment intersections. CVGIP: Graph. Models
Image Process., 56:304–310, July 1994.

[14] P. van Emde Boas. Preserving order in a forest in less
than logarithmic time. In Proceedings of the 16th An-
nual Symposium on Foundations of Computer Science,
pages 75–84, Washington, DC, USA, 1975. IEEE Com-
puter Society.

CCCG 2011, Toronto ON, August 10–12, 2011

139

23rd Canadian Conference on Computational Geometry, 2011

140

CCCG 2011, Toronto ON, August 10–12, 2011

Sequential Dependency Computation via Geometric Data Structures

Gruia Calinescu ∗ Howard Karloff†

Abstract

We are given integers 0 ≤ G1 ≤ G2 6= 0 and a se-
quence SN = 〈a1, a2, ..., aN 〉 of N integers. The goal
is to compute the minimum number of insertions and
deletions necessary to transform SN into a valid se-
quence, where a sequence is valid if it is nonempty, all
elements are integers, and all the differences between
consecutive elements are between G1 and G2. For this
problem from the database theory literature, previous
dynamic programming algorithms have running times
O(N2) and O(A ·N log N), for a parameter A unrelated
to N . We use a geometric data structure to obtain a
O(N log N log log N) running time.

1 Introduction

Golab, Karloff, Korn, Saha, and Srivastava introduce
the following problem in VLDB 2009 [3]: We are given
integers 0 ≤ G1 ≤ G2 6= 0 and a (not necessarily sorted)
sequence SN = 〈a1, a2, ..., aN 〉 of N integers. The goal
is to compute the minimum number of insertions and
deletions necessary to transform SN into a valid se-
quence, where a sequence is valid if it is nonempty,
all elements are integers, and all the differences be-
tween consecutive elements are between G1 and G2.
That is, 〈b1, b2, ..., bM 〉 is valid if M ≥ 1 and for all
i ∈ {1, . . . , M − 1}, G1 ≤ bi+1 − bi ≤ G2. We term the
problem Gap Dependency.

An example instance of Gap Dependency and
its solution has G1 = 4, G2 = 6, and
〈1, 7, 5, 9, 12, 25, 31, 30, 34, 40〉 as the (invalid) input se-
quence. A feasible solution deletes the first five ele-
ments and the seventh element, resulting in the valid
sequence 〈25, 30, 34, 40〉, at cost 6. A better fea-
sible solution, of cost 5, starts by deleting 12 and
inserting 15 and 20 in its place, obtaining the se-
quence 〈1, 7, 5, 9, 15, 20, 25, 31, 30, 34, 40〉, which is still
not valid since 5 − 7 < 4 and 30 − 31 < 4.
After deleting 7 and 31, we obtain the valid se-
quence 〈1, 5, 9, 15, 20, 25, 30, 34, 40〉. Yet another so-
lution of cost 5 deletes 5, 9, 31 (resulting in sequence
〈1, 7, 12, 25, 30, 34, 40〉, which is invalid since 25 − 12 >

∗Department of Computer Science, Illinois Institute of Tech-
nology; calinescu@iit.edu. Research supported in part by NSF
grant CCF-0515088.

†AT&T Labs–Research, 180 Park Ave., Room C231, Florham
Park, NJ 07932, USA; howard@research.att.com.

6), followed by inserting 16 and 20 between 12 and 25.
Golab et al. [3] present an algorithm with run-

ning time O(G2

G2−G1
N log N) for G2 > G1 > 0 (and

O(N log N) if G1 = 0 or G1 = G2). This is pseu-
dopolynomial running time. Implicit in [3] is also
a O(N2)-time algorithm. In this paper we give a
O(N log N log log N)-time algorithm for G2 > G1 > 0,
by exploiting a surprising connection to geometric data
structures.

2 Preliminaries

We include definitions and results from [3]. Given a
sequence SN = 〈a1, a2, ..., aN〉, define Si to be the prefix
Si = 〈a1, a2, ..., ai〉, and OPT (i) to be the value of the
Gap Dependency optimum with input Si.

Given a sequence 〈a1, a2, ..., aN 〉 of integers, for i =
1, 2, ..., N , let v = ai and define T (i) to be the minimum
number of insertions and deletions one must make to
〈a1, a2, ..., ai〉 in order to convert it into a valid sequence
ending in the number v.

Computing OPT (N) from the T (i)’s can be done as
follows. OPT (N) = min0≤r≤N−1{r + T (N − r)}, as
proven in Claim 1.

Claim 1 [Claim 3 of [3]] The minimum number
OPT (i) of insertions and deletions required to convert
sequence Si into a valid one is given by min0≤r≤i−1{r+
T (i−r)}. Furthermore, OPT (i) can be calculated induc-
tively by OPT (1) = 0 and OPT (i) = min{1 + OPT (i −
1), T (i)} for all i ≥ 2.

In order to show how to compute the T (i)’s, we need
the following definition from [3]:

Definition 1 Define dcost(d), for d = 0, 1, 2, ..., to be
the minimum number of integers one must append to
the length-1 sequence 〈0〉 to get a valid sequence ending
in d, and ∞ if no such sequence exists.

For example, if G1 = 4 and G2 = 6, then dcost(7) =
∞. Furthermore, dcost(8) = 2, uniquely obtained by
appending 4 and 8. We compute dcost very differently.
Precisely, we use existing geometric data structures. In-
stead of this lemma:

Lemma 1 (Lemma 6 of [3]) If G1 = 0, then
dcost(d) = ⌈d/G2⌉. Otherwise, dcost(d) = ⌈d/G2⌉ if
⌈(d + 1)/G1⌉ > ⌈d/G2⌉ and ∞ otherwise,

CCCG 2011, Toronto ON, August 10–12, 2011

141

23rd Canadian Conference on Computational Geometry, 2011

we use the method of the following section. We do so
since the previous dynamic programs [3] may use the
lemma for Ω(min{N2, G2

G2−G1
N log N}) values of d, even

though dcost can be computed in constant time.
The O(N2) algorithm of [3] follows in a rather

straightforward way from Claim 1, the lemma above,
and Theorem 2 which appears later. We refer to [3] for
the more sophisticated O(G2

G2−G1
N log N) algorithm.

3 The new algorithm for computing the T (i)-values

In this paper we will assume that 0 < G1 < G2.
What differentiates this paper from [3] is the use of

a fast geometric data structure to calculate the T (i)’s,
in amortized time O(log N log log N) each. We show
how the recurrence used in [3] can be modified to
make use of a data structure allowing fast 2-dimensional
range minimum queries, and thereby to decrease the
running time from O(min{N2, G2

G2−G1
· N log N}) to

O(N log N log log N). (This is only an improvement, of
course, if G2

G2−G1
> log log N .)

We assume all the values ai are nonnegative. (Oth-
erwise, let m = mini ai and set ai := ai − m.) For each
j, create point Pj = (xj , yj) with xj = aj mod G2 and
yj = ⌊aj/G2⌋. Two values of j can have points Pj with
the same coordinates; we treat the points Pj as distinct.
Let ∆ := G2 − G1 > 0.

For given i, define two regions in the two dimensional
Euclidean plane as follows (see Figure 1 for an example).
Let qi(x) be the linear map

qi(x) = yi − (x − (xi − G1))/∆

and let Qi be the halfspace

Qi = {(x, y) : y ≤ qi(x)}.

Let ri(x) be the linear map

ri(x) = yi − (x − xi)/∆

and let Ri be the intersection of the halfspaces

{(x, y)|y ≤ ri(x)}

and
{(x, y)|x ≥ xi},

and last, let R∗
i = Ri \ {(xi, yi)}.

(It will be crucial later that all the lines ri(x), over
all i, and all lines qi(x), over all i, have the same slope.
These facts will allow us to find one affine transfor-
mation converting, for all i, Qi into a halfspace with
axis-parallel bounding line, and Ri into an intersection
of two halfspaces, whose bounding lines are orthogonal
axis-parallel lines.)

Our algorithm relies on the following theorem from
[3].

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

0 1 2 3 4 5 6 7 8 9−1

0

1

2

3

4

Figure 1: Here G2 = 10, G1 = 7, ai = 35. The point
Pi is given by the small dark circle. Ri and Qi are un-
bounded and we only show their relevant parts—where
other points Pj could be located. Ri is the region on the
right, colored using a diagonal pattern. Qi is the region
on the left, colored using a doubly diagonal pattern.
Where the regions intersect, we use a solid pattern.

Theorem 2 [3] Fix i ≥ 2. Assume G1 > 0. Define
m := minj<i,aj<ai{T (j)+(i−1−j)+[dcost(ai−aj)−1]}.
Then T (i) = min{i − 1, m}.

For intuition only, we explain the recurrence. To end
an optimal subsequence with ai, we either delete the
first i − 1 elements, or, with j being such that j < i
and aj < ai, take the optimal subsequence ending with
aj, delete the i − 1 − j elements between aj and ai,
and insert dcost(ai − aj) − 1 elements between aj and
ai. (The “−1” is here since, as defined, dcost(d) also
inserts “d”, while we do not have to insert “ai”.)

We will prove the following theorem by relating it to
Theorem 2.

Theorem 3 Fix i ≥ 2. Define

r := min
j : j<i,Pj∈R∗

i

{T (j) + (i − j − 1) + (yi − yj) − 1}

and

q := min
j : j<i,Pj∈Qi

{T (j) + (i − j − 1) + (yi − yj)}.

Then m = min{q, r}.

To prove Theorem 3, we need Claim 2. Recall that
the x-coordinate of each Pk is at most G2 − 1.

Claim 2 1. For any k < i, [ak < ai and dcost(ai −
ak) < ∞] if and only if Pk ∈ Qi ∪ R∗

i .

2. If Pk ∈ R∗
i , then ak < ai and dcost(ai − ak) =

yi − yk.

3. If Pk ∈ Qi \ Ri, then ak < ai and dcost(ai − ak) =
yi − yk + 1.

23rd Canadian Conference on Computational Geometry, 2011

142

CCCG 2011, Toronto ON, August 10–12, 2011

We will prove Claim 2 in a moment.
Proof of Theorem 3. We need to prove that

min{q, r} = min
j<i,aj<ai

{T (j) + (i − 1 − j)

+[dcost(ai − aj) − 1]}.

By part 1 of Claim 2, the two minima are infinite
on exactly the same set. Using this and the fact that
Pi 6∈ Qi (because qi(xi) = yi − G1/∆ and G1 > 0 so
that yi > qi(xi)),

m = min
j<i,Pj∈Qi∪R∗

i

[T (j)+ (i−1− j)+dcost(ai −aj)−1]

= min{ min
j<i,Pj∈R∗

i

[T (j)+ (i − 1 − j)+ dcost(ai − aj)− 1],

min
j<i,Pj∈Qi\Ri

[T (j) + (i − 1 − j) + dcost(ai − aj) − 1],

min
j<i,Pj∈Qi∩Ri

[T (j) + (i − 1 − j) + dcost(ai − aj) − 1]}.

Now we use parts 2 and 3 of Claim 2 and the fact that
Pi 6∈ Qi to infer that m equals

min{ min
j<i,Pj∈R∗

i

[T (j) + (i − 1 − j) + yi − yj − 1],

min
j<i,Pj∈Qi\Ri

[T (j) + (i − 1 − j) + yi − yj],

min
j<i,Pj∈Qi∩Ri

[T (j) + (i − 1 − j) + yi − yj − 1]}.

Letting

A := min
j<i,Pj ∈R∗

i

[T (j) + (i − 1 − j) + yi − yj − 1],

B := min
j<i,Pj ∈Qi\Ri

[T (j) + (i − 1 − j) + yi − yj],

and

C := min
j<i,Pj∈Qi∩Ri

[T (j) + (i − 1 − j) + yi − yj − 1],

we want to show that min{A, B, C} = min{q, r}.
Since r = A and q = min{B, C + 1}, min{q, r} =
min{A, min{B, C + 1}} = min{A, B, C + 1}. We want
to show that min{A, B, C} = min{A, B, C + 1}, which
follows from the fact that A ≤ C. �

Sketch of proof of Claim 2. Note that ai = xi+yiG2

and ak = xk + ykG2.
Let Ik = [kG1, kG2] for k ≥ 0. It is easy to see that

Ik ∩ Z is precisely the set of all integers which can be
written as the sum of exactly k integers all between G1

and G2. Then dcost(d) is the minimum k such that
d ∈ Ik, if one exists, and ∞ otherwise. In other words,
here is a way to compute dcost(d) for all d, in principle:

Algorithm Simpledcost:

• Set dcost(d) = ∞ for all d ≥ 0.

• For k = 0, 1, 2, ..., do:

– Set dcost(d) = k for all d ∈ Ik, unless dcost(d)
was already defined.

We will show that the three statements in the claim
are obtained in effect by “running” algorithm Sim-
pledcost above.

Label the lattice points 0, 1, 2, ..., ai, starting by la-
beling the point Pi = (xi, yi) “0”, and then moving left-
ward, labeling points with successive integers, until a
point (0, y) on the y-axis is reached, and (after labeling
that point) continuing with point (G2 − 1, y − 1). The
point labeled “ai” will be the origin (0, 0), since the top
row has xi + 1 labeled points, and each of the other yi

rows has G2 points, or 1 + ai points in total, as desired.
For all y ∈ {0, 1, 2, ..., yi}, the point (xi, y) is labeled

(yi −y)G2, which is the right endpoint of interval Iyi−y.
Now execute the following:

For l = 0, 1, 2, ..., yi + 1, do:

• Starting at point (xi, yi−l) and continuing for |Il| =
l · (G2 − G1) additional steps, move rightward by
one lattice point each time;

however, if a point (G2 − 1, y) is hit, then after
visiting that point, visit the point (0, y+1) next and
afterward continue proceeding rightward as before.
(Every visited point (x, y) has y ≥ −1.)

• Assign dcost equal to l for each point visited, unless
its dcost was already assigned or its second coordi-
nate was negative.

The points with nonnegative second coordinate vis-
ited during iteration l are exactly those whose labels
are in Il, so we are in effect executing algorithm Sim-
pledcost. In other words, the existence of a point with
nonnegative second coordinate with label l and assigned
dcost d means that dcost(l) = d, and the existence
of such a point with label l and no dcost means that
dcost(l) = ∞.

(As an example, look at Figure 1. I0 = [0] and
only (5, 3) is assigned dcost 0. I1 = [7, 10] and the
lattice points with dcost 1 are (5, 2), (6, 2), (7, 2), (8, 2).
I2 = [14, 20] and the lattice points with dcost = 2
are (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (0, 2), (1, 2).
I3 = [21, 30] and the lattice points with dcost = 3 are
(5, 0), (6, 0), (7, 0), (8, 0), (9, 0), (0, 1), (1, 1), (2, 1), (3, 1),
(4, 1). I4 = [28, 40] and the lattice points with dcost 4
are (0, 0), (1, 0), (2, 0), (3, 0), (4, 0).)

The following crucial statements are easy to verify.
All the points assigned a finite dcost are in Qi ∪Ri, and
all such points Pk in the nonnegative quadrant get a
finite dcost . If Pk ∈ R∗

i , then ak < ai, since ri(x) has
negative slope. If Pk ∈ Qi \ Ri, then, since qi(0) = yi +
(xi−G1)/∆ ≤ yi+[(G2−1)−G1]/∆ = yi+(∆−1)/∆ <
yi + 1, all Pj ∈ Qi have yj ≤ yi and hence aj < ai.

CCCG 2011, Toronto ON, August 10–12, 2011

143

23rd Canadian Conference on Computational Geometry, 2011

Because we assign dcost equal to l for points in row
yi − l in Ri, as well as some to the left in Qi in row
yi − l + 1, we infer that dcost(ai − ak) = yi − yk if
Pk ∈ Ri, and that dcost(ai − ak) = yi − yk + 1 if
Pk ∈ Qi \ Ri. �

Here is our geometric algorithm to compute the
T (i)’s. Recall that before defining Qi and R∗

i , for each
j, we defined points Pj = (xj , yj) with xj = aj mod G2

and yj = ⌊aj/G2⌋.
• T (1) := 0 and z1 := T (1) − 1 − y1.

• For i := 2, 3, ..., n, do

– r := i + yi − 2 + minj<i : Pj∈R∗
i
zj .

– q := i + yi − 1 + minj<i : Pj∈Qi zj .

– T (i) := min{i − 1, r, q}.

– zi := T (i) − i − yi.

The running time of this algorithm is O(n) plus the
time to do the 2n mins involved in the definitions of m2

and m3. The idea is to use a geometric data struc-
ture to do each min in time O(log N log log N), for
O(N log N log log N) time overall. In order to use a
standard geometric data structure, we will have to con-
vert each of the regions Qi (a halfspace) and Ri (an in-
tersection of two halfspaces) into a halfspace with axis-
parallel boundaries, and into an orthant (an intersection
of two halfspaces with axis-parallel boundaries), respec-
tively.

The algorithm requires one to find minj<i : Pj∈R∗
i
zj

and minj<i : Pj∈Qi zj . It is an annoyance that the algo-
rithm needs a minimum over Pj ∈ R∗

i rather than over
Pj ∈ Ri. Were the desired minimum over Pj ∈ Ri,
one would just apply to all points the affine trans-
formation T mapping (x, y) → (x, y + x/∆). This
affine transformation maps points (x, qi(x)) = (x, (yi +
(xi − G1)/∆) − x/∆) on the bounding line of Qi to
points (x, (yi + (xi − G1)/∆)), which are on a horizon-
tal line. The same affine transformation maps points
(x, ri(x)) = (x, (yi + xi/∆) − x/∆) on the “diagonal”
bounding line of Ri to (x, yi +xi/∆), another horizontal
line, and maps points (xi, y) on Ri’s vertical bounding
line to (xi, y+xi/∆), the same vertical line. This means
that the question, “Is (x, y) ∈ Qi?” could be answered,
in the transformed space, by asking if T (x, y) is on or
below a horizontal line, and “Is (x, y) ∈ Ri?” could be
answered in the transformed space by asking if T (x, y)
is on or to the right of a vertical line and on or below a
horizontal one.

Unfortunately, though, the min is over Pj ∈ R∗
i in-

stead of over Ri. We now exploit the fact that all the
(untransformed) query points are of the form (x, y) ∈
N2, x ≤ G2 − 1. It suffices to make an affine trans-
formation which correctly answers queries about these
points.

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

0 1 2 3 4 6 7 8 9−1

0

1

2

3

4

5

Figure 2: Here Pi is the solid point, ∆ = 2, the rele-
vant part of Ri is given by the shaded area, and R′

i’s
bounding lines are thicker.

The idea is to replace each line qi(x) by a line q′
i(x)

which very closely tracks qi(x) (and to define Q′
i =

{(x, y)|y ≤ q′
i(x)}) and (see Figure 2 for intuition) to

replace the line ri(x) by a line r′
i(x) which very closely

tracks ri(x), and to replace the line x = xi by x = xi −ǫ
(and to define R′

i = {(x, y)|(x ≥ xi − ǫ) ∧ (y ≤ r′
i(x))})

(for a small ǫ > 0) such that (1) all lines q′
i(x) over all i

and r′
i(x) over all i have the same slope, and (2) a point

P ∈ N2 with first coordinate at most G2 − 1 is in Qi if
and only if P ∈ Q′

i, and (3) a lattice point P with first
coordinate at most G2 −1 is in R∗

i if and only if P ∈ R′
i.

This is done as follows. Let h = ⌈G2/∆⌉. The line
y = ri(x), which we will call L0, passes through Pi =
(xi, yi) and Z := (xi + h∆, yi − h), since it has slope
−1/∆. Consider the line segment corresponding to x-
coordinates in interval I = [xi, xi + h∆]. (Clearly xi +
h∆ ≥ G2.) For any x ∈ I, the lowest lattice point (x, y)
strictly above the line segment is at least 1/∆ above
it. This means that if we hold Pi fixed and raise the
right endpoint by 1/(2∆)—in other words, consider the
line L1 passing through Pi and Z ′ = (xi + h∆, yi −
h + 1/(2∆))—then “raising” the line segment causes it
to “pass through” no lattice points. (The slope γ :=
(−h + 1/(2∆))/(h∆) = −1/∆ + 1/(2h∆2) of L1 does
not depend on i.) Clearly, between x = xi and x = xi +
h∆, L1 passes through no lattice points except Pi, and
furthermore, the minimum distance upward from any
point on L1, whose x-coordinate is integral, to a lattice
point is at least 1/∆ − 1/(2∆) = 1/(2∆). In addition,
the minimum distance downward from any point on L1

in that interval to a lattice point other than Pi is at
least (1/(2∆))/(h∆) = 1/(2h∆2), since the interval has
length h∆.

Now simply “lower” L1 uniformly by τ := 1/(4h∆2)
to get a new line L2 which is below Pi but above every
other lattice point with x-coordinate between xi and
xi + h∆ which had been below L1. In other words,
L2 is the line connecting (xi, yi − 1/(4h∆2)) and (xi +
h∆, yi − h + 1/(2∆) − 1/(4h∆2)). L2 is the desired
boundary for R′

i provided that L2 crosses the line y = yi

at a point x = xi − ǫ for ǫ ∈ (0, 1). Where does L2

23rd Canadian Conference on Computational Geometry, 2011

144

CCCG 2011, Toronto ON, August 10–12, 2011

hit the line y = yi? We have τ/ǫ = 1/∆ − 1/(2h∆2)
so ǫ = τ/(1/∆ − 1/(2h∆2)) < τ/(1/(2∆)) = 2∆τ =
1/(2h∆) < 1.

To construct q′
i(x) from qi(x), just use the line of

slope γ passing through (0, qi(0)). The set of lattice
points on or under that line, between x-coordinates 0
and h∆, is the same as the set of those on or under
qi(x). However, if qi(0) is integral, so that (0, qi(0)) is
on both the original line and the “rotated” one, one may
want to raise the line slightly to prevent roundoff errors.

Now we just apply the affine transformation T ′ which
maps (x, y) → (x, y′), where y′ = y + x/γ, to turn Q′

i

into a halfspace with a horizontal bounding line and
R′

i into the intersection of a halfspace with a horizontal
bounding line and a halfspace with a vertical bounding
line.

We apply this affine transformation to all points Pj .
We need to do orthogonal range search queries in which
we need to find the minimum zj in a translated quadrant
or halfspace. However, since zi is defined only after all
z1, z2, ..., zi−1 are defined, the key values are not known
in advance. (The points themselves, however, are known
in advance.)

3.1 Running time analysis

Here is what a data structure must support in order to
run the algorithm. We are given, in advance, n points Pi

in Z2 with Pi = (xi, yi). For each i, we will construct
key(i) adaptively in the order 1, 2, 3, ..., n, as follows.
Initialize key(1) in some way. The data structure must
be able to execute the following code:

• for i = 2 to n do:

– Find a j minimizing key(j) among those j < i
satisfying xj ≤ xi and yj ≤ yi.

– Now define key(i) (somehow).

• end for.

The augmented segment tree of Mehlhorn and Näher
[5] guarantees the existence of a O(N log N log log N)-
time algorithm [4]. In fact, a data structure giving a
running time of O(N log N log log N) is likely to be im-
plicit in Gabow, Bentley, and Tarjan [2]; however their
result as stated (Theorem 3.3 and the discussion above
it) is for the case when all key(i) values are known in
advance.

We leave open the existence of a O(N log N)-time al-
gorithm, and suggest Willard [6] or Chan, Larsen, and
Pătrascu [1] as a possible starting point.

4 Acknowledgments

The authors thank Hal Gabow and Kurt Mehlhorn for
their help finding data structures supporting all query
and update operations in O(n log n log log n) time.

References

[1] T. M. Chan, K. G. Larsen, and M. Pătrascu. Orthogonal
range searching on the RAM, revisited. In F. Hurtado
and M. J. van Kreveld, editors, Symposium on Compu-
tational Geometry, pages 1–10. ACM, 2011.

[2] H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scal-
ing and related techniques for geometry problems. In
ACM Symposium on Theory of Computing, pages 135–
143, 1984.

[3] L. Golab, H. Karloff, F. Korn, A. Saha, and D. Srivas-
tava. Sequential dependencies. PVLDB, 2(1):574–585,
2009.

[4] K. Mehlhorn, 2011. Personal communication.

[5] K. Mehlhorn and S. Näher. Dynamic Fractional Cascad-
ing. Algorithmica, pages 215–241, 1990.

[6] D. E. Willard. Examining Computational Geometry,
Van Emde Boas Trees, and Hashing from the Perspective
of the Fusion Tree. SIAM J. Comput., 29(3):1030–1049,
2000.

CCCG 2011, Toronto ON, August 10–12, 2011

145

23rd Canadian Conference on Computational Geometry, 2011

146

CCCG 2011, Toronto ON, August 10–12, 2011

Point Location in Well-Shaped Meshes Using Jump-and-Walk∗

Jean-Lou De Carufel† Craig Dillabaugh‡ Anil Maheshwari§

Abstract

We present results on executing point location queries
in well-shaped meshes in R2 and R3 using the Jump-
and-Walk paradigm. If the jump step is performed on a
nearest-neighbour search structure built on the vertices
of the mesh, we demonstrate that the walk step can be
performed in guaranteed constant time. Constant time
for the walk step holds even if the jump step starts with
an approximate nearest neighbour.

1 Introduction

Point location is a topic that has been extensively stud-
ied since the origin of computational geometry. In R2,
the point location problem, typically referred to as pla-
nar point location, can be defined as follows. Preprocess
a planar subdivision, specified as the union of n trian-
gles, so that given a query point q, the triangle con-
taining q can be reported efficiently. There are several
well known results showing that a data structure with
O(n) space can report such queries in O(log n) time.
In R3, we have a subdivision of the three dimensional
space into tetrahedra, and again given a query point q
we wish to return the tetrahedron containing q. From
a theoretical standpoint, the problem of general spatial
point location in R3 is still open [1].

In this paper, we consider a more specialized problem.
We wish to answer point location queries in two and
three dimensions for well-shaped triangular and tetrahe-
dral meshes. A well-shaped mesh, denoted byM, is one
in which all its simplices have bounded aspect ratio (see
Definition 1). This assumption is valid for mesh gener-
ation algorithms that enforce the well-shaped property
on their output meshes [6]. Our motivation came from
an external memory setting, where we have examined
data structures for representations that permit efficient
path traversals in meshes that typically do not fit in the
main memory [3].

Let P be the set of vertices definingM. In this paper
we show that, given a query point q, and its (exact or

∗Research supported by funding from NSERC.
†Computational Geometry Lab, School of Computer Science,

Carleton University
‡School of Computer Science, Carleton University,

cdillaba@cg.scs.carleton.ca
§School of Computer Science, Carleton University,

anil@scs.carleton.ca

approximate) nearest neighbor p ∈ P , the number of
triangles (or tetrahedra) intersected by the line segment
pq is bounded by a constant. On the basis of this result,
we develop a point location method following the Jump-
and-Walk paradigm, which typically works as follows
(Devroye et al. [2], Mücke et al. [8]):
Jump Step: Select a set of possible start (jump) points
and store them in a data structure that can efficiently
answer proximity queries. Given a query point q, locate
a nearest neighbor of q (say p) and then Jump to p.
Walk Step: Walk through the sequence of simplices,
starting at p, in a straight line, towards q, until the
simplex containing q is located.

While jump-and-walk gives expected search times in
most instances, and is often slightly less efficient theo-
retically than other techniques, it has the advantage of
being simple and is often very efficient in practice.

1.1 Our Results

We present results for the “Walk”-step in the Jump-and-
Walk strategy in R2 and R3 for well shaped triangular
and tetrahedral meshes. In particular, we show that

1. Given a well-shaped mesh M in R2 or R3, jump-
and-walk search can be performed in the time re-
quired to perform an exact nearest neighbour search
on the vertices of M plus constant time for the
walk-step to find the triangle/tetrahedron contain-
ing the query point.

2. Given a well-shaped mesh M in R2 or R3, jump-
and-walk search can be performed in the time re-
quired to perform an approximate nearest neigh-
bour (see Definition 2) search on the vertices of
M, plus constant time for the walk-step to find the
triangle/tetrahedron containing the query point.

While we present results in both R2 and R3, we feel
that our most interesting contribution is the constant
time walk-step in R3 using approximate nearest neigh-
bour for the jump-step. In R3, there are no efficient
structures for answering exact nearest neighbor queries;
in spite of that we are able to show that the walk-step
can be performed in constant time using only the knowl-
edge of an approximate nearest neighbor. The major
advantage of our approach, in addition to being theo-
retically optimal, as it matches the query time for this
setting as presented in [10], is that it is also practi-
cal. The practicality of approximate nearest neighbor

CCCG 2011, Toronto ON, August 10–12, 2011

147

23d Canadian Conference on Computational Geometry, 2011

searching has already been demonstrated, see ANN Li-
brary [7], and the implementation of the walk-step is
fairly trivial and straightforward.

2 Background

In this paper we consider point location in triangular
and tetrahedral meshes in two and three dimensions
respectively. We use M to denote a mesh in either
R2 or R3, and if we want to be specific we use M2 to
denote a triangular mesh in R2, and M3 to denote a
tetrahedral mesh in R3. We assume that the triangles
and tetrahedra, which are collectively referred as
simplices, are well-shaped, a term which will be defined
shortly. If all simplices of a mesh M are well-shaped,
then M is said to be a well-shaped mesh. Triangles in
M2 are considered adjacent if and only if they share
an edge. Similarly, tetrahedra in M3 are considered
adjacent if and only if they share a face.

Well-Shaped Meshes: We begin by stating the well-
shaped property (refer to [6]).

Definition 1 We say that a mesh M2 (M3) is well-
shaped if for any triangle (tetrahedron) t ∈ M2 (t ∈
M3), the ratio formed by the radius r(t) of the incircle
(insphere) of t and the radius R(t) of the circumcir-
cle (circumpshere) of t is bounded by a constant ρ, i.e.
R(t)
r(t) < ρ.

In this paper, all meshes and simplicies (triangles and
tetrahedra) are assumed to be well-shaped. We make
the following observations related to Definition 1.

Observation 1 Let t be a triangle (tetrahedron).

1. Let v be any vertex of t. Denote by ev (fv) the
opposite edge (face) of v in t. Let

mdist(v, t) = min
x∈ev
|xv| (mdist(v, t) = min

x∈fv
|xv|),

where the minimum is taken over all points x on ev
(fv). Therefore, mdist(v, t) is an upper-bound on
the diameter of the incircle (insphere of) t. For-
mally, 2r(t) ≤ mdist(v, t).

2. Let e be the longest edge of t. The diameter of the
circumcircle (circumsphere) of t is at least as long
as e. Formally, 2R(t) ≥ |e|.

Observation 2 There is a lower bound of α for each
of the angles in any triangle of M2. There is a lower
bound of Ω for each of the solid angles in any tetrahedron
of M3. In particular, we have α ≤ π

3 and cos(α) =
1+
√
ρ(ρ−2)

ρ for the two dimensional case. For the three

dimensional case, Ω ≤ 3 arccos
(

1
3

)
− π and sin

(
Ω
2

)
=

3
√

3
8ρ2 (see [5]).

Jump-and-Walk for Point Location: In [8], point
location queries using the jump-and-walk are addressed
for Delaunay triangulations of a random set of points in
R2 and R3. Devroye et al. [2] showed that the expected
search times for the jump-and-walk in Delaunay tri-
angulations range from Ω(

√
n) to Ω(log n), depending

on the distribution and the specific data structure
employed for the jump step.

Nearest Neighbour Queries: The nearest neigh-
bour query works as follows. Given a point set P and a
query point q, return the point p ∈ P nearest to q, i.e.
for all v ∈ P , |pq| ≤ |vq|. A closely related query is the
approximate nearest neighbour (ANN) query defined as
follows.

Definition 2 Let P be a set of points in Rd, q be a
query point and p ∈ P be an exact nearest neighbour
of q. Given an ε ≥ 0, we say that a point p̂ ∈ P is
an (1 + ε)-approximate nearest neighbour of q if |p̂q| ≤
(1 + ε)|pq|.

3 Planar Point Location in M2

Let P be the set of vertices of a well-shaped mesh M2

and q be a query point lying in a triangle ofM2. Let p
be a nearest neighbour of q. Consider the set of triangles
encountered in a straight-line walk from p to q in M2.

Lemma 1 The walk-step along pq visits at most
⌊
π
α

⌋

triangles.

Proof. Without loss of generality, suppose |pq| = 1.
Let C(q, |pq|) be the circle with centre q and radius |pq|.
Since p is a nearest neighbour of q, there is no vertex
of M2 in the interior of C(q, |pq|). Denote by ` the line
through pq and let p′ 6= p be the intersection of ` with
C(q, |pq|) (see Fig. 1). Since C(q, |pq|) is a unit circle,

the arc
_

pp′ has length π. Any triangle intersecting pq
intersects ` in the interior of C(q, |pq|). All such trian-
gles have one vertex to the left of ` and two vertices to
the right of ` or vice-versa. (If a vertex is on `, consider
it to be on the right.) We separate the triangles inter-
secting ` into two sets, L and R containing the triangles
with exactly one vertex to the left, and right, of `, re-
spectively. Consider an arbitrary triangle t ∈ L and let
the vertices of t be a, b and c. The edge ab (respectively
ac) intersects C(q, |pq|) at b′ and b′′ (respectively at c′

and c′′) (see Fig. 1). Let θ = ∠bac. Since ab and ac
are two secants which intersect C(q, |pq|), we know that

θ = 1
2 (

_

b′c′ −
_

c′′b′′), from which we conclude
_

b′c′ ≥ 2θ.

Hence
_

b′c′ ≥ 2θ ≥ 2α by Observation 2. Therefore, we
can conclude that the set L contains at most

⌊
π
2α

⌋
trian-

gles. The same bound holds for triangles in R. Thus the
number of triangles intersecting pq is at most

⌊
π
α

⌋
. �

23rd Canadian Conference on Computational Geometry, 2011

148

CCCG 2011, Toronto ON, August 10–12, 2011

`

a

p

q

b

c

b′

c′

b′′

c′′

p′

θ

Figure 1: A triangle with fixed minimum angle covers
an arc bounded by a minimum fixed length on C.

Next consider the scenario where p̂ ∈ P is an ap-
proximate nearest neighbor of the query point q. Note
that C(q, |p̂q|) may contain vertices of M2. Therefore,
the proof of Lemma 1 does not apply for the walk-step
along p̂q. Next, we prove that for an ANN search struc-
ture (see Definition 2), we can find an ε such that the
number of triangles encountered in a straight line walk
from p̂ to q, is bounded by a constant. We begin with
the following lemma.

Lemma 2 Let t be a well-shaped triangle and C be a
circle of radius r(C) such that none of the vertices of t
are in the interior of C. If (i) at least two edges of t
intersect C or if (ii) t contains the centre of C, then t
has at least one edge of length at least 2r(C) sinα.

Proof. Let t = 4abc. From Observation 2, we know
that α ≤ ∠bac.
(i) Suppose that all the edges of t are strictly smaller

than 2r(C) sinα for a contradiction. Let C′ be the
biggest circle that can be constructed such that
none of the vertices of t are in the interior of C
and at least two edges of t intersect C′. Thus, C′ is
strictly smaller than the circumcircle of the equilat-
eral triangle of side length 2r(C) sinα. Therefore,
by elementary geometry,

r(C′) <
2
√

3r(C)
3

sinα

≤ 2
√

3r(C)
3

sin
(π

3

)
by Observation 2,

= r(C),

which is a contradiction.

(ii) Suppose that less than two edges of t intersect C
and t contains the centre of C. If t contains C,
then all the edges of t are longer than 2r(C) ≥
2r(C) sinα. Suppose exactly one edge of t intersects
C. Let ab be this edge. We form a new triangle t′

by translating ac and bc inward until one of ac or
ab intersects C. Now t′ satisfies the hypothesis of
Case (i).

�

Observation 3 Let ti = 4abc be a well-shaped trian-
gle.

a b

c a′b′

B(a)
B(b)

B(c)

ti

ti+1

C(q, |pq|)

tac tbc

Figure 2: Neighbourhood of the triangle ti from which
the path pq leaves C.

1. Let ti+1 be the well-shaped triangle adjacent to ti
at edge ab. The edges of ti+1 have length at least
|ab| sinα.

2. Let a ∈M2 be a vertex and ab be an edge incident
to a. The edges of any triangle incident to a have

length at least |ab| sinb παc α.

Proof.

1. It follows from the well-shaped property.

2. From Observation 3-1, if a triangle t in M2 has
an edge of length L, then no triangle that can
be reached by walking from t through at most d
edge adjacent triangles has an edge shorter than
L sind+1 α. Then the result follows from Observa-
tion 2.

�

Consider the walk from p̂ to q in M2. It intersects
the boundary of C(q, |pq|) at a point x. Let ti be the
first triangle we encounter in the walk from p̂ to q that
contains x.

Observation 4 ti has an edge of length at least
2|pq| sin2 α.

Proof. If ti contains q, then by Lemma 2, ti has an
edge of length at least 2|pq| sinα ≥ 2|pq| sin2 α. If ti
does not contain q, then there is an edge of ti intersect-
ing p̂q in the interior of C(q, |pq|). Let a and b be the two
vertices of this edge. Consider the triangle ti+1 adjacent
to ti across ab. If q ∈ ti+1, then |ab| ≥ 2|pq| sin2 α by
Lemma 2 and Observation 3-1, otherwise ti+1 has two
edges intersecting C(q, |pq|). Again, by Lemma 2 and
Observation 3-1, |ab| ≥ 2|pq| sin2 α. �

Denote the vertices of ti by a, b and c. Let G be the
union of all the triangles incident to a, b, and c (see
Fig. 2).

Lemma 3 Let x ∈ ti be the intersection of p̂q with the
boundary of C(q, |pq|). Let y ∈ G be the intersection of
the line through p̂q with the boundary of G such that x

is between q and y. Then |xy| ≥ 2|pq| sinb παc+4 α.

CCCG 2011, Toronto ON, August 10–12, 2011

149

23d Canadian Conference on Computational Geometry, 2011

a b

c
b′

B(c)

ti

tac
x

y

Figure 3: Illustration of the proof of Lemma 3.

Proof. Denote by tac = 4ab′c (respectively by tbc =
4a′bc) the triangle adjacent to ti at ac (respectively at
bc) (see Fig. 2(a)). Note that tac and tbc are in G.

By Observations 3-2 and 4, the length of all
edges incident to a (respectively to b and to c) is

at least 2|pq| sinb παc+2 α (respectively 2|pq| sinb παc+2 α

and 2|pq| sinb παc+3 α by Observation 3-1). There-
fore G contains a ball B(a) (respectively B(b) and
B(c)) with centre a (respectively b and c) and ra-

dius 2|pq| sinb παc+2 α (respectively 2|pq| sinb παc+2 α and

2|pq| sinb παc+3 α), which does not contain any vertices
of M2 in its interior.

To minimize |xy|, we take x on the boundary of ti. We
will find a lower bound for |xy| by supposing, without
loss of generality, that y ∈ b′c. Since y is supposed to be
on the boundary of G, it cannot be inside B(c). With
x ∈ ac and b ∈ b′c\B(c), the smallest possible value for

|xy| is 2|pq| sinb παc+4 α (see Fig. 3). �

We can now state our main result.

Theorem 4 Let M2 be a well-shaped triangular mesh
in R2. Given p̂, an (1 + ε)-approximate nearest neigh-
bour of a query point q from among the vertices ofM2,
the straight line walk from p̂ to q visits at most 2

⌊
π
α

⌋

triangles.

Proof. Following the notation of Lemma 3, if p̂ ∈ G,
then the straight line walk from p̂ to q visits at most
2
⌊
π
α

⌋
triangles. There are

⌊
π
α

⌋
triangles for the part

of the walk inside C(q, |pq|) (see Lemma 1) and
⌊
π
α

⌋

triangles for the part of the walk inside G. Indeed, in
the worst case, the walk inside G will either cross ab′,
b′c, ca′ or a′b. So this walk will either cross the triangles
incident to a, the triangles incident to b or the triangles
incident to c.

We can ensure that p̂ ∈ G by building an ANN search

structure with ε ≤ 2 sinb παc+4 α on the vertices of M2.
Indeed, in this case

|p̂q| ≤
(

1 + 2 sinb παc+4 α
)
|pq|

= |pq|+ 2|pq| sinb παc+4 α

≤ |pq|+ |xy| by Lemma 3,

= |qx|+ |xy|
= |qy|

because q, x and y are aligned in this order. So p̂ must
be in G. �

4 Spatial Point Location in M3

Searching in a well-shaped three dimensional meshM3

can be performed using essentially the same technique
as outlined for M2 in Section 3. Let P denote the set
of vertices of M3. For a query point q, let p ∈ P be
its nearest neighbour. We will perform the walk-step
starting at p and walk towards q in a straight line, and
we will show that we visit only a constant number of
tetrahedra. Let S(q, |pq|) denote a ball of radius |pq|
centred at q.

Theorem 5 Let M3 be a well-shaped triangular mesh
in R3. Given p, a nearest neighbour of a query point q
from among the vertices of M3, the walk from p to q
visits at most 1

64ρ
3(ρ2 + 4)3 tetrahedra.

Proof. We do not prove Theorem 5 due to lack of space.
Refer to the extended version of the paper. �

Next, we assume that p̂ is an approximate nearest
neighbor of q. First, we establish a geometric lemma.
Consider an arbitrary ball S. We say S is an empty
ball if it contains no vertex ofM3. Note that edges and
faces of M3 may intersect S. Let f be a face in M3

that intersects S. We have the following Lemma.

Lemma 6 Let T = abcd ∈M3 be a tetrahedron and S
be a sphere of radius r(S) such that none of the vertices
of T are in the interior of S. If (i) f = 4abc is tangent
to S or if (ii) f crosses S in a way that f ∩S is a disk,
then 2

ρr(S) is a lower bound on the length of edges ad,
bd and cd.

Proof. (i) Let the tangent point be x. Let H be the
supporting plane of f . Without loss of generality,
assume that H is horizontal, and S is below H.
There are two tetrahedra of M3 that are adjacent
to f . We will focus on the tetrahedron that is be-
low H, and denote it by ti+1. Let d be the fourth
vertex of ti+1. If we place x at the pole of S (we
are free to rotate S) and take the equator of S and
project it onto H, we obtain a cylinder, say C. The
complement of S with respect to C defines the re-
gion in which d can be placed (see Figure 4). If d is
outside this region then |xd| is greater than the ra-
dius of S, and we have a nice lower bound on |xd|.
Let the point d′ be the projection of d onto H.

Now consider some placement of the point d, and
assume that d touches the surface of S (which is
the worst case in this setting). Consider the line
segments xd and dd′ and observe that

23rd Canadian Conference on Computational Geometry, 2011

150

CCCG 2011, Toronto ON, August 10–12, 2011

x

d

d′

S

H

Figure 4: Illustration of proof of Lemma 6.

S

x′

x
d′

d

Figure 5: Determining the bound for |xd|.

(a) dd′ is at at least twice the radius of the in-
sphere r(ti+1) of ti+1 by Observation 1-1. For-
mally, |dd′| ≥ 2r(ti+1).

(b) xd lies completely within ti+1. Then |xd| ≤
2R(ti+1) by Observation 1-2.

Without loss of generality we assume that S is cen-
tred at the origin of our coordinate system. Con-
sider the situation on the plane through the par-
allel lines Ox and dd′ (both lines are normal to
H) as depicted in Fig. 5. By the definition of a

well-shaped tetrahedron we know that R(ti+1)
r(ti+1) ≤ ρ,

and by the observations above, we have |xd||dd′| ≤ ρ.

Let x′ 6= x be the intersection of the line through
Ox with S. By elementary geometry, the tri-
angles 4xdx′ and 4dd′x are similar. Therefore,
2r(S)
|xd| = |xx′|

|xd| = |xd|
|dd′| ≤ ρ, so |xd| ≥ 2

ρr(S) (see

Fig. 5).

(ii) If f crosses S, then the intersection of f with S
forms a circle on S (because S is empty). Let x′ be
the center of this circle. If we translate T so that f
is tangent to S at x′ then T satisfies the hypothesis
of Case (i).

�

Observation 5 Let ti = abcd be a well-shaped tetrahe-
dron.

1. Let ti+1 be the well-shaped tetrahedron adjacent to
ti at edge ab. There exists a constant kΩ that de-
pends only on Ω such that the edges of ti+1 have
length at least |ab|kΩ.

2. Let a ∈M3 be a vertex and ab be an edge incident
to a. The edges of any tetrahedron incident to a

have length at least |ab|kb
2π
Ω c

Ω .

Proof. 1. Let v0 = a, v1 = b, v2 = c and v3 = d.
Denote the volume of ti by V and the solid angle
at vertex vi by θi. We have (see [5])

sin

(
θ0

2

)
=

12V√ ∏
1≤i<j≤3

((|v0vi|+ |v0vj |)2 − |vivj |2)
(1)

Let l = |v0v1| and suppose without loss of gener-
ality that the edges of ti+1 have length at least 1

(hence l >
√

3
3). We first explain how to find the

biggest possible value lmax for l such that θ0 ≥ Ω.
The worst case is when the edges v1v2, v2v3 and
v1v3 all have minimum length 1. Therefore, sup-
pose that 4v1v2v3 is an equilateral triangle. We
are looking for the position of v0 that maximizes
l and such that θ0 ≥ Ω. Let ∆ be the line per-
pendicular to 4v1v2v3 that contains the centroid
of 4v1v2v3. To maximize l, we need to take v0 on
∆.

Therefore, the height of ti with respect to 4v1v2v3

is equal to
√
l2 − 1

3 and V =
√

3l2−1
12 . As we move

v0 up, the solid angle θ0 decreases. Therefore, by

(1), we need to find the biggest l >
√

3
3 such that

sin

(
Ω

2

)
=

√
3l2 − 1

(4l2 − 1)
√

4l2 − 1
. (2)

Let lmax be the biggest l >
√

3
3 that satisfies (2).

Since (2) reduces to a cubic equation in l2, lmax

exists, it is unique and it can be computed exactly.
We have kΩ = 1

lmax
.

2. The proof is similar to the one of Observation 3-2.
It uses Observation 5-1 and the fact that the full
solid angle is 4π.

�

Consider the walk from p̂ to q in M3. It intersects
the boundary of S(q, |pq|) at a point x. Let ti be the
first tetrahedron we encounter in the walk from p̂ to q
that contains x.

Observation 6 ti has an edge of length at least 2
ρ |pq|.

Proof. Similar to the proof of Observation 4. �

We can now apply the same approach as we used
in M2 to show that the number of tetrahedron visited
along p̂q is a constant. Denote the vertices of ti by a,
b, c and d. Let G be the union of all the tetrahedra
incident to a, b, c and d.

Lemma 7 Let x ∈ ti be the intersection of p̂q with the
boundary of S(q, |pq|). Let y ∈ G be the intersection of
the line through p̂q with the boundary of G such that x

is between q and y. Then |xy| ≥ 2
ρ |pq|k

b 2π
Ω c+1

Ω sin
(

Ω
2

)
.

CCCG 2011, Toronto ON, August 10–12, 2011

151

23d Canadian Conference on Computational Geometry, 2011

Proof. We follow the proof of Lemma 3. In two di-
mensions, the lower bound on |xy| was computed by
calculating the shortest exit out of a well-shaped tri-
angle t. This shortest exit is perpendicular to an edge
of t and constrained by the radius of the ball B(c). In
three dimensions, we calculate the shortest exit out of a
well-shaped tetrahedron t. This shortest exit is perpen-
dicular to a face of t, it goes through an edge of t and
it is constrained by the radius of a ball in three dimen-

sions. This leads to |xy| ≥ 2
ρ |pq|k

b 2π
Ω c+1

Ω sin
(

Ω
2

)
. �

Theorem 8 LetM3 be a well-shaped tetrahedral mesh
in R3. Given p̂, an (1 + ε)-approximate nearest neigh-
bour of a query point q from among the vertices of
M3, the straight-line walk from p̂ to q visits at most
1
64ρ

3(ρ2 + 4)3 +
⌊

2π
Ω

⌋
tetrahedra.

Proof. This proof is similar to the proof of Theorem 4

with ε ≤ 2
ρk
b 2π

Ω c+1

Ω sin
(

Ω
2

)
. �

5 Discussion

Our interest in this problem as such grew out of our
research into efficient path traversals of large size well-
shaped meshes in external memory settings (see [3]).
However, it was assumed that the starting tetrahedron
on such a path was given as part of the query. Adding
the jump-and-walk point location step, results in effi-
ciently answering a number of queries, without this as-
sumption. Such queries include reporting the intersec-
tion of a box with the mesh (analogous to a window
query in R2) or any other convex shape, and reporting
streamlines.

To this point in the paper we have omitted any dis-
cussion of the data structures employed in the point lo-
cation step. An ideal option in many ways is to employ
a kd-tree, which is simple, can answer nearest neigh-
bour queries in both R2 and R3 (and has I/O-efficient
variants) [9]. Unfortunately, nearest neighbour queries
in kd-trees, while good in the expected case [4], can in
the worst-case require linear time. However, we are not
aware of any work, which analyzes the worst-case query
times for kd-trees with respect to vertices of a well-
shaped mesh. An interesting follow on research topic
to this paper would be to examine if query times for
exact nearest neighbours in kd-trees, for points drawn
from a well-shaped mesh, are in fact optimal.

In essence, what we have shown in this paper is
that jump-and-walk strategy for point location in well-
shaped meshes in R2 and R3, is practical, simple, and
efficient, and requires only the knowledge of an approx-
imate nearest neighbor. It will be worthwhile to ex-
plore other geometric configurations where the jump-
and-walk can lead to efficient ways to perform point
location queries.

Acknowledgements: We thank the referees for their
helpful comments.

References

[1] M. de Berg, M. J. van Kreveld, M. H. Overmars,
and O. Schwarzkopf. Computational Geometry: Al-
gorithms and Applications. Springer.

[2] L. Devroye, C. Lemaire, and J.-M. Moreau. Ex-
pected time analysis for Delaunay point location.
Computational Geometry: Theory and Applica-
tions, 29(2):61–89, 2004.

[3] C. Dillabaugh. I/O efficient path traversal in well-
shaped tetrahedral meshes. In CCCG, pages 121–
124, 2010.

[4] J. H. Friedman, J. L. Bentley, and R. A. Finkel.
An algorithm for finding best matches in logarith-
mic expected time. ACM Trans. Math. Softw.,
3(3):209–226, 1977.

[5] A. Liu and B. Joe. Relationship between tetrahe-
dron shape measures. BIT Numerical Mathematics,
34:268–287, 1994.

[6] G. L. Miller, S.-H. Teng, W. Thurston, and S. A.
Vavasis. Geometric separators for finite-element
meshes. SIAM J. Sci. Comput, 19(2):364–386,
1998.

[7] D. Mount and S. Ayra. ANN: A library for approx-
imate nearest neighbor searching. http://www.cs.
umd.edu/~mount/ANN/, Jan. 2010.

[8] E. P. Mücke, I. Saias, and B. Zhu. Fast randomized
point location without preprocessing in two- and
three-dimensional Delaunay triangulations. Com-
putational Geometry: Theory and Applications,
12(1-2):63–83, 1999.

[9] J. T. Robinson. The k-d-b-tree: A search struc-
ture for large multidimensional dynamic indexes.
In SIGMOD, pages 10–18, 1981.

[10] S.-H. Teng. Fast nested dissection for finite ele-
ment meshes. SIAM Journal on Matrix Analysis
and Applications, 18(3):552–565, 1997.

23rd Canadian Conference on Computational Geometry, 2011

152

CCCG 2011, Toronto ON, August 10–12, 2011

Open Problems from CCCG 2010

Erik D. Demaine∗ Joseph O’Rourke†

The following is a description of the problems pre-
sented on August 9, 2010 at the open-problem session of
the 22nd Canadian Conference on Computational Ge-
ometry held in Winnipeg, Manitoba, Canada.

Coiling Rope in a Box
Joseph O’Rourke
Smith College
orourke@cs.smith.edu

Is there a procedure to decide whether a rope of
length L and radius r can be coiled to fit in an
a×b×c box? All five parameters can be assumed to
be rational numbers for the decision question. The
rope is a smooth curve with a tubular neighborhood
of radius r > 0, such that the rope does not self-
penetrate. In particular, the curve should not turn
so sharply that the disks of radius r orthogonal to
the curve that determine the tubular neighborhood
interpenetrate. For an open curve, each endpoint
is surrounded by a ball of radius r.

For a box of dimensions 1×1× 1
2 and rope of ra-

dius r = 1
4 , perhaps the maximum length achiev-

able is L = 1
2 + π

4 ≈ 1.3, realized by a ‘U’-shape as
in Figure 1.

Packing circles in a square is a notoriously dif-
ficult problem, but perhaps it is easier to pack a
rope in a cube, because the continuity of the curve
constrains the options.

¼

¼

¼

¼

Figure 1: Overhead view of a rope in a box.

∗MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar Street, Cambridge, MA 02139, USA, edemaine@mit.edu
†Department of Computer Science, Smith College, Northamp-

ton, MA 01063, USA. orourke@cs.smith.edu

Update. This problem also appeared on Math-
Overflow,1 where Greg and W lodzimierz Kuper-
berg opine that it is open. At the suggestion of
several people during the CCCG presentation, the
poser started exploring the 2D version. If k = 1

2r is
an even integer, then there are two natural strate-
gies for coiling the rope within a box whose height
renders it two-dimensional, as illustrated in Fig-
ure 2. Interestingly, the length of the core rope
curve is identical for the two coilings:

L = 2(k − 1)(rπ/2) + 2(k − 1)2r .

Figure 2: Two 2D coilings in a 1 × 1 × 2r box. Here
r = 1

16 , k = 8, and L = 7π
16 + 49

8 ≈ 7.5.

When Sticks Fall, Will They Weave?
Joseph O’Rourke
Smith College
orourke@cs.smith.edu

Imagine n z-vertical sticks uniformly spaced around
a unit-radius circle in the xy-plane. At random
times t1, t2, . . . , tn ≥ 0, each stick is randomly ε-
perturbed from the vertical, and they fall under
the influence of gravity. Will some sticks form a
“teepee” suspended above the xy-plane?

Let us assume that the sticks are one-dimensional
segments of height h, perhaps h = 2 so that they
span the diameter, and that their base points are
pinned to the plane via universal joints. It seems
possible that a subset of sticks could fall to form
a weaving with a cyclic on-top-of graph, as illus-
trated in Figure 3. Assuming a sufficiently large
coefficient of friction µ between pairs of sticks, it

1 http://mathoverflow.net/questions/26525/.

CCCG 2011, Toronto ON, August 10–12, 2011

153

23rd Canadian Conference on Computational Geometry, 2011

seems conceivable that such a structure would not
collapse to the plane. Is it possible that some sticks
form a woven “teepee” structure above the plane?
Or would all sticks ultimately flatten to the plane?

Figure 3: A weaving of four sticks.

Update. This problem also appeared on Math-
Overflow,2 where Scott Morrison observed that if
all sticks are released at the same time t = 0, then
they would hit one another with probability zero.

Linkless embeddings of graphs in R3

David Eppstein
University of California, Irvine
eppstein@ics.uci.edu

In one of the early papers on linkless embedding,
Sachs [Sac83] asked a question that still remains
open: is there an analogue of Fáry’s theorem for
three-dimensional drawing? That is, if a graph has
a linkless or flat embedding with curved or polyg-
onal edges, does it automatically have a linkless or
flat embedding with straight line segment edges?
If so, how can we find these straight drawings ef-
ficiently? If not, which graphs do have linkless
straight drawings? An embedding of a graph into
R3 is linkless if, for every pair of disjoint cycles C1

and C2, there is a topological sphere separating C1

from C2; and an embedding is flat if every cycle in
the graph forms the boundary of a topological disk
that is disjoint from all the other vertices and edges
of the graph. A flat embedding is always linkless,
while a linkless embedding may not be flat; how-
ever, every graph with a linkless embedding also
has a flat embedding.

Does every flat embedding have a homeomor-
phic straight embedding? Two embeddings are
homeomorphic if there is a continuous deformation
of space that takes one embedding to the other.
Not every linkless embedding has a homeomorphic
straight embedding: for instance, an embedding of
the triangle K3 that ties it into a trefoil knot is
linkless, but cannot be straightened (the simplest

2 http://mathoverflow.net/questions/29660/.

representation of the trefoil with straight edges re-
quires six edges in the cycle). However, this exam-
ple is not a flat embedding.

Analogously to Wagner’s theorem for planar
graphs, the linklessly embeddable graphs may be
characterized by a set of seven forbidden graph mi-
nors (the Petersen family, which includes K6 and
the Petersen graph) [RST95]. Based on this charac-
terization, it is possible to recognize linklessly em-
beddable graphs and find flat embeddings for them
in linear time [KKM10]. For planar graphs, another
important result that goes beyond recognition and
embedding is Fáry’s theorem, which states that if
a graph has a noncrossing embedding in the plane
with arbitrary curves (or polygonal chains) for its
edges, then it also has a noncrossing embedding
with straight line segments for its edges. This re-
sult underlies many graph drawing techniques, be-
cause straight-line edges are easier for computers
to draw and easier for humans to read.

References

[KKM10] Ken-ichi Kawarabayashi, Stephan
Kreutzer, and Bojan Mohar. Linkless
and flat embeddings in 3-space and the
unknot problem. In Proc. Symp. on
Computational Geometry (SoCG ’10),
pp. 97–106, 2010.

[RST95] Neil Robertson, Paul D. Seymour, and
Robin Thomas. Sachs’ linkless embed-
ding conjecture. Journal of Combina-
torial Theory, Series B, 64 (2):185–227,
1995.

[CG83] John Conway and C. McA. Gordon.
Knots and links in spatial graphs. Jour-
nal of graph theory, 7(4):445–453, 1983.

[Sac83] Horst Sachs. On a spatial ana-
logue of Kuratowski’s theorem on planar
graphs—An open problem. Graph The-
ory, pages 230–241, 1983.

Covering points with rectangles
Matias Korman
Université Libre de Bruxelles
mkormanc@ulb.ac.be

Given a set S of n points and an integer k ≤ n,
how efficiently can we find the axis-aligned rectan-
gle of minimum area that covers n − k points of
S, that is, all but k of the points? The motivation
for the problem comes from clustering, where the
k points to ignore are outliers which we would like
to identify.

Several known algorithms solve this problem,
with running times O(n + k3) [AB+11], O(n +

23rd Canadian Conference on Computational Geometry, 2011

154

CCCG 2011, Toronto ON, August 10–12, 2011

k2(n− k)) [SK98], and O((n− k)2n log n) [AI+91]
(when the rectangle can have any orientation). Ob-
serve that, unless k = o(n) or k = n − c for some
constant c, all these algorithms run in cubic time.
The question is whether subcubic time is possible
for the general problem.

Several specializations of the problem render it
much simpler. For example, if the aspect ratio
of the rectangle is prescribed, the problem can be
solved in O(n log n) time [Cha99]. Let L,R, T,B
be the set of k leftmost, rightmost, topmost, and
bottommost points of S, respectively. If (L ∪R) ∩
(T ∪ B) = ∅, each dimension can be solved inde-
pendently, leading to an O(n+k2)-time algorithm.

References

[AI+91] A. Aggarwal, H. Imai, N. Katoh, and
S. Suri. Finding k points with minimum
diameter and related problems. Journal
of Algorithms, 12:38–56, 1991.

[AB+11] H.-K. Ahn, S. W. Bae, E. D. Demaine,
M. L. Demaine, S.-S. Kim, M. Korman,
I. Reinbacher, and W. Son. Covering
points by disjoint boxes with outliers.
Computational Geometry: Theory and
Applications, 44(3):178 – 190, 2011.

[Cha99] T. M. Chan. Geometric applications
of a randomized optimization technique.
Discrete and Computational Geometry,
22:547–567, 1999.

[SK98] M. Segal and K. Kedem. Enclosing k
points in the smallest axis parallel rect-
angle. Information Processing Letters,
65:95–99, 1998.

Counting points in circles
Maarten Löffler
University of California, Irvine
mloffler@ics.uci.edu

Given n equal-radius circles whose centers form the
points of a regular

√
n × √n grid, and given n

points in the plane, how quickly can we count the
number of points in each circle? This problem can
be solved, in the more general case where the cir-
cle centers are not constrained to form a grid, in
O∗(n4/3) time via batched circular range queries.
But does the grid structure help at all?

A similar question arises by dualizing the prob-
lem: given n equal-radius circles whose centers
form a regular grid, and given n points, count the
number of circles containing each point.

Domatic partition problems
David Matula
Southern Methodist University
matula@lyle.smu.edu

The domatic partitioning problem asks to partition
a graph into a maximum number of vertex-disjoint
dominating sets. It is known to be NP-hard. The
new problem is the independent domatic partition
problem, which seeks to partition a graph into a
maximum number of disjoint independent dominat-
ing sets. For more details, see [MLM10].

References

[MLM10] Dhia Mahjoub, Angelika Leskovskaya,
and David W. Matula. Approximating
the independent domatic partition prob-
lem in random geometric graphs—An ex-
perimental study. In CCCG, pages 195–
198, 2010.

Separating and covering points in the plane
Filip Morić
Ecole Polytechnique Fédérale de Lausanne
filip.moric@epfl.ch

1. Let B and R be sets of n blue and n red points in
the plane in general position (i.e., no three points
are collinear). What is the minimum number f(n)
such that one can always find a simple polygon with
at most f(n) sides that separates the blue and red
points (i.e., the blue points are inside and the red
points are outside of the polygon)? It is known that
n ≤ f(n) ≤ 3dn2 e. (Note that the problem is inter-
esting only under the general position assumption,
for if all the points were on a line in the order red,
blue, red, blue, . . . , then we would need at least a
2n-gon to separate them.)

2a. What is the smallest number g(n) such that any
n points in the plane can be covered by a simple
(non-self-intersecting) polygonal line with at most
g(n) sides? Only trivial bounds are known: n/2 ≤
g(n) ≤ n.

2b. What is the smallest number h(n) such that any
n points in the plane can be covered by a polyg-
onal line (possibly self-intersecting) with at most
h(n) sides? The known bounds are n/2 ≤ h(n) ≤
n/2+o(n), where the lower bound is obvious, while
the upper bound is obtained by repeatedly using
the Erdős-Szekeres theorem. Thus the gap in this
version is quite small.

Update to 2b. At the GWOP 2011 workshop,
E. Welzl proposed the following nice version of the
problem. Call a set of n points in the plane perfect
if it can be covered by a polygonal line (possibly

CCCG 2011, Toronto ON, August 10–12, 2011

155

23rd Canadian Conference on Computational Geometry, 2011

self-intersecting) with at most dn/2e sides. For ex-
ample, a set of points in convex position is perfect.
The problem is to determine the maximum number
p(n) such that any set of n points in the plane has
a perfect subset of size p(n). By the Erdős-Szekeres
theorem, p(n) = Ω(log n). Can this bound be im-
proved?

Orthogonal layering
S. Mehdi Hashemi
Amirkabir University of Technology
hashemi@aut.ac.ir

Decompose a graph G into edge subsets
E1, E2, . . . , Ek such that each G[Ei] is planar
and maximum degree 4. What is the minimum
orthogonal thickness Θ̂(G) of G? The poser
conjectures that Θ̂(G) ≤ d∆/4e + 1, where ∆ is
the maximum degree of G. See his paper [TH10]
for more details.

References

[TH10] Maryam Tahmasbi and S. Mehdi Hashemi.
Orthogonal thickness of graphs. In CCCG,
pages 199–202, 2010.

Largest independent set in rectangle-Delaunay
Sathish Govindarajan
Indian Institute of Science, Bangalore
gsat@csa.iisc.ernet.in

Define a rectangle-Delaunay graph for a set of n
points in the plane (no two on a horizontal or ver-
tical line) by connecting any two points that are
opposite corners of an empty axis-parallel rectan-
gle. This graph can have a quadratic number of
edges. What is the size of the largest independent
set in this graph, as a worst-case function of n?

This problem is related to conflict-free colorings.
Erdős-Szekeres yields a lower bound of Ω(

√
n),

which the poser improved to Ω(n0.618). For random
points in a square, Chen et al. [CPZT09] estab-
lished an upper bound of O(n(log log n)2/ log n).
(And this bound is nearly tight for random points
in a square.) The poser conjectures n/ polylog n is
the right bound.

References

[CPZT09] Xiaomin Chen, János Pach, Mario
Szegedy, and Gábor Tardos. Delaunay
graphs of point sets in the plane with
respect to axis-parallel rectangles. Ran-
dom Structures & Algorithms, 34(1):11–
23, Jan. 2009.

23rd Canadian Conference on Computational Geometry, 2011

156

CCCG 2011, Toronto ON, August 10–12, 2011

Where and How Chew’s Second Delaunay Refinement Algorithm Works

Alexander Rand∗

Abstract

Chew’s second Delaunay refinement algorithm with off-
center Steiner vertices leads to practical improvement
over Ruppert’s algorithm for quality mesh generation,
but the most thorough theoretical analysis is known
only for Ruppert’s algorithm. A detailed analysis of
Chew’s second Delaunay refinement algorithm with off-
centers is given, improving the guarantee of well-graded
output for any minimum angle threshold α∗ ≤ 28.60◦.

1 Introduction

Ruppert’s algorithm for quality triangular mesh gen-
eration [10] has a number of theoretical and practical
advantages making it the prototypical Delaunay refine-
ment setting: it is relatively simple to state, implement,
and analyze. For non-acute input and a minimum angle
threshold of about 20.70◦, the algorithm is guaranteed
to terminate and produce a mesh of optimal size up to
a constant factor. Over the past 15 years, this elegant
theory has been adjusted and refined to produce bet-
ter and better meshes. From a theoretical standpoint,
Miller, Pav, and Walkington gave an improved analy-
sis of Ruppert’s algorithm demonstrating that, under
mild assumptions on the input, termination is guaran-
teed for a minimum angle threshold as high as 26.45◦ [7].
Off-center Steiner vertices provide an alternative to cir-
cumcenter insertion, reducing the mesh sizes produced

∗Institute of Computational Engineering and Sciences, The
University of Texas at Austin, arand@ices.utexas.edu

Figure 1: Using the boundary of Lake Michigan as in-
put (left, 1537 vertices) and a minimum angle threshold
of 25◦, the results of Ruppert’s algorithm (center, 3707
vertices) and Chew’s second Delaunay refinement algo-
rithm with off-centers (right, 2960 vertices) are shown.

in practice. Üngör introduced this concept and demon-
strated its success with Ruppert’s algorithm [13].

Chew’s second Delaunay refinement algorithm [3] was
originally studied for meshing surfaces embedded in 3D,
but the restriction of this algorithm to the standard 2D
mesh generation problem yields two specific advantages
over Ruppert’s algorithm: the algorithm is theoretically
guaranteed to terminate for a larger minimum angle
threshold (26.57◦) and in practice the resulting meshes
have fewer vertices [12]. Most of the improvements to
Ruppert’s algorithm have been applied to Chew’s sec-
ond Delaunay refinement algorithm and are similarly
successful in practice; in fact, the default quality mesh
generation algorithm in Triangle [11] is Chew’s second
Delaunay refinement algorithm with off-centers.

We improve the analysis of Chew’s second Delaunay
refinement algorithm with off-center vertices. By ex-
tending the Miller-Pav-Walkington analysis, we prove
the termination of Chew’s second Delaunay refinement
algorithm for any minimum angle threshold less than
28.60◦, and this guarantee holds not only for circumcen-
ters but also for off-center Steiner vertices. Moreover,
we generalize the Üngör off-center to a larger class of
Steiner vertices characterized by a target angle and note
that in some cases these vertices are outside existing se-
lection discs. Finally, a simple example demonstrates
the impact of the target angle parameter.

2 Preliminaries

The input to a 2D mesh generator is a consistent collec-
tion of straight segments and vertices. The goal of the
mesh generator is to add vertices so that a triangulation
(in this paper, the constrained Delaunay triangulation)
of the final vertex set both conforms to the input seg-
ments and contains only high quality triangles.

Formally we follow [7]: a planar straight-line
graph (PSLG), G = (P , S), is a pair of sets of vertices
P and segments S, such that the endpoints of each seg-
ment of S are contained in P and the intersection of
any two segments of S is also contained in P . A PSLG
G′ = (P ′, S ′) is a refinement of the PSLG G if P ⊂ P ′

and each segment in S is the union of segments in S ′.

Problem Statement. Given an input PSLG G and a
minimum angle threshold α∗ compute a refinement G′

such that all angles of all triangles of the constrained
Delaunay triangulation of G′ are larger than α∗.

CCCG 2011, Toronto ON, August 10–12, 2011

157

23rd Canadian Conference on Computational Geometry, 2011

Figure 2: A PSLG (left) with local feature size indicated
at several points (gray) and a refinement (right) of the
PSLG that gives a quality, conforming triangulation.

The local feature size at point x with respect to
PSLG G, lfs(x), is the radius of the smallest closed
disk centered at x which intersects two disjoint features
of G. Most Delaunay refinement algorithm analysis is
based on relating the mesh size to the local feature size
of the input PSLG. Throughout this paper, local fea-
ture size is always considered with respect to the in-
put PSLG. Moreover, local feature size is 1-Lipschitz:
lfs(x) ≤ lfs(y) + |x − y|.

Before stating and analyzing Chew’s second Delau-
nay refinement algorithm, we state one fact about
constrained Delaunay triangulations which satisfy an
empty circumdisk property with respect to visible ver-
tices; for a complete definition see [2].

Proposition 1 Let T be a constrained Delaunay trian-
gulation of PLSG (P , S). Suppose that triangle T ∈ T
has circumcenter c and that c is not visible to T . Then
T lies inside the diametral disk of the constrained seg-
ment S ∈ S nearest to T that prevents visibility.

3 Chew’s Second Delaunay Refinement Algorithm

Stated carefully as Algorithm 1, Chew’s second Delau-
nay refinement algorithm has a few key differences from
Ruppert’s algorithm. The final constrained Delaunay
triangulation is generated from three types of vertices,
classified by why they were inserted into the mesh: in-
put vertices, midpoints, and circumcenters.

Algorithm 1 Chew’s second Delaunay refinement

Require: PSLG G and angle threshold α∗.
Compute constrained Delaunay triangulation T of G.
while T contains a poor quality triangle T do

if T encroaches a segments S then
Remove circumcenters from diametral disk of S.
Split S by adding its midpoint to T .

else
Insert the circumcenter of T into T .

end if
end while

Two particular steps above must be made precise.
Encroachment. A segment S is encroached if there

is a poor quality triangle T in the current triangulation

such that T and the circumcenter of T lie on opposite
sides of S, and T is visible to S. Note the “converse”:
if T and its circumcenter lie on the opposite sides of S,
then some segment (but possibly not S) is encroached.

Vertex Removal. When adding the midpoint m of a
segment S, Chew’s algorithm removes circumcenter ver-
tices which lie in the diametral disk of S. In this treat-
ment, we slightly relax this operation and fully specify
a procedure for removing vertices. After inserting m,
the nearest visible neighbor to m is removed if it is a
circumcenter, and this is repeated until the nearest visi-
ble neighbor is not a circumcenter. Some circumcenters
may remain in the diametral disk of S.

The termination of Chew’s second Delaunay refine-
ment algorithm and good grading of the resulting mesh
follow from a proof that no two vertices are placed too
close together. The insertion radius rq of vertex q
is the distance from q to the nearest visible vertex in
the mesh immediately following the insertion of q. We
call a mesh well-graded if there exists C depending
only upon α∗ such that for all vertices q inserted by the
algorithm, lfs(q) ≤ Crq. This is a natural measure of
success of a mesh generation algorithm: it guarantees
termination and that the size of the triangles in the
mesh are proportional to the underlying size of the in-
put geometry. Proof that a mesh generation algorithm
produces a well-graded mesh is usually performed via in-
duction using an appropriate previously inserted vertex
(called the parent vertex) on which to base the estimate.

The parent of a vertex q, denoted p(q), is defined to
be a specific vertex near q following insertion:

(1) If q is a circumcenter, then p(q) is the newest vertex
on the shortest edge of triangle T of which q is the
circumcenter.

(2) If q is a midpoint and the nearest visible neighbor
to q is not contained in the input segment containing
q, then p(q) is this nearest visible neighbor.

(3) If q is a midpoint and after deletion of some vertices
no vertices remain in the diametral disk of S, let Pr

be the set containing all removed circumcenters. If
either endpoint of S is newer than than any vertex
in Pr, the most recently inserted endpoint of S is
the p(q). Otherwise, p(q) is the vertex in Pr with
the smallest insertion radius.

Define p2(q) := p(p(q)), p3(q) := p(p(p(q))), etc.
Next we prove Chew’s second Delaunay refinement al-
gorithm succeeds for non-acute input.

Theorem 2 ([12]) For α∗ < tan−1(1/2) ≈ 26.6◦ and
non-acute input, Chew’s second Delaunay refinement
algorithm terminates producing a well-graded, quality
mesh.

This proof follows the argument in [12] using the
slightly relaxed vertex removal procedure mentioned

23rd Canadian Conference on Computational Geometry, 2011

158

CCCG 2011, Toronto ON, August 10–12, 2011

q S

rq
rqrq

rq

p(q)

q S
α∗

Figure 3: Subcases 3b (left) and 3c (right) in Theorem 2.

previously. The cases are carefully enumerated so the
proof can be augmented in later sections to provide an
improved analysis and accept variants of the algorithm.

Proof. To prove that the resulting mesh is well-graded,
we inductively find two constants 0 < Cc < Cm < ∞
such that lfs(q) < Ccrq for any circumcenter and
lfs(q) < Ccrq for any midpoint. We consider three cases
corresponding to the definition of the parent vertex.
Case 1. q is a circumcenter. Then,

lfs(q) ≤ |q − p(q)| + lfs(p(q)) ≤ rq + Cmrp(q)

≤ (1 + 2Cm sinα) rq. (1)

Case 2. q is a midpoint and a vertex other than q re-
mains in the diametral disk of the segment which was
split. Then p(q) must be an input vertex or midpoint.
Then since the input is non-acute, this vertex belongs
to an input feature which is disjoint from the input seg-
ment containing q and thus

lfs(q) ≤ |q − p(q)| = rq. (2)

Case 3. q is a midpoint and the diametral disk of the
newly split segment is empty (other than q). Recalling
Proposition 1, all the vertices of the encroaching trian-
gle must lie inside the diametral disk of the segment
containing q.
Subcase 3a. p(q) is a midpoint. The assumption of
non-acute input and the parent vertex definition imply
that p(q) is an endpoint of the segment S. Recalling
Proposition 1, let c be a circumcenter that is older than
p(q) and was removed from the diametral disk of S.
Since c was not removed when p(q) was inserted, the
diametral disk of p(q) was not completely emptied and
thus Case 2 applies to p(q). So lfs(p(q)) ≤ rp(q) ≤
|p(q) − c|, and thus

lfs(q) ≤ |q − p(q)| + lfs(p(q)) ≤ rq + rp(q) ≤ 3rq.
(3)

Subcase 3b. p(q) is a circumcenter and at least two cir-
cumcenters were removed from the half of the diametral
disk of S which is visible to p(q). Since all of these cir-
cumcenters were inserted after the endpoints of S (by
the definition of the parent vertex), one of these ver-
tices must have an insertion radius no larger than rq;
see Figure 3(left). Then,

lfs(q) ≤ |q − p(q)| + lfs(p(q)) ≤ (1 + Cc)rq. (4)

Subcase 3c. p(q) is a circumcenter and p(q) was the
only circumcenter removed from the half of the diame-
tral disk of S visible to p(q). Then to form a skinny
triangle with circumcenter on the opposite side of S,
p(q) must belong to the shaded area in Figure 3(right).
Then rp(q) ≤ rq/ cosα∗ and thus,

lfs(q) ≤ |q − p(q)| + lfs(p(q)) ≤ rq + Ccrp(q)

≤
(

1 +
Cc

cosα

)
rq. (5)

The requirements from the various cases (1)-(5) can
be summarized by three conditions: Cc ≥ 1+2Cm sin α,
Cm ≥ 3, and Cm ≥ 1 + Cc

cos α . Suitable constants exist
only if tan α∗ < 1/2. �

4 Off-Centers

Off-center Steiner vertices were developed as an alter-
native to circumcenter insertion to reduce the num-
ber of vertices inserted by Delaunay refinement algo-
rithms [13]. We use the term off-center (or Υ-off-center
to identify the parameter described below) to refer to
the special class of Steiner points described by Üngör
as opposed to the more general selection disks [1, 5] or
selection regions [4, 6] in the literature.

If triangle T has a smallest angle less than α∗/2, then
inserting its circumcenter is guaranteed to create an-
other poor-quality triangle since the newly inserted cir-
cumcenter and the shortest edge of T form a poor qual-
ity triangle. Üngör recognized that by selecting an al-
ternative Steiner point, the mesh generator can control
the quality of this particular newly formed triangle and,
in practice, produce a smaller mesh.

First, we define the class of Υ-off-centers and remark
how they generalize Üngör’s definition. Let T be a poor
quality constrained Delaunay triangle (i.e., the smallest
angle of T , denoted αT , is less than α∗), let q1q2 be the
shortest edge of T , and let c denote the circumcenter
of T . The Υ-off-center c′ is an attempt to create a
new triangle with smallest angle Υ. If q1 and q2 are
the endpoints of the shortest edge of triangle T , the
Υ-off-center c′ is defined as the unique point such that
(i) |q1 − c′| = |q2 − c′|, (ii) ∠q1cq2 = Υ, and (iii)
(c − q1) · (c′ − q1) > 0. See Figure 4 for a depiction of
the Υ-off-center region.

Üngör’s original work suggested using ΥT :=
max(2αT , α∗) which separates the points as much as
possible without creating a poor quality triangle be-
tween the new off-center and the shortest edge of the
split triangle. In this setting, the algorithm the was
shown to terminate and produce a well-graded mesh.

Theorem 3 (Ungor [13]) Let minimum angle pa-
rameter α∗ < arcsin(1/(2

√
2)) be given. Then Ruppert’s

algorithm with Υ-off-centers and ΥT = max(2αT , α∗)
terminates producing a well-graded, quality mesh.

CCCG 2011, Toronto ON, August 10–12, 2011

159

23rd Canadian Conference on Computational Geometry, 2011

Υ

q

c
T

Figure 4: For a poor quality triangle T , the set of ad-
missible Υ-off-centers is shown with the triangle circum-
center c and a typical Υ-off-center q.

In Triangle [11], slightly larger values of ΥT (about
5%) are used. In practice this makes “bunches” of
nearly minimal quality triangles likely to appear near
input edges and yields a mesh with fewer vertices. The
proof of Theorem 3 can be extended to admit any
ΥT ∈ [2αT , α∗] and (recalling Proposition 1) Chew’s
second Delaunay refinement algorithm. We provide a
more detailed analysis which admits larger values of ΥT .

Theorem 4 If α∗ < tan−1(1/2) and ΥT ∈
[2αT , 2 sin−1(cos(α∗/2))), Chew’s second Delaunay re-
finement algorithm with Υ-off-centers terminates pro-
ducing a well-graded, quality mesh.

Proof. We will verify that the general structure of the
proof of Chew’s algorithm still applies, albeit with a
few additional cases. Estimates on the insertion radii of
Υ-off-centers must be revisited.
Case 1. Let q denote an Υ-off-center associated with
poor quality triangle T with shortest edge v1v2 and v1

is more recently inserted than v2. Since the nearest
vertex to q may not be a vertex of T , we must deal
with two subcases. In one of these subcases, the parent
vertex of q will be redefined.
Subcase 1a. v1 is the nearest vertex to q. Then,

lfs(q) ≤ |q − v1| + lfs(v1) ≤ rq + Cmrv1

≤
(

1 + 2Cm sin
ΥT

2

)
rq. (6)

Subcase 1b. u1 6= v1 is the nearest vertex to q. The
edge qu1 is shared by two new Delaunay triangles and
let u2 denote the additional vertex of one of these tri-
angles that is nearest to u1. Since q must be a De-
launay neighbor to v1 and v2, u1 and u2 must both
live in the (closed) diametral disk of v1v2, and thus
|u1 − u2| ≤ |v1 − v2|/

√
2. Define the parent of c′ to be

the newest vertex in {u1,u2}. Then

lfs(q) ≤ |q − p(q)| + lfs(p(q)) ≤ rq + Cmrp(q)

≤
(

1 +
√

2Cm sin
ΥT

2

)
rq. (7)

Cases 2 and 3 of Theorem 2 are identical in the Υ-off-
center algorithm. Now the worst case involves simulta-
neously satisfying Subcases 1a and 3c:

Cc ≥ 1 + 2Cm sin
ΥT

2
; Cm ≥ 1 +

Cc

cosα∗ .

If ΥT < 2 sin−1(cos(α∗/2)), Cc and Cm exist. �
Observation 1 The region of admissible Υ-off-centers
is not a subset of the selection disks in [1, 5]: the larger
values of ΥT lie outside the standard disk.

5 The Three Circumcenter Lemma

The critical cases in the proofs of Theorems 2 and 4
occur when a segment midpoint is inserted following
encroachment due to a circumcenter. Circumcenters al-
ways have larger insertion radii than their parent ver-
tices, while midpoints can have slightly smaller radii.
The improved analysis of Ruppert’s algorithm by Miller,
Pav, and Walkington [7] demonstrated that several cir-
cumcenters must lie between certain midpoints in a se-
quence of parent vertices and thus insertion radii gains
from the extra circumcenters can be used to offset the
insertion radii reduction of the final midpoint. The re-
sult improved the admissible minimum angle threshold
of Ruppert’s algorithm from 20.70◦ to 26.45◦.

Let q be a midpoint inserted by a Delaunay refine-
ment algorithm. The circumcenter (or Υ-off-center)
sequence associated with q is the sequence of points
{pi(q)}n

i=0, where n is the smallest positive index such
that pn(q) lies on a feature of the input PSLG. q =
p0(q) is called the final vertex in the sequence and pn(q)
is called the initial vertex in the sequence. The crux of
the Miller-Pav-Walkington analysis relies on studying
circumcenter sequences that begin and end on the same
input segment.

Lemma 5 (Miller-Pav-Walkington [7]) If a cir-
cumcenter sequence both (i) begins and ends on the same
input segment and (ii) the insertion radius of the final
vertex is no larger than that of the initial vertex, then
the sequence contains at least three circumcenters.

The only property of circumcenters that is used in the
proof of Lemma 5 is that circumcenters lie on the bound-
ary of the Voronoi cell of their parent vertex. Thus the
lemma can be extended to Υ-off-centers as stated below.
For technical reasons to be made clear in the upcoming
proof define A(α) := 2 sin−1((cos(α∗/2))1/3).

Corollary 6 Let ΥT ∈ [2αT , A(αT)). If a Υ-off-center
sequence (i) begins and ends on the same input segment,
(ii) the insertion radius of the final vertex is no larger
than that of the initial vertex, and (iii) contains only
vertices handled by Theorem 4 Subcase 1a, then the se-
quence contains at least three Υ-off-centers.

This section closes with a related technical lemma.

Lemma 7 Let ΥT ∈ [2αT , A(αT)) and let {pi(q)}n
i=0

be an Υ-off-center sequence. Then there exists Cd such
that |q − pn(q)| ≤ Cdrq.

23rd Canadian Conference on Computational Geometry, 2011

160

CCCG 2011, Toronto ON, August 10–12, 2011

6 Restricted Input Class

The core of the argument is given by restricting atten-
tion to PSLGs with no adjacent input segments.

Theorem 8 Suppose no segments in the input PSLG
are adjacent. Let α ≤ 28.60◦ and select Υ-off-centers
such that ΥT ∈ [2αT , A(αT)). Chew’s second Delau-
nay refinement algorithm terminates producing a well-
graded, quality mesh.

Proof. The proof involves considering the interac-
tion between cases in Theorem 4. The estimates for
(sub)cases 1a, 1b, 2, 3a, and 3b are used without
any changes. Let q be a “subcase 3c”-vertex and let
P = {pi(q)}n

i=0 be the associated Υ-off-center sequence.

Case A: There is at least one vertex pj(q) ∈ P that is a
“subcase 1b”-vertex. Since α∗ < 30◦, rp1(q) > rp2(q) >
. . . > rpn(q). Then (applying Lemma 7),

lfs(q) ≤ |q − pj(q)| + lfs(pj(q))

≤ Cdrq +

(
1 + Cm

√
2 sin

ΥT

2

)
rpj+1(q)

≤
(

Cd +

(
1 + Cm

√
2 sin

ΥT

2

)
1

cosα∗

)
rq. (8)

Case B: P contains no “subcase 1b” vertices and rq >
rpn(q). Since all subsegments are derived by midpoint
splits from an original segment, rq ≥ 2rpn(q) and

lfs(q) ≤ |q − pn(q)| + lfs(pn(q)) ≤ (Cd + Cm/2)rq.
(9)

Case C: P contains no “subcase 1b” vertices and rq ≤
rpn(q). By Corollary 6, n ≥ 4. Υ-off-centers are
constructed such that 2 sin(ΥT /2)rpi(q) > rpi+1(q) for
i ∈ {1, 2, 3}. Then

lfs(q) ≤ |q − p4(q)| + lfs(p4(q))

≤ Cdrq + Cm8 sin3 (ΥT /2) rp1(q)

≤
(

Cd + Cm
8 sin3 (ΥT /2)

cosα∗

)
rq. (10)

Requirement (10) is stronger than (8) and (9) so we
focus our attention there. A(α) has been defined so that
8 sin3 (ΥT /2) / cosα∗ < 1 and thus a suitable constant
Cm exists. The interval [2αT , A(αT)) is nonempty ex-
actly when 8 sin3 α∗/ cosα∗ < 1 which is equivalent to
our assumption α ≤ 28.60◦. �

7 General Input

Acute angles between input segments pose a fundamen-
tal problem in Delaunay refinement and any application
of the three circumcenter lemma requires some restric-
tions on the allowable adjacent input segments [7]. Per-
haps the simplest protection strategy is to split adja-
cent segments at equal lengths proportional to the local

Figure 5: Meshes produced using Υ-off-centers, α∗ =
28◦. (top left)Υ = 0 (i.e., circumcenter insertion) gives
4975 vertices. (top center) Υ = 27 ⇒ 6475 vertices. (top
right) Υ = 29 ⇒ 3432 vertices. (bottom left) Υ = 40 ⇒
3955 vertices. (bottom center) Υ = 50 ⇒ 5346 vertices.
(bottom right) Υ = 55 ⇒ 8617 vertices.

feature size and disallow the resulting adjacent subseg-
ments to be split by the algorithm; a description of this
“collar” protection strategy can be found in [9]. The ad-
vantage of this approach is that following initial groom-
ing there are no adjacent input segments that can be
refined which ensures the analysis of Theorem 8 holds.

Corollary 9 Let α ≤ 28.60◦ and select Υ-off-centers
such that ΥT ∈ [2αT , A(αT)). Chew’s second Delau-
nay refinement algorithm with “collar” vertex protection
terminates producing a well-graded, quality mesh away
from small input angles.

Another strategy for protecting small input angles
(which we call the “wedge” method) disallows the re-
finement of poor quality triangles which lie between ad-
jacent input segments [7]. This approach is especially
important because no large angles are created even in
the presence of very small input angles. The complete
analysis of this scheme is rather involved and only ap-
pears in [8], but the crux of the analysis is the three-
circumcenter lemma. Thus we claim that this algorithm
also succeeds in creating a well-graded mesh.

Claim Let α ≤ 28.60◦ and select Υ-off-centers such that
ΥT ∈ [2αT , A(αT)). Chew’s second Delaunay refine-
ment algorithm with “wedge” vertex protection termi-
nates producing a well-graded, quality mesh away from
small input angles.

CCCG 2011, Toronto ON, August 10–12, 2011

161

23rd Canadian Conference on Computational Geometry, 2011

Figure 6: Meshes produced using α∗ = 5◦ with Υ = 6◦

(left, 1660 vertices) and Υ = 59.5◦ (right, 6072 vertices).

8 Example

Using a 1537 vertex boundary of Lake Michigan as in-
put, we give examples demonstrating the impact that
Υ-off-centers have on the meshes generated. To denote
a fixed target angle Υ = γ is used as a shorthand for
the strategy ΥT = max(2αT , γ). Figures 5 and 6 con-
tain meshes generated for the Lake Michigan example
using various values of Υ and α∗. Figure 7 contains
histograms of the smallest angles of all the triangles in
meshes resulting from different Υ values and Figure 8
plots the number of mesh vertices as a function of Υ.

Acknowledgment

The author acknowledges useful discussions with Noel
Walkington and Todd Phillips. All example meshes
were generated using Jonathan Shewchuk’s Triangle
program (modified slightly).

0
2
0
0

4
0
0

Ruppert’s algorithm

10 20 30 40 50 60

0
2
0
0

4
0
0

Chew’s Second Algorithm

10 20 30 40 50 60

Figure 7: Histograms of the
smallest angle of each tri-
angle of the mesh resulting
from several algorithm vari-
ants and α = 25◦.

0
2
0
0

6
0
0

1
0
0
0 24−Off−Centers

10 20 30 40 50 60

0
2
0
0

4
0
0

6
0
0

26−Off−Centers

10 20 30 40 50 60

0
5
0
0

1
0
0
0

1
5
0
0 40−Off−Centers

10 20 30 40 50 60

0 10 20 30 40 50 60

0
2

0
0

0
4

0
0

0
6

0
0

0
8

0
0

0

Off−Center Angle

O
u
tp

u
t
M

e
s
h
 S

iz
e

Figure 8: The number of vertices in the resulting mesh
using Υ-off-centers for various values of Υ and α = 25◦.

References

[1] A. Chernikov and N. Chrisochoides. Generalized two-
dimensional Delaunay mesh refinement. SIAM J. Sci.
Comput., 31(5):3387–3403, 2009.

[2] L. P. Chew. Constrained Delaunay triangulations. In
Proc. 3rd Symp. Comput. Geom., pages 215–222, 1987.

[3] L. P. Chew. Guaranteed-quality mesh generation for
curved surfaces. In Proc. 9th Symp. Comput. Geom.,
pages 274–280, 1993.

[4] H. Erten and A. Üngör. Quality triangulations with
locally optimal Steiner points. SIAM J. Sci. Comput.,
31:2103–2130, 2009.

[5] P. Foteinos, A. Chernikov, and N. Chrisochoides.
Fully generalized two-dimensional constrained De-
launay mesh refinement. SIAM J. Sci. Comput.,
32(5):2659–2686, 2010.

[6] B. Hudson. Safe Steiner points for Delaunay refinement.
In Res. Notes 17th Int. Meshing Roundtable, 2008.

[7] G. L. Miller, S. E. Pav, and N. Walkington. When
and why Delaunay refinement algorithms work. Int. J.
Comput. Geom. Appl., 15(1):25–54, 2005.

[8] S. E. Pav. Delaunay Refinement Algorithms. PhD the-
sis, Carnegie Mellon University, May 2003.

[9] A. Rand and N. Walkington. Collars and intestines:
Practical conforming Delaunay refinement. Proc. 18th
Int. Meshing Roundtable, pages 481–497, 2009.

[10] J. Ruppert. A Delaunay refinement algorithm for
quality 2-dimensional mesh generation. J. Algorithms,
18(3):548–585, 1995.

[11] J. R. Shewchuk. Triangle: A 2D quality mesh generator
and Delaunay triangulator. http://www.cs.cmu.edu/

~quake/triangle.html.

[12] J. R. Shewchuk. Delaunay refinement algorithms for
triangular mesh generation. Comput. Geom. Theory
Appl., 22(1–3):86–95, 2002.

[13] A. Üngör. Off-centers: A new type of Steiner points
for computing size-optimal quality-guaranteed Delau-
nay triangulations. In Proc. 6th Latin Amer. Symp.
Theor. Inform., pages 152–161, 2004.

23rd Canadian Conference on Computational Geometry, 2011

162

CCCG 2011, Toronto ON, August 10–12, 2011

Probabilistic Bounds on the Length of a Longest Edge in Delaunay Graphs
of Random Points in d-Dimensions ∗

Esther M. Arkin† Antonio Fernández Anta‡ Joseph S. B. Mitchell§ Miguel A. Mosteiro¶

Abstract

Motivated by low energy consumption in geographic
routing in wireless networks, there has been recent in-
terest in determining bounds on the length of edges
in the Delaunay graph of randomly distributed points.
Asymptotic results are known for random networks in
planar domains. In this paper, we obtain upper and
lower bounds that hold with parametric probability in
any dimension, for points distributed uniformly at ran-
dom in domains with and without boundary. The re-
sults obtained are asymptotically tight for all relevant
values of such probability and constant number of di-
mensions, and show that the overhead produced by
boundary nodes in the plane holds also for higher di-
mensions. To our knowledge, this is the first compre-
hensive study on the lengths of long edges in Delaunay
graphs.

1 Introduction

We study the length of a longest Delaunay edge for
points randomly distributed in multidimensional Eu-
clidean spaces. In particular, we consider the Delau-
nay graph for a set of n points distributed uniformly at
random in a d-dimensional body of unit volume. It is
known that the probability that uniformly distributed
random points are not in general position 1 is negligi-
ble and therefore it is safe to focus on generic sets of
points [8], which we do throughout the paper.

The motivation to study such settings comes from
the Random Geometric Graph (RGG) model in which

∗This research was partially supported by Spanish MICINN
grant TIN2008-06735-C02-01, Comunidad de Madrid grant
S2009TIC-1692, EU Marie Curie International Reintegration
Grant IRG 210021, and the National Science Foundation (CCF-
0937829, CCF-1018388). An earlier version of this work has been
presented in [2].
†Department of Applied Mathematics and Statistics, Stony

Brook University, USA, esther.arkin@stonybrook.edu
‡Institute IMDEA Networks, Madrid, Spain,
§Department of Applied Mathematics and Statistics, Stony

Brook University, USA, joseph.mitchell@stonybrook.edu
¶Computer Science Department, Rutgers University, USA,

and LADyR, GSyC, Universidad Rey Juan Carlos, Spain,
mosteiro@cs.rutgers.edu

1A set of d+1 points in d-dimensional Euclidean space is said
to be in general position if no hyperplane contains all of them.
We say that such a set is generic, or degenerate otherwise.

n nodes are distributed uniformly at random in a disk
or, more generally, according to some specified den-
sity function on d-dimensional Euclidean space [16].
The problem has attracted recent interest because of
its applications in energy-efficient geometric routing
and flooding in wireless sensor networks (see, e.g.,
[7, 11, 12, 13]).

Related Work. Kozma, Lotker, Sharir, and Stupp [11]
show that the asymptotic length of a longest Delau-
nay edge depends on the sum, σ, of the distances
to the boundary of its endpoints. More specifically,
their bounds are O(3

√
(log n)/n) if σ ≤ ((log n)/n)2/3,

O(
√

(log n)/n) if σ ≥
√

(log n)/n, and O((log n)/(nσ))
otherwise. Kozma et al. also show, in the same set-
ting, that the expected sum of the squares of all De-
launay edge lengths is O(1). In [5] the authors con-
sider the Delaunay triangulation of an infinite random
(Poisson) point set in d dimensional space. In partic-
ular, they study different properties of the subset of
those Delaunay edges completely included in a cube
[0, n1/d] × · · · × [0, n1/d]. For the maximum length of
a Delaunay edge in this setting, they observe that in
expectation is in Θ(log1/d n).

The lengths of longest edges in geometric graphs
induced by random point sets has also been stud-
ied for graphs related to the Delaunay, including
Gabriel graphs [18] and relative neighborhood (RNG)
graphs [17, 19]. In particular, Wan and Yi [18] show
that for n points uniformly distributed in a unit-area
disk, the ratio of the length of a longest Gabriel edge
to
√

(lnn)/(πn) is asymptotically almost surely equal
to 2, and the expected number of “long” Gabriel edges,
of length at least 2

√
(lnn+ ξ)/(πn), is asymptotically

almost surely equal to 2e−ξ, for any fixed ξ. In [9],
while studying the maximum degree of Gabriel and
Yao graphs, the authors observe that the probabil-
ity that the maximum edge length is greater than
3
√

(log n)/n tends to zero, bound that they claim be-
comes O(((log n)/n)1/d) for d dimensions. An overview
of related problems can be found in [1].

Interest in bounding the length of a longest Delaunay
edge in two-dimensional spaces has grown out of exten-
sive algorithmic work [6, 4, 10] aimed at reducing the
energy consumption of geographically routing messages
in Radio Networks. Multidimensional Delaunay graphs

CCCG 2011, Toronto ON, August 10–12, 2011

163

23rd Canadian Conference on Computational Geometry, 2011

are well studied in computational geometry from the
point of view of efficient algorithms to construct them
(see [8] and references therein), but only limited results
are known regarding probabilistic analysis of Delaunay
graphs in higher dimensions [14].

Overview of Our Results. We study the probabilis-
tic length of longest Delaunay edges for points dis-
tributed in geometric domains in two and more dimen-
sions. Since the length of the longest Delaunay edge
is strongly influenced by the boundary of the enclosing
region, we study the problem for two cases, which we
call with boundary and without boundary.

Our results include upper and lower bounds for d-
dimensional bodies with and without boundaries, that
hold for a parametric error probability ε and are com-
puted up to the constant factors (they are tight only
asymptotically). In comparison, the upper bounds pre-
sented in [11] are only asymptotic, are restricted to two
dimensions (d = 2), and apply to domains with bound-
ary (disks), although results without boundary are im-
plicitly given, since the results are parametric in the
distance to the boundary.

Lower bounds without boundary and all upper
bounds apply for any d > 1. Lower bounds with bound-
ary are shown for d ∈ {2, 3}. The results shown are
asymptotically tight for e−cn ≤ ε ≤ n−c, for any con-
stant c > 0, and d ∈ O(1). To the best of our knowl-
edge, this is the first comprehensive study of this prob-
lem. The results obtained are summarized in Table 1.
In order to compare upper and lower bounds for bodies
with boundary, it is crucial to notice that we bound the
volume of a circular segment (2D) and the volume of
an spherical cap (3D), which can be approximated by
polynomials of third and fourth degree respectively on
the diameter of the base. Upper bounds are proved ex-
ploiting the fact that, thanks to the uniform density, it
is very unlikely that a “large” volume is void of points.
Lower bounds, on the other hand, are proved by show-
ing that a configuration that yields a Delaunay edge of
a certain length is not very unlikely.

In the following section, some necessary notation is
introduced. Upper and lower bounds for enclosing bod-
ies without boundaries are shown in Section 3, and the
case with boundaries is covered in Section 4. We con-
clude with some open problems.

2 Preliminaries

The following notation will be used throughout. We
will restrict attention to Euclidean (L2) spaces. A d-
sphere, S = Sr,c, of radius r is the set of all points in a
(d + 1)-dimensional space that are located at distance
r (the radius) from a given point c (the center). A d-
ball, B = Br,c, of radius r is the set of all points in

a d-dimensional space that are located at distance at
most r (the radius) from a given point c (the center).
The area of a d-sphere S (in (d + 1)-space) is its d-
dimensional volume. The volume of a d-ball B (in d-
space) is its d-dimensional volume. We refer to a unit
sphere as a sphere of area 1 and a unit ball as a ball of
volume 1. (This is in contrast with some definitions of a
“unit” ball/sphere as a unit-radius ball/sphere; we find
it convenient to standardize the volume/area to be 1 in
all dimensions.)

Let P be a set of points on a d-sphere, S. Given two
points a, b ∈ P , let âb be the arc of a great circle between
them. Let δ(a, b) be the length of the arc âb, which is
also known as the orthodromic distance between a and
b on the sphere S. Let the orthodromic diameter of
a subset X ⊆ S be the greatest orthodromic distance
between a pair of points in X. A spherical cap on S is
the set of all points at orthodromic distance at most r
from some center point c ∈ S. Let Ad(x) be the area
(d-volume) of a spherical cap of orthodromic diameter
x, on a d-sphere of surface area 1. A ball cap of B is
the intersection of a d-ball B with a closed halfspace,
bounded by a hyperplane h, in d-space; the base of a
ball cap is the (d − 1)-ball that is the intersection of h
with the ball B. Let Vd(x) be the d-volume of a ball
cap of base diameter x, of a d-ball of volume 1. For any
pair of points a, b, let d(a, b) be the Euclidean distance

between a and b, i.e. d(a, b) = ||−→ab||2. Let D(P) be the
Delaunay graph of a set of points P .

The following definitions of a Delaunay graph, D(P),
of a finite set P of points in d-dimensional bodies follow
the standard definitions of Delaunay graphs (see, e.g.,
Theorem 9.6 in [8]).

Definition 1 Let P be a generic set of points on a d-
sphere S.

(i) A set F ⊆ P of d + 1 points define the vertices of
a Delaunay face of D(P) if and only if there is a
d-dimensional spherical cap C ⊂ S such that F is
contained in the boundary, ∂C, of C and no points
of P lie in the interior of C (relative to the sphere
S).

(ii) Two points a, b ∈ P form a Delaunay edge, an arc
of D(P), if and only if there is a d-dimensional
spherical cap C such that a, b ∈ ∂C and no points
of P lie in the interior of C (relative to the sphere
S).

Definition 2 Let P be a generic set of points in a d-
ball B.

(i) A set F ⊆ P of d + 1 points define the vertices of
a Delaunay face of D(P) if and only if there is a
d-ball B′ such that F is contained in the boundary,
∂B′, of B′ and no points of P lie in the interior of
B′.

23rd Canadian Conference on Computational Geometry, 2011

164

CCCG 2011, Toronto ON, August 10–12, 2011

d
Upper Bound:

w.p. ≥ 1− ε, @ âb ∈ D(P)

Lower Bound:

w.p. ≥ ε, ∃ âb ∈ D(P)

Without
boundary

d Ad(δ(a, b)) ≥
ln
“
(n
2)(

n−2
d−1)

/
ε
”

n−d−1 Ad(δ(a, b)) ≥
ln((e−1)/(e2ε))

n−2+ln((e−1)/(e2ε))

1 δ(a, b) ≥ ln
“
(n
2)
/
ε
”

n−2 δ(a, b) ≥ ln((e−1)/(e2ε))
n−2+ln((e−1)/(e2ε))

2 δ(a, b) ≥
cos−1

1−

2 ln((n
2)(n−2)/ε)
n−3

!
√
π

δ(a, b) ≥
cos−1

1−

2 ln((e−1)/(e2ε))
n−2+ln((e−1)/(e2ε))

!
√
π

With
boundary

d Vd(d(a, b)) ≥ ln
“
(n
2)(

n−2
d−1)

/
ε
”

n−d−1 –

2 d(a, b) ≥ 3

√
16√
π

ln
“
(n
2)(n−2)

/
ε
”

n−3

d(a, b) ≥ ρ2/2 : V2(ρ2) = ln(α2/ε)
(n−2+ln(α2/ε))

=⇒ d(a, b) ≥ 3

√
ln(α/ε)

2
√
π(n−2+ln(α/ε))

3 d(a, b) ≥
4

√
96
π3/2

ln
“
(n
2)(

n−2
2)
/
ε
”

n−4

d(a, b) ≥ ρ3/2 : V3(ρ3) = ln(α3/ε)
(n−2+ln(α3/ε))

=⇒ d(a, b) ≥ 4

√
3

√
48
π4

ln(α3/ε)
(n−2+ln(α3/ε))

Table 1: Summary of results. α2, α3 are constants.

(ii) Two points a, b ∈ P form a Delaunay edge, an arc
of D(P), if and only if there is a d-ball B′ such that
a, b ∈ ∂B′ and no points of P lie in the interior of
B′.

The following inequalities [15] are used throughout

e−x/(1−x) ≤ 1− x ≤ e−x, for 0 < x < 1. (1)

3 Enclosing Body without Boundary

The following theorems show upper and lower bounds
on the length of arcs in the Delaunay graph on a d-
sphere.

3.1 Upper Bound

Theorem 3 Consider the Delaunay graph D(P) of a
set P of n > d+ 1 ≥ 2 points distributed uniformly and
independently at random in a unit d-sphere, S. Then,
for 0 < ε < 1, the probability is at least 1− ε that there
is no arc âb ∈ D(P), a, b ∈ P , such that

Ad(δ(a, b)) ≥
ln
((
n
2

)(
n−2
d−1
)/
ε
)

n− d− 1
. (∗)

Proof. Let Eε be the event that “there exists an arc
âb ∈ D(P), a, b ∈ P , with inequality (∗) satisfied” Our
goal is to prove that P (Eε) ≤ ε.

Let us consider a fixed pair of points, a, b ∈ P . We let
Ea,b be the event that âb ∈ D(P). For any subsetQ ⊂ P
of d + 1 points containing a and b, let CQ denote the
spherical cap through Q and let FQ denote the event
that the interior of CQ contains no points of P (i.e.,
int(CQ) ∩ P = ∅).

Thus, we can write Ea,b =
⋃
Q FQ as the union, over

all
(

n−2
(d+1)−2

)
=
(
n−2
d−1
)

subsets Q ⊂ P with |Q| = d + 1

and a, b ∈ Q, of the events FQ. Then, by the union
bound, we know that P (Ea,b) ≤

∑
Q P (FQ). Further,

in order for event FQ to occur, all points of P except the
d+ 1 points of Q must lie outside the spherical cap CQ
through Q; thus, P (FQ) = (1− µd(CQ))n−(d+1), where
µd(CQ) denotes the d-volume of CQ.

We see that P (FQ) ≤ (1−Ad(δ(a, b)))n−(d+1), since,
for any subset Q ⊃ {a, b}, the d-volume µd(CQ) is at
least as large as the d-volume, Ad(δ(a, b)), of the spher-
ical cap having orthodromic diameter δ(a, b). (In other
words, Ad(δ(a, b)) is the d-volume of the smallest vol-
ume spherical cap whose boundary passes through a and
b.)

Altogether, we get

P (Ea,b) ≤
∑

Q

P (FQ) =
∑

Q

(1− µd(CQ))n−(d+1)

≤
(
n− 2

d− 1

)
(1−Ad(δ(a, b)))n−(d+1).

CCCG 2011, Toronto ON, August 10–12, 2011

165

23rd Canadian Conference on Computational Geometry, 2011

Now, the event of interest is

Eε =
⋃

a,b∈P :(∗) holds

Ea,b.

The inequality (∗) is equivalent to

(n− d− 1)Ad(δ(a, b)) ≥ ln

((
n

2

)(
n− 2

d− 1

)/
ε

)
,

which is equivalent to

(
e−Ad(δ(a,b))

)(n−d−1)
≤ ε(

n
2

)(
n−2
d−1
) .

Since, by Inequality 1, e−x ≥ 1−x, the above inequality
implies that

(1−Ad(δ(a, b)))(n−d−1) ≤
ε(

n
2

)(
n−2
d−1
) ,

which implies that

(
n

2

)(
n− 2

d− 1

)
(1−Ad(δ(a, b)))(n−d−1) ≤ ε.

Using the union bound, we get

P (Eε) = P

 ⋃

a,b∈P :(∗) holds

Ea,b

 ≤

∑

a,b∈P :(∗) holds

P (Ea,b).

Since each term P (Ea,b) in the above summation is
bounded above by

(
n−2
d−1
)
(1 − Ad(δ(a, b)))

n−(d+1), and

there are at most
(
n
2

)
terms in the summation, we get

P (Eε) ≤
∑

a,b∈P :(∗) holds

P (Ea,b)

≤
(
n

2

)(
n− 2

d− 1

)
(1−Ad(δ(a, b)))(n−d−1) ≤ ε.

�

The following corollaries for d = 1 and d = 2 can
be obtained from Theorem 3 using the corresponding
surface areas.

Corollary 4 In the Delaunay graph D(P) of a set P
of n > 2 points distributed uniformly and independently
at random on a unit circle (1-sphere), with probability

at least 1− ε, for 0 < ε < 1, there is no arc âb ∈ D(P),
a, b ∈ P , such that

δ(a, b) ≥ ln
((
n
2

)/
ε
)

n− 2
.

Corollary 5 In the Delaunay graph D(P) of a set P
of n > 3 points distributed uniformly and independently
at random on a unit sphere (2-sphere), with probability

at least 1− ε, for 0 < ε < 1, there is no arc âb ∈ D(P),
a, b ∈ P , such that

δ(a, b) ≥ 1√
π

cos−1
(

1− 2 ln
((
n
2

)
(n− 2)

/
ε
)

n− 3

)
.

Proof. The surface area of a spherical cap of a 2-sphere
is 2πRh, where R is the radius of the sphere and h is the
height of the cap. For a unit 2-sphere is R = 1/(2

√
π).

Then, the perimeter of a great circle is 2π/(2
√
π) =√

π. Thus, the central angle of a cap whose orthodromic
diameter is ρ is 2πρ/

√
π = 2

√
πρ. Let the angle between

the line segment ab and the radius of the sphere be α.
Then,

α =

{
π/2−√πρ if ρ ≤ √π/2√
πρ− π/2 if ρ >

√
π/2

And the height of the cap is h = 1/(2
√
π) −

1/(2
√
π) sin(π/2 − √πρ) = (1 − cos(

√
πρ))/(2

√
π).

Therefore, the surface area of a spherical cap of a
2-sphere whose orthodromic diameter is ρ is (1 −
cos(
√
πρ))/2. Replacing in Theorem 3, the claim fol-

lows. �

3.2 Lower Bound

Theorem 6 In the Delaunay graph D(P) of a set P
of n > 2 points distributed uniformly and independently
at random in a unit d-sphere, with probability at least
ε, there is an arc âb ∈ D(P), a, b ∈ P , such that
Ad(δ(a, b)) ≥ Ad(ρ1), where

Ad(ρ1) =
ln
(
(e− 1)/(e2ε)

)

n− 2 + ln ((e− 1)/(e2ε))
,

for any 0 < ε < 1 such that Ad(2ρ1) ≤ 1− 1/(n− 1).

Proof. In order to prove this claim, we consider a con-
figuration given by a specific pair of points and a specific
empty spherical cap circumscribing them, that would
yield a Delaunay arc between those points. Then, we
relate the probability of existence of such configuration
to the distance between the points. Finally, we relate
this quantity to the desired parametric probability. The
details follow.

For any pair of points a, b ∈ P , by Definition 1, for the
arc âb to be in D(P), there must exist a d-dimensional
spherical cap C such that a and b are located on the
boundary of the cap base and the cap surface of C is
void of points from P . We compute the probability of
such an event as follows. Let ρ2 > ρ1 be such that
Ad(2ρ2)−Ad(2ρ1) = 1/(n− 1). Consider any point a ∈
P . The probability that some other point b is located
so that ρ1 < δ(a, b) ≤ ρ2 is 1 − (1− 1/(n− 1))

n−1 ≥
1− 1/e, by Inequality 1.

The spherical cap with orthodromic diameter δ(a, b)

is empty with probability (1−Ad(δ(a, b)))n−2. To lower

23rd Canadian Conference on Computational Geometry, 2011

166

CCCG 2011, Toronto ON, August 10–12, 2011

bound this probability we consider separately the spher-
ical cap with orthodromic diameter ρ1 and the re-
maining annulus of the spherical cap with orthodromic
diameter δ(a, b). The probability that the latter is
empty is lower bounded by upper bounding the area
Ad(δ(a, b))− Ad(ρ1) ≤ Ad(2ρ2)− Ad(2ρ1) = 1/(n− 1).

Then, (1− 1/(n− 1))
n−2 ≥ 1/e, by Inequality 1.

Finally, the probability that the spherical cap with
orthodromic diameter ρ1 is empty is, by Inequality 1,

(1−Ad(ρ1))
n−2 ≥ exp

(
−Ad(ρ1)(n− 2)

1−Ad(ρ1)

)
,

= exp

(
− ln

(
e− 1

e2ε

))
=

e2ε

e− 1
.

Therefore,

Pr
(
âb ∈ D(P)

)
≥
(

1− 1

e

)
1

e

e2ε

e− 1
= ε.

�

The following corollaries for d = 1 and d = 2 can
be obtained from Theorem 6 using the corresponding
surface areas.

Corollary 7 In the Delaunay graph D(P) of a set P
of n > 2 points distributed uniformly and independently
at random in a unit circle (1-sphere), with probability
at least ε, for any e1−n−4/n ≤ ε < 1, there is an arc
âb ∈ D(P), a, b ∈ P , such that

δ(a, b) ≥ ln
(
(e− 1)/(e2ε)

)

n− 2 + ln ((e− 1)/(e2ε))
.

Corollary 8 In the Delaunay graph D(P) of a set P
of n > 2 points distributed uniformly and independently
at random in a unit sphere (2-sphere), with probability

at least ε, for any e−n+2
√
n−1−1 ≤ ε < 1, there is an

arc âb ∈ D(P), a, b ∈ P , such that

δ(a, b) ≥ 1√
π

cos−1
(

1− 2 ln
(
(e− 1)/(e2ε)

)

n− 2 + ln ((e− 1)/(e2ε))

)
.

Proof. As shown in the proof of Corollary 5, the sur-
face area of a spherical cap of a 2-sphere whose ortho-
dromic diameter is ρ is (1− cos(

√
πρ))/2. Replacing in

Theorem 6, the claim follows. �

4 Enclosing Body with Boundary

The following theorems show upper and lower bounds
on the length of edges in the Delaunay graph in a d-
ball. The proofs, omitted here for brevity, can be found
in the full version of this work [3].

4.1 Upper Bound

Theorem 9 In the Delaunay graph D(P) of a set P of
n > d + 1 ≥ 2 points distributed uniformly and inde-
pendently at random in a unit d-ball, with probability at
least 1−ε, for 0 < ε < 1, there is no edge (a, b) ∈ D(P),
a, b ∈ P , such that

Vd(d(a, b)) ≥
ln
((
n
2

)(
n−2
d−1
)/
ε
)

n− d− 1
.

The following corollaries for d = 2 and d = 3 can
be obtained from Theorem 9 using the corresponding
volumes.

Corollary 10 In the Delaunay graph D(P) of a set P
of n > 3 points distributed uniformly and independently
at random in a unit disk (2-ball), with probability at least

1 − ε, for
(
n
2

)
(n− 2)e−

√
2(n−3)/π < ε < 1, there is no

edge (a, b) ∈ D(P), a, b ∈ P , such that

d(a, b) ≥ 3

√
16√
π

ln
((
n
2

)
(n− 2)

/
ε
)

n− 3
.

Corollary 11 In the Delaunay graph D(P) of a set P
of n > 4 points distributed uniformly and independently
at random in a unit ball (3-ball), with probability at least

1 − ε, for
(
n
2

)(
n−2
2

)
e−2(n−4)

/
(3
√
π) < ε < 1, there is no

edge (a, b) ∈ D(P), a, b ∈ P , such that

d(a, b) ≥ 4

√
96

π3/2

ln
((
n
2

)(
n−2
2

)/
ε
)

n− 4
.

4.2 Lower Bound

In this section we give lower bounds for d = 2 and
d = 3. As in the case without boundary, we prove our
lower bounds showing a configuration given by a specific
pair of points and a specific empty body circumscribing
them, that would yield a Delaunay edge between those
points. Then, we relate the probability of existence of
such configuration to the distance between the points
and to the desired parametric probability.

Theorem 12 For d = 2, given the Delaunay graph
D(P) of a set P of n > 2 points distributed uni-
formly and independently at random in a unit d-ball,
with probability at least ε, there is an edge (a, b) ∈ D(P),
a, b ∈ P , such that d(a, b) ≥ ρ1/2, where

Vd(ρ1) =
ln (α/ε)

(n− 2 + ln (α/ε))
,

where α = (1− e−1/16)(1− e−1/32)e−1, for any 0 < ε ≤
α/e2 such that Vd(ρ1) ≤ 1/2−1/n. Which implies that

d(a, b) ≥ 3

√
ln (α/ε)

2
√
π (n− 2 + ln (α/ε))

.

CCCG 2011, Toronto ON, August 10–12, 2011

167

23rd Canadian Conference on Computational Geometry, 2011

Theorem 13 For d = 3, given the Delaunay graph
D(P) of a set P of n > 4 points distributed uni-
formly and independently at random in a unit d-ball,
with probability at least ε, there is an edge (a, b) ∈ D(P),
a, b ∈ P , such that d(a, b) ≥ ρ1/2, where

Vd(ρ1) =
ln (α/ε)

(n− 2 + ln (α/ε))
,

where α = (1− e−1/6)(1− e−1/12)e−12, for any 0 < ε ≤
α/e such that Vd(ρ1) ≤ 1/2− 1/n. Which implies that

d(a, b) ≥ 4

√
3

√
48

π4

ln (α/ε)

(n− 2 + ln (α/ε))
.

5 Future Directions, Open Problems

It would be interesting to extend this study to other
norms, such as L1 or L∞. Also, Theorems 12 and 13
were proved by showing that the existence of a con-
figuration that yields a Delaunay edge of some length
is not unlikely. Different configurations were used for
each, but a configuration that works for both cases ex-
ists (although yielding worse constants). We conjecture
that (modulo some constant) the same bound can be
obtained in general for any d > 1. Both questions are
left for future work.

References

[1] D. Aldous and S. J. Connected spatial networks over
random points and a route-length statistic. Statistical
Science, 25(3):275–288, 2010.

[2] E. M. Arkin, A. Fernández Anta, J. S. B. Mitchell, and
M. Mosteiro. The length of the longest edge in multi-
dimensional delaunay graphs (extended abstract). In
Proceedings of the 20th Annual Fall Workshop on Com-
putational Geometry, 2010.

[3] E. M. Arkin, A. Fernández Anta, J. S. B. Mitchell, and
M. Mosteiro. Probabilistic Bounds on the Length of a
Longest Edge in Delaunay Graphs of Random Points
in d-Dimensions. arXiv:1106.4927v1 [cs.CG], June
2011.

[4] C. Avin. Fast and efficient restricted Delaunay trian-
gulation in random geometric graphs. Internet Mathe-
matics, 5(3):195–210, 2008.

[5] M. Bern, D. Eppstein, and F. Yao. The expected
extremes in a delaunay triangulation. International
Journal of Computational Geometry and Applications,
1(1):79–91, 1991.

[6] P. Bose, P. Carmi, M. H. M. Smid, and D. Xu.
Communication-efficient construction of the plane lo-
calized Delaunay graph. In Proc. of the 9th Latin Amer-
ican Theoretical Informatics Symposium, pages 282–
293, 2010.

[7] P. Bose and P. Morin. Online Routing in Triangula-
tions. In Proc. of the 10th International Symposium on
Algorithms and Computation, page 113. Springer Ver-
lag, 1999.

[8] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational Geometry: Algorithms
and Applications. Springer-Verlag, second edition,
2000.

[9] L. Devroye, J. Gudmundsson, and M. P. On the Ex-
pected Maximum Degree of Gabriel and Yao Graphs.
arXiv:0905.3584v1 [cs.CG], May 2009.

[10] A. F. and L. Rodrigues. Single-step creation of localized
Delaunay triangulations. Wireless Networks, 15(7):845–
858, 2009.

[11] G. Kozma, Z. Lotker, M. Sharir, and G. Stupp. Ge-
ometrically aware communication in random wireless
networks. In Proc. 23rd Ann. ACM Symp. on Princi-
ples of Distributed Computing, pages 310–319, 2004.

[12] E. Kranakis, H. Singh, and J. Urrutia. Compass routing
on geometric networks. In Proc. of the 11th Canadian
Conference on Computational Geometry, 1999.

[13] E. Lebhar and Z. Lotker. Unit disk graph and physical
interference model: Putting pieces together. In Proc. of
the 23rd International Symposium on Parallel & Dis-
tributed Processing, pages 1–8. IEEE, 2009.

[14] C. Lemaire and J. Moreau. A probabilistic result on
multi-dimensional Delaunay triangulations, and its ap-
plication to the 2D case. Comput. Geom., 17(1-2):69–
96, 2000.

[15] D. S. Mitrinović. Elementary Inequalities. P. Noordhoff
Ltd. - Groningen, 1964.

[16] M. Penrose. Random Geometric Graphs. Oxford Uni-
versity Press, May 2003.

[17] P. Wan, L. Wang, F. Yao, and C. Yi. On the Longest
RNG Edge of Wireless Ad Hoc Networks. In Proc. of
the 28th International Conference on Distributed Com-
puting Systems, pages 329–336. IEEE, 2008.

[18] P. Wan and C. Yi. On the longest edge of gabriel graphs
in wireless ad hoc networks. IEEE Transactions on Par-
allel and Distributed Systems, pages 111–125, 2007.

[19] C. Yi, P. Wan, L. Wang, and C. Su. Sharp thresholds
for relative neighborhood graphs in wireless Ad Hoc
networks. IEEE Transactions on Wireless Communi-
cations, 9(2):614–623, 2010.

23rd Canadian Conference on Computational Geometry, 2011

168

CCCG 2011, Toronto ON, August 10–12, 2011

Outerplanar graphs and Delaunay triangulations

Ashraful Alam ∗ Igor Rivin† Ileana Streinu‡

Abstract

Over 20 years ago, Dillencourt [1] showed that all out-
erplanar graphs can be realized as Delaunay triangula-
tions of points in convex position. His proof is elemen-
tary, constructive and leads to a simple algorithm for
obtaining a concrete Delaunay realization. In this note,
we provide two new, alternate, also quite elementary
proofs.

1 Introduction

The Delaunay triangulation of a point set in convex po-
sition is, combinatorially, an outerplanar graph. Dil-
lencourt [1] has shown, constructively, that the other
direction is also true: any graph which arises from
a triangulation of the interior of a simple polygon
can be realized as a Delaunay triangulation. Dil-
lencourt’s proof uses a simple and natural criterion
on the angles of triangles in a Delaunay triangula-
tion, and gives an O(n2) time incremental algorithm
to calculate their angles and infer a realization. Lam-
bert [2] adapted this method into a linear time algo-
rithm, whose implementation in Java is available at
http://www.cse.unsw.edu.au/̃lambert/java/realize/

The general question, of characterizing and recon-
structing arbitrary Delaunay triangulations (in two-
or higher dimensions), is substantially more difficult.
A closely related problem, going back to Steiner (see
Grünbaum [6], page 284), asks for a characterization
of the graphs of inscribable or circumscribable polyhe-
dra: those whose vertices lie on a sphere, resp. whose
faces are tangent to a sphere. Such graphs are said to
be of inscribable or circumscribable type. The best re-
sult to date is due to Rivin [4], who proved necessary
and sufficient conditions for a polyhedral graph to be
of inscribable or circumscribable type. Dillencourt and
Smith [3] linked inscribability of a graph to its realiz-
ability as a Delaunay triangulation, and gave a criterion
relating Hamiltonicity to inscribability.

∗Department of Computer Science, University of Mas-
sachusetts Amherst, MA, ashraful@cs.umass.edu. Research
supported by NSF CCF-1016988 and DARPA HR0011-09-0003
grants.

†Department of Mathematics, Temple University, Philadel-
phia, rivin@math.temple.edu

‡Department of Computer Science, Smith College, Northamp-
ton, MA, streinu@smith.edu. Research supported by NSF CCF-
1016988 and DARPA HR0011-09-0003 grants.

In this paper, we present two new simple and elemen-
tary proofs of the Delaunay realizability of outerplanar
graphs. We are not aware of them previously appearing
in the literature. The first one is an easy consequence
of Dillencourt and Smith’s [3] criterion relating Hamil-
tonianicity and inscribability. The second one, which
occupies most of this note, uses Rivin’s [4] inscribabil-
ity criterion and constructs an explicit ”witness” of this
inscribability, in the form of certain weights assigned to
the edges of the graph.

Preliminaries

A graph G = (V,E) is a collection of vertices V =
{1, · · · , n} and edges E, where an edge e = ij ∈ E
is a pair of vertices i, j ∈ V . A graph is planar if it can
be drawn in the plane in a way such that no two edges
cross, except perhaps at endpoints. A planar drawing of
a planar graph is called a plane graph. It subdivides the
plane into regions called faces. A plane graph has one
unbounded face, called the outer face. A plane graph
is denoted by its vertices, edges, faces and the outer
face: G = (V,E, F, f). A plane graph where all vertices
lie on the outer face is called an outerplanar graph. A
stellated outerplanar graph is obtained from an outer-
planar graph by adding one vertex and connecting it
to all the original vertices. We call this the stellating
vertex, and all edges emanating from this vertex the
stellating edges.

Two paths between two vertices are independent if
they do not share any vertices except the end-points. A
graph is connected if there is a path between any two
vertices and it is k-connected if there are k independent
paths between any two vertices. A cutset of a graph
is the minimal set of edges whose removal makes the
graph disconnected. A cutset is coterminous if all the
edges emanate from a single point.

A graph is polyhedral if it is planar and 3-connected.
In this case, the faces of a plane realization are uniquely
determined up to the choice of the outer face. By
Steinitz theorem (see Grünbaum [6]), any polyhedral
graph can be realized as a convex polyhedron. A poly-
hedral graph is inscribable if its corresponding convex
polyhedron is combinatorially equivalent to the edges
and vertices of the convex hull of a set of noncoplanar
points on the surface of the sphere.

Given a set P of points in the Euclidean plane, a tri-
angulation of these points is a planar graph where all

CCCG 2011, Toronto ON, August 10–12, 2011

169

23d Canadian Conference on Computational Geometry, 2011

faces, with the possible exception of the outer face, are
triangles. A Delaunay triangulation of P is a triangu-
lation where the circumscircle of any triangle does not
contain any other points of P .

Our result

We give two new proofs of Dillencourt’s theorem:

Theorem 1 Any outerplanar graph can be realized as
a Delaunay triangulation.

2 The first proof

The first proof that an outerplanar graph can be realized
as a Delaunay triangulation relies on two elegant results
due to Dillencourt and Smith [3] and to Rivin [4, 5].
They relate inscribability, realization as Delauney tri-
angulation and Hamiltonicity.

A Hamiltonian cycle in a graph is a simple spanning
cycle. Any graph that has a Hamiltonian cycle is called
Hamiltonian. A graph is 1-Hamiltonian if removing any
vertex from the graph makes it Hamiltonian.

Dillencourt and Smith [3] proved:

Theorem 2 A 1-Hamiltonian planar graph is of in-
scribable type.

Next, we need this result of Rivin [4, 5].

Theorem 3 A plane graph G = (V,E, F, f), with f as
the unbounded face, is realizable as a Delaunay triangu-
lation for some point set P if and only if the graph G′

obtained from G by stellating f is of inscribable type.

To complete our first proof, we just need to show that:

Lemma 4 A stellated outerplanar graph G′ is 1-
Hamiltonian.

Proof. Let {1, 2, · · · , n} be the vertices of the under-
lying outerplanar graph G of G′, in counterclockwise
order on the outer face, with modulo n indices, and
let s be the stellating vertex. If we remove a ver-
tex i, 1 ≤ i ≤ n, then we find a Hamiltonian cycle
i + 1, i + 2, · · · , i − 1, s, i + 1. If we remove vertex s, we
get the original outerplanar graph G which is Hamilto-
nian. �

In the next section, we present our main result, which
is a more technical proof for the same result. It is based
on a very general criterion of Rivin, and has the advan-
tage of illustrating specific properties (besides Hamil-
tonicity) of Delaunay triangulation realizations for out-
erplanar graphs.

3 The main proof

Rivin [4, 5] gave this very general criterion for the
Steiner’s problem:

Theorem 5 A planar graph G′ = (V, E) is of inscrib-
able type if and only if it satisfies the following condi-
tions:

1. G′ is a 3-connected planar graph.

2. A set of weights W can be assigned to the edges of
G′ such that:

(a) For each edge e, 0 < w(e) ≤ 1/2.

(b) For each vertex v, the sum of all weights of
edges incident to v is 1.

(c) For each non-coterminous cutset C ⊆ E, the
sum of all the weights of edges of C must ex-
ceed 1.

Combining this with Theorem 3, we have to prove
that if G′ is a stellated outerplanar graph, then a weight
assignment as in Theorem 5 exists. But first, let us ver-
ify that any stellated outerplanar graph is 3-connected.
The following lemma is straightforward:

Lemma 6 Any outerplanar graph is 2-connected.

Proof. In an outerplanar graph, all the vertices lie
on the unbounded face f . If we label the vertices as
1, 2, · · · , n in the order in which they appear on the
outer face, there are two independent paths between
any pair of vertices i and j: one from i, i + 1, · · · , j and
another is i, i − 1, · · · , j. �

This leads immediately to the verification of the first
condition in Theorem 5:

Lemma 7 Any stellated outerplanar graph G′ is planar
and 3-connected.

Proof. Planarity is straightforward, since G′ was ob-
tained from an outerplanar graph G by stellating (with
a new vertex s) its unbounded face. We show now that
there exists three independent paths between any two
vertices i and j of G′. Let i and j be two vertices of the
outerplanar graph G. Lemma 6 showed that there are
two independent paths between i and j. A third inde-
pendent path is i, s, j where s is the stellating vertex.
To complete the proof we show the existence of three
independent paths between s and any other vertex i of
G: they are (s, i), (s, i − 1, i) and (s, i + 1, i), where in-
dex arithmetic is done modulo n in the range 1, · · · , n.
Notice that we implicitly assume that G has at least
three vertices, otherwise the theorem is trivial. �

23rd Canadian Conference on Computational Geometry, 2011

170

CCCG 2011, Toronto ON, August 10–12, 2011

In the rest of the paper, we describe a weight assign-
ment for G′ which satisfies Rivin’s criteria. In section
3.1 we give an inductive scheme to compute the weights,
and prove that they satisfy the first two properties (2a
and 2b) in Theorem 5. The proof is completed in section
3.2, where we verify the third property (2c) in Theorem
5.

3.1 Weight assignment

Instead of assigning weights on the edges of a stellated
outerplanar graph G′, we will assign them on the edges
of the dual graph G′

D of G′, so first we look closer at the
structure of the dual of a stellated outerplanar graph.

The duals of the stellating edges of G′ form a cycle,
and the remaining ones form a tree (denoted by TD)
whose leaves lie on the cycle (see Fig 1). Furthermore,
the tree is partitioned into a path whose vertices are
not leaves (the backbone) and edges incident to the tree
leaves, called leaf-edges. We thus partition the edges of
G′ into three classes, colored blue (cycle), green (back-
bone) and black (leaf edges). Primal and dual edges
get the same color, see Fig 1(c). One end of the leaf
edge is connected to a backbone edge and another end
is connected to a cycle edge.

The edges of a face of G′
D are duals of edges incident

to a vertex in G′. If there are n cycle edges, there will
be n faces in G′

D. Let these faces be f1, f2, · · · , fn in
counter-clockwise order. Clearly, it suffices to make sure
that the sum of all weights of cycle edges and sum of all
weights of the edges of each face of G′

D are separately
equal to 1. In addition, we have to make sure that the
remaining two conditions 2a and 2b of Theorem 5 are
also satisfied.

(a) (b)
(c)

Figure 1: (a) An outerplanar graph (b) A stellated out-
erplanar graph obtained from (a). Blue edges are stel-
lating edges and blue vertex is the stellating vertex. (c)
Dual graph of the stellated outerplanar graph. Dual
edges are colored according to their primal edges. Dark
blue, green and black edges are cycle, backbone and leaf
edges respectively.

The weight assignment is carried out in two steps, the
contraction step and the expansion step. During con-
traction, all the backbone edges are contracted to ob-
tain a very specific type of dual graph, on which a simple
weight assignment is possible. The edges are then ex-
panded back, and adjustments to the initial weights are
locally performed, while maintaining Rivin’s conditions.

Contraction:

In this step we contract all the backbone edges of TD.
Then all the cycle edges and leaf edges of G′

D remain un-
changed, but all the faces become triangular (see Fig 2).
Next, we assign a weight of 1/n to each cycle edge. Here
n is the number of cycle edges of G′

D. Next we assign
each leaf edge (one of the remaining two edges of a tri-
angular face) a weight of n−1

2n . This weight assignment
satisfies Rivin’s conditions 2a and 2b for n > 1.

(a)
(b)

Figure 2: (a)A dual of a stellated outerplanar graph.
Bold edges are backbone edges. (b) Dual graph after
contraction of backbone edges. (c) Expansion of a single
backbone edge.

Expansion:

Now we incrementally expand back the backbone edges
of TD. Consider a backbone edge eb which is shared by
face fi and face fj . We assign a weight of 0 < ε < 1/2
to eb, for some positive ε to be determined later. This
creates an imbalance into the sum of weights for the
edges of faces fi and fj . We remove this imbalance by
subtracting ε

2 from the cycle edges of fi and fj , and
subtracting ε

4 from each of the two leaf edges of fi and
fj , respectively. Although this restores the balance of
weights for faces fi and fj , it creates an imbalance for
faces fi−1, fi+1, fj−1, fj+1 and cycle edges of G′

D. To
fully balance the weights, we add ε

4 to the cycle edges
of these four faces. This assignment of weights meets
Rivin’s conditions. The process is repeated for each
expanded backbone edge. See Figure 3.

CCCG 2011, Toronto ON, August 10–12, 2011

171

23d Canadian Conference on Computational Geometry, 2011

e

w(l)−e/4

1/n−e/2

1/n−e/2

w(l)−e/4

w(l)−e/4

expanded face

neighbor face
neighbor face

neighbor face
neighbor face

unaffected faces

unaffected faces

1/
n+

e/
4

1/n+e/4

1/
n+

e/
4

1/n+e/4

w(l)−e/4

f i f j

f j+1

f j−1f i+1

f i−1

expanded face

e

1/n−e/2

1/n−e/2

w(l)−e/4

expanded face

neighbor face
neighbor face

unaffected faces

1/n+e/4

1/
n+

e/
4

1/n+e/4
w(l)−e/4

f i
f j

f j−1
f i+1

1/n+e/4+e/4

f j+1

neighbor face

w(l)−e/4

expanded face

w(l)
−e/4

e

expanded face

f j

neighbor face

f j+1

1/n+e/4+e/4

1/n+e/4+e/4

1/n−e/2

expanded face

if

1/n−e/2

neighbor face

f i+1

w(l)−e/4

w(l)−
e/4

w(l)−
e/4

w(l)−e/4

Figure 3: Three possible cases when a backbone edge
is expanded. Expanded face is shared by (a) four dis-
tinct faces, (b) two distinct faces and one common face
and (c) two common faces. When a backbone edge is
expanded, only weights of these neighbor faces have to
be adjusted; weights of other faces remain unchanged.
Here w(l) = n−1

2n

The weight assignment scheme leads to a maximum
possible weight of 1/n for each edge. When n > 2,
this is always smaller than 1/2. When we expand a
backbone edge, we subtract a value from some of the
edges of G′

D, and always add ε
4 to two cycle edges of the

adjacent cells. The maximum amount that we subtract
is ε/2 from a cycle edge of G′

D. Therefore, the only case
when the weight on any edge becomes negative is when
we subtract more than the initial value of the edge.

Figure 4: A stellated outerplanar graph and its dual
(shown in red edges) where the backbone is a single
vertex.

An extreme case occurs when, for each expansion
of a backbone edge, ε/2 is subtracted from the same
edge. This is only possible when our original outer-
planar graph G has all chords emanating from a single
vertex. Consider a face in G′

D corresponding to such
vertex in G. For each expansion of the backbone edge,
the weight of the cycle edge of that face is decremented
by ε/2. Similarly, for each expansion, the weight of each
of the two cycle edges is increased by ε

4 . It remains to
prove that the weight of each edge of G′

D satisfies con-
dition 2a of Theorem 5, if ε lies within a certain range.

Lemma 8 The weight of each edge e lies within the
range 0 < w(e) ≤ 1/2.

Proof. We prove this first for the extreme case where
a face f of G′

D shares all the backbone edge, as in Fig
4. First we show the upper bound of w(e). Each time
a backbone edge is expanded, the weight of each of the
two cycle edges which are the edges of two adjacent faces
of f is increased by ε

4 . Therefore, each such edge takes
extra at most ε

4 (k + 1) from the weights, where k is the
number of backbone edges in G′

D or chords in G′. In an
outerplanar graph, k is exactly n − 3. To maintain the

upper bound of w(e), we need 1
n + ε(n−2)

4 ≤ 1
2 or ε ≤ 2

n .
Now we prove the lower bound of w(e). Each time

a backbone edge is expanded, ε
2 and ε

4 are subtracted
from the cycle and leaf edges of the face f respectively.
Therefore, it suffices to show that the final weight of

23rd Canadian Conference on Computational Geometry, 2011

172

CCCG 2011, Toronto ON, August 10–12, 2011

cycle edge remains positive. After adjusting weights
for all backbone edges, the final weight of a boundary

edge is w(e) = 1
n − (n−3)ε

2 , as there are (n − 3) chords
in the outerplanar graph. Since the base weight 1/n
is always less than 1/2, w(e) < 1/2. To make w(e)

positive, we have to choose ε such that (n−3)ε
2 < 1

n or
ε < 2

n(n−3) . This completes the proof, with weights

assignments w(e) lying within the required range when
ε < min{ 2

n(n−3) ,
2
n}. �

3.2 Proof of non-coterminous cutset condition

A non-coterminous cutset is a cutset where all the edges
of the cutset do not emanate from a single vertex. A
non-coterminous cutset, like any other cutset, divides a
connected graph into two components, where each com-
ponent consists of at least two vertices. Since each ver-
tex in the primal graph is represented by a face in the
dual, the non-coterminous cutset in the primal is repre-
sented by a non-facial cycle in the dual. To prove the
non-coterminous condition 2c of Theorem 5, we show
now that for any non-facial cycle in the dual, the sum
of weights of the edges of the cycle is strictly greater
than 1.

For simplicity, let us consider a non-coterminous cut-
set where the non-facial cycle contains two adjacent
faces in the dual, as in Fig 5. Let e be the edge shared
by this two faces. According to condition 2b, the sum
of the weights of the edges of each of these two faces
is 1. Therefore, the sum of the weights of edges of the
non-facial cycle is 2 − 2w(e). Since the weight of any
edge is less than 1

2 , the weight of the cutset is strictly
greater than 1. It is important to note that this cutset
divides the primal graph into two components where
one component has only two vertices joined by an edge.
The two faces of the non-facial cycle represents these
two vertices in the dual and edge e is the dual of the
connecting edge in the primal.

e

Figure 5: The dotted lines show the non-facial cycle in
the dual graph. Edge e is the extra edge in the cycle.

Now consider a non-facial cycle C which contains n

faces f1, f2, · · · , fn. An edge ex is called an extra edge, if
it is shared by two faces fi and fj , where 1 ≤ i 6= j ≤ n.
Denote by k the extra edges in C and by wmax the
largest weight possible on any of these k edges (which is
essentially less than 1

2). In order to satisfy the condition
2c, we need n − 2kwmax > 1. We need an upper bound
of wmax (lower bound is trivially greater than 0). In
order to find that, we need an upper bound of k too.

Recall that the extra edges in any non-facial cycle
represent the edges of one of the two components. Since
a non-coterminous cycle divides the primal graph into
exactly two components, one of the components has at
least as many vertices than the other one. Therefore,
the number of vertices of the smaller component is v ≤
n
2 and the number of edges in that component satisfy
e ≤ 2v − 3 = n − 3. Therefore the upper bound of k is
n−3. Substituting this value in the equation above, we
get wmax < n−1

2(n−3) , where wmax is clearly less than 1
2 .

Finally, we need to convert wmax in terms of ε. Ini-
tially, in the contracted form, the cycle edges are as-
signed 1

n each and leaf edges are assigned n−1
2n each.

Both of these initial weights are within the bound of
wmax. Whenever a backbone edge of face fi is ex-
panded, the weights of cycle and leaf edges of fi are
decreased. The only edges whose weights are increased
are the cycle edges of face fi−1 and fi+1. Hence it is pos-
sible for these edges to violate only the wmax condition.
We get the bound of wmax based on these edges. The
maximum weights of such cycle edges are encountered
when the outerplanar graph is similar to the extreme
case stated in lemma 8. In that case, only one face fi

shares all the backbone edges and the cycle edges of
faces fi−1 and fi+1 incur maximum additional weights.
Since there can be at most n − 3 possible chords in
the primal or backbone edges in the dual, the weight of

each of these two cycle edge is 1
n + (n−3)ε

4 . Therefore,
the weights of these edges has to satisfy the condition

that 1
n + (n−3)ε

4 ≤ wmax or 1
n + (n−3)ε

4 < n−1
2(n−3) . Solving

this equation, we get ε < 2(n2−3n+6)
n(n−3)2 .

To satisfy both conditions 2a and 2c, we will choose

an ε such that 0 < ε < min{ 2
n(n−3) ,

2
n , 2(n2−3n+6)

n(n−3)2 }

This concludes our main proof.

Acknowledgement

This work was initiated at the 25th Bellairs Winter
Workshop on Computational Geometry held January
1 – January 7, 2010.

References

[1] M. B. Dillencourt Realizability of Delaunay triangu-
lations. Information Processing Letters, 33(6):283-287,
1990

CCCG 2011, Toronto ON, August 10–12, 2011

173

23d Canadian Conference on Computational Geometry, 2011

[2] T. Lambert An optimal algorithm for realizing a De-
launay triangulation Information Processing Letters,
62:245-250, 1997.

[3] M. B. Dillencourt and W. D. Smith Graph-theoretical
conditions for inscribability and Delaunay realizability.
Discrete Mathematics, 161(1-3):63–77, December, 1996.

[4] I. Rivin Euclidean Structures on Simplicial Surfaces
and Hyperbolic Volume The Annals of Mathematics,
139(3):533–580, May, 1994.

[5] I. Rivin A characterization of ideal polyhedra in hyper-
bolic 3-space. The Annals of Mathematics,143(1):51-70,
January, 1996.

[6] B. Grunbaum Convex Polytopes. Wiley Interscience,
1967.

23rd Canadian Conference on Computational Geometry, 2011

174

CCCG 2011, Toronto ON, August 10–12, 2011

Toward the Tight Bound of the Stretch Factor of Delaunay Triangulations∗

Ge Xia† Liang Zhang‡

Abstract

In this paper, we investigate the tight bound of the
stretch factor of the Delaunay triangulation by studying
the stretch factor of the chain (Xia 2011). We define a
sequence Γ = (Γ1, Γ2, Γ3, . . .) where Γi is the maximum
stretch factor of a chain of i circles, and show that Γ is
strictly increasing. We then present an improved lower
bound of 1.5932 for the stretch factors of the Delaunay
triangulation. This bound is derived from a sequence of
chains sharing a set of properties. We conjecture that
these properties are also shared by a chain with the
worst stretch factor.

1 Introduction

Let S be a finite set of points in the Euclidean plane. A
Delaunay triangulation of S is a triangulation in which
the circumscribed circle of every triangle contains no
point of S in its interior. An alternative equivalent def-
inition is: An edge xy is in the Delaunay triangulation
of S if and only if there exists a circle through points x
and y whose interior is devoid of points of S. A Delau-
nay triangulation of S is the dual graph of the Voronoi
diagram of S.

Let D be a Delaunay triangulation of S. For two
points p and q in S, denote by d(p, q) the length of
the shortest path from p to q following the edges of the
triangles in D and by ||pq|| the Euclidean line distance
between p and q. Then the stretch factor (also known as
dilation or spanning ratio) of a Delaunay triangulation
of S is the maximum value of d(p, q)/||pq|| over all pairs
of points p, q in S.

Proving the tight bound for the stretch factor of De-
launay triangulations has been a long standing open
problem in computational geometry, with important
applications in areas such as wireless communications.
The stretch factor of Delaunay triangulations has an
obvious lower bound of π/2 ≈ 1.571 [3], which occurs
when the points lie on a circle whose diameter is pq.
Recently, Bose et. al. [2] gave an improved lower bound

∗Partial results of this paper have been presented in the poster
session of FWCG 2010.

†Department of Computer Science, Lafayette College,
xiag@lafayette.edu. Supported by a Lafayette College research
grant.

‡Lafayette College, zhangl@lafayette.edu. Supported by the
Lafayette College EXCEL Scholars program.

of 1.581 > π/2 by constructing a configuration where
the points are distributed on the boundary of two half
circles separated by a small distance. They also showed
a slightly better lower bound of 1.5846. In term of up-
per bounds, Dobkin, Friedman, and Supowit [5] in 1987
showed that the stretch factor of the Delaunay trian-
gulation is at most (1 +

√
5)π/2 ≈ 5.08. This upper

bound was improved by Keil and Gutwin [6] in 1989
to 2π/(3 cos(π/6)) ≈ 2.42. For the special case when
the point set S is in convex position, Cui, Kanj and
Xia [4] proved that the Delaunay triangulation of S has
stretch factor at most 2.33. Recently, Xia [7] proposed
to study the stretch factor of the Delaunay triangulation
by focusing on the stretch factor of a chain of circles in
the plane. With this approach, Xia [7] proved that the
stretch factor of the Delaunay triangulation is less than
1.998.

Following the same approach as that in [7], we investi-
gate the tight bound on the stretch factor of the Delau-
nay triangulation by studying the stretch factor of the
chain. We define a sequence Γ = (Γ1, Γ2, Γ3, . . .) where
Γi is the maximum stretch factor of a chain of i circles.
We prove that Γ is strictly increasing, which implies
that the tight bound of the stretch factor of the chain
is the limit of Γ. We then proceed to investigate what
kind of chains achieve the stretch factors in Γ. To that
end, we define a family of chains C = {C3, C5, C7, . . .},
each having odd number of circles and satisfying certain
structural properties. We conjecture that for all odd
numbers n ≥ 3, the stretch factor of the chain Cn ∈ C is
Γn. If this conjecture is true, then the problem of find-
ing the tight bound is reduced to computing the limit
of the stretch factor of the chains in C.

Even without proving the conjecture, studying the
stretch factor of the chains in C is still interesting. It
yields improved lower bound. To illustrate this, we com-
pute the chains Cn ∈ C for n = 3, 5, 7, . . . , 31. This
yields a lower bound of 1.5932 for the stretch factors
of the Delaunay triangulation, improving the previous
lower bound of 1.5846 by Bose et al. [2].

The paper is organized as follows. The necessary defi-
nitions are given in Section 2. In Section 3, we show that
Γ is strictly increasing by proving that one can always
increase the stretch factor of a chain by adding a circle
to it. In Section 4, we present an improved lower bound
of the stretch factors of the Delaunay triangulation. We
conclude the paper in Section 5 with a conjecture and a
question that are key to finding the tight bound of the

CCCG 2011, Toronto ON, August 10–12, 2011

175

23d Canadian Conference on Computational Geometry, 2011

stretch factor of the Delaunay triangulation.

2 Preliminaries

We label the points in the plane by lower case letters,
such as p, q, u, v, etc. For any two points p, q in the
plane, denote by pq a line in the plane passing through
p and q, by pq the line segment connecting p and q, and
by −→pq the ray from p to q. The Euclidean distance be-
tween p and q is denoted by ||pq||. The length of a path
P in the plane is denoted by |P |. Any angle denoted
by ∠poq is measured from −→op to −→oq in the counterclock-
wise direction. Unless otherwise specified, the angles
are defined in the range (−π, π].

Definition 1 We say that a sequence of distinct fi-
nite circles1 C = (O1, O2, . . . , On) in the plane is a
chain2 if it has the following three properties. Prop-
erty (1): Every two consecutive circles Oi, Oi+1 inter-
sect, 1 ≤ i ≤ n − 1. Let ai and bi be the shared points
on their boundary (in the special case where Oi, Oi+1

are tangent, ai = bi). Without loss of generality, as-
sume ai’s are on one side of C and bi’s are on the other
side. Denote by C

(i+1)
i the arc on the boundary of Oi

that is in Oi+1, and by C
(i)
i+1 the arc on the boundary

of Oi+1 that is in Oi. We refer to C
(i+1)
i and C

(i)
i+1 as

“connecting arcs”. Property (2): The connecting arcs

C
(i−1)
i and C

(i+1)
i on the same circle Oi do not overlap,

for 2 ≤ i ≤ n − 1; i.e., C
(i−1)
i and C

(i+1)
i do not share

any point other than a boundary point. Property (3):
There is a ray −→r that crosses line segments aibi for all
1 ≤ i ≤ n − 1 in that order. Let u be the entry-point
of −→r on O1 and v the exit-point of −→r on On. We call
u, v a pair of terminal points (or simply terminals) of
the chain C. See Figure 1 for an illustration.

For notational convenience, define a0 = b0 = u and
an = bn = v. Every circle Oi has two arcs on its bound-
ary between the line segments ai−1bi−1 and aibi, de-
noted by Ai and Bi. Without loss of generality, assume
that ai−1, ai are the ends of Ai and bi−1, bi are the ends
of Bi, for 1 ≤ i ≤ n. This means that PA = A1 . . . An

is a path from u to v on one side of the chain and
PB = B1 . . . Bn is a path from u to v on the other
side of the chain. An arc Ai or Bi may degenerate to a
point, in which case ai−1 = ai or bi−1 = bi, respectively.

We define the shortest path between u and v
in C, denoted by PC(u, v), to be the shortest
path from u to v while traveling along arcs in
{A1, . . . , An} ∪ {B1, . . . , Bn} and line segments in

1In this paper, a circle is considered to be a closed disk in the
plane

2Note that our definition of a chain is slightly different from
the chain defined in [7]. Our chain has an additional Property
(3).

a1

b1

A1

B1

a2

b2(b3)

A2

B2

a3

A3

B3

a4

b4

A4

B4

A5

B5

u

(a0,b0)

v
(a5,b5)

Figure 1: A chain C. The connecting arcs are green
(gray in black and white printing). The connecting arcs
on the boundary of the same circle are disjoint. Points
u and v are a pair of terminals of C.

{a1b1, . . . , an−1bn−1}. Its length, |PC(u, v)|, is the to-
tal length of the edges in PC(u, v). For example, in
Figure 1, PC(u, v) is the shortest path from u to v while
traveling along the thick arcs and lines.

Now we can define the stretch factor of a chain C to
be the maximum value of

|PC(u, v)|/||uv||, (1)

over all terminals u, v of C. The stretch factor of a
chain is analogous to that of a Delaunay triangulation.
From [7], the maximum stretch factor of the chain is an
upper bound of the maximum stretch factor of the De-
launay triangulation. We believe that these two quan-
tities are in fact equal (we discuss this in details in Sec-
tion 4).

3 On the Tight Bound

Let Γ = (Γ1, Γ2, Γ3, . . .) be a sequence where Γi is the
maximum stretch factor of a chain of i circles. In this
section we show that Γ is strictly increasing. This im-
plies that the tight bound of the stretch factor of the
chain is the limit of Γ: limi→∞ Γi.

Theorem 2 For all n ≥ 1, Γn+1 > Γn.

Proof. Let C be a chain with stretch factor ρ = Γn.
Without loss of generality, assume that C has the min-
imum number of circles among all chains whose stretch
factor is Γn. We will add a circle On+1 to C such that
the new chain C′ has a stretch factor > ρ.

Refer to Figure 2. Let u, v be terminals of C with
stretch factor ρ. Without loss of generality, assume that
an−1 is above uv and bn−1 is below uv. By flipping
around uv, we can assume that on is on or below uv.
We can also assume that v is not on the boundary of
On−1 because otherwise, we can remove On from C and
still have the same stretch factor—a contradiction to

23rd Canadian Conference on Computational Geometry, 2011

176

CCCG 2011, Toronto ON, August 10–12, 2011

u

on on+1

v′

an

bn

v

α

β γ

u′

q q′

Figure 2: Illustration of adding a new circle On+1 to C.

the fact that C is a chain of minimum number of circles
with stretch factor ρ.

This means that there exist two points an and bn

sufficiently close to v on the boundary of On such that

|÷van| − |÷vbn| = ||anbn||, (2)

where÷van (resp. ÷vbn) is the arc on the boundary of On

between v and an (resp. between v and bn).

Add a new circle On+1 going through an and bn whose
center is on+1. Denote the new chain by C′. Let v′ be
the point on On+1 such that

|øv′an| − |øv′bn| = ||anbn||, (3)

where øv′an (resp. øv′bn) is the arc on the boundary of
On+1 between v′ and an (resp. between v′ and bn).

Refer to Figure 2. Let α be the angle from −−−−→onon+1 to−−→onan, β the angle from −→onv to −−−−→onon+1, and γ the angle
from −→uv to −−−−→onon+1.

Let ∆O = ||onon+1||, ∆P = |PC′(u, v′)| − |PC(u, v)|,
and ∆D = ||uv′|| − ||uv||. By a standard, if lengthy,
calculation, we have the following from [7]:

lim
∆O→0

∆P

∆O
= sin α − α cosα, (4)

and

lim
∆O→0

∆D

∆O
= cos γ − cosα(cos(β − γ) + β sin(β − γ)).

(5)

Let rn be the radius of On. Note that |÷van| = (α +

β)rn, |÷vbn| = (α − β)rn, and ||anbn|| = 2 sin αrn. From
(2), we have (α + β)rn − (α − β)rn = 2 sinαrn. This

means β = sin α. We have

lim
∆O→0

∆P

∆D
=

sin α − α cosα

cos γ − cosα(cos(β − γ) + β sin(β − γ))

=
sin α − α cosα

cos γ − cosα(cos(sin α − γ) + sin α sin(sin α − γ))
.

(6)

Set α small enough, say α = 0.01. Then

lim
∆O→0

∆P

∆D
{α = 0.01, γ = 0} > 66. (7)

Refer to Figure 2. Let ∆V = ||vv′||. When γ = 0, we
have

∆D {γ = 0} = − cos(∠v′vu′)∆V . (8)

When γ > 0, we have

∆D {γ > 0} = − cos(∠v′vu)∆V . (9)

Let q and q′ be the exit-point of −−−−→onon+1 on the boundary
of On and On+1, respectively. Then |õvq| = ||anbn||/2 =

|÷v′q′|, whereõvq is the arc between v and q on the bound-

ary of On and÷v′q′ is the arc between v′ and q′ on the
boundary of On+1. Since α is small and ∆O → 0, we
have rn > rn+1. It is easy to see that 0 < ∠v′vu <
∠v′vu′. Also ∠v′vu′ < π because the distance from v′ to
line onon+1 is less than the distance from v to onon+1.
This means − cos(∠v′vu) < − cos(∠v′vu′). From (8)
and (9), we have

∆D {γ > 0} < ∆D {γ = 0}.

Therefore

lim
∆O→0

∆P

∆D
{α = 0.01, γ > 0}

> lim
∆O→0

∆P

∆D
{α = 0.01, γ = 0}

> 66. (10)

Since on is on or below uv, γ > 0. When ∆O → 0 and
α small enough, we have ∆P

∆D
> 66. From [7], the stretch

factor of the chain is less than 2. So |PC(u,v)|
||uv|| = ρ < 2.

Therefore, we have

|PC′(u, v′)|
||uv′|| =

|PC(u, v)| + ∆P

||uv|| + ∆D
>

|PC(u, v)|
||uv|| = ρ.

This completes the proof. �

4 Improved Lower bounds

A natural question is what kind of chains achieve the
worst stretch factor Γn. We present chains of 3, 5, 7,
15, 31 circles (see Figure 3) with stretch factors 1.5894,

CCCG 2011, Toronto ON, August 10–12, 2011

177

23d Canadian Conference on Computational Geometry, 2011

(a) A chain a 3 circles with stretch factor ρ3 ≈ 1.5894. (b) A Delaunay triangulation based on a chain of 3 circles with the
same stretch factor as ρ3 ≈ 1.5894. The orange “shield” points are
added to prevent short-cuts outside of the chain.

(c) A chain of 5 circles with stretch factor ρ5 ≈ 1.5919. (d) A chain of 7 circles with stretch factor ρ7 ≈ 1.5926.

(e) A chain of 15 circles with stretch factor ρ15 ≈ 1.5931. (f) A chain of 31 circles with stretch factor ρ31 ≈ 1.5932.

Figure 3: Illustration of the chains with improved lower bounds. The green line connects terminals u and v. The
red dots are the centers of the circles in the chain. The blue lines in (b) show the Delaunay triangulation.

23rd Canadian Conference on Computational Geometry, 2011

178

CCCG 2011, Toronto ON, August 10–12, 2011

1.5919, 1.5926, 1.5931, and 1.5932, respectively. The
exact configuration of the chain of 31 circles is given in
the Appendix.

For each chain given in Figure 3, we can create a
Delaunay triangulation with the same stretch factor as
follows: place points of S densely on the outer bound-
ary of Cn. With a small perturbation, one can ensure
that the edges of the Delaunay triangulation inside the
chain do not provide a short-cut for any shortest path
between the terminals u and v in the chain, as shown
in Figure 3(b). In order to prevent short-cuts outside
of the chains, we use the technique of Bose et al. [2] by
adding “shield” points, shown as the orange points in
Figure 3(b). This yields a lower bound of 1.5932 on the
stretch factor of the Delaunay triangulation, improv-
ing the previous best lower bound of 1.5846 by Bose et
al. [1].

Theorem 3 There exists a set S of points in the plane,
such that the Delaunay triangulation of S has a stretch
factor of at least 1.5932.

5 Toward the Tight Bound

The chains Cn in Figure 3 all share the following prop-
erties: let n = 2k + 1 and let u and v be the terminals
of Cn, then

1. for all 1 ≤ i ≤ k, Ok+1+i and Ok+1−i are symmetric
around a line l passing through ok+1, the center of
Ok+1,

2. Ok, Ok+1 and Ok+2 share a point on l,

3. the radii of Ok+1, Ok+2, . . ., O2k+1 are in decreas-
ing order and the radii of O1, O2, . . ., Ok+1 are in
increasing order,

4. for any 1 ≤ i ≤ n−1, aibi is contained in a shortest
path from u to v, and

5. both PA = A1 . . . An and PB = B1 . . . Bn are short-
est paths from u to v.

We conjecture that these properties are shared by a
chain with the worst stretch factor:

Conjecture 4 For all n = 2k + 1 ≥ 3 there is a chain
of n circles with stretch Γn that satisfies Properties 1–5.

Note that we can assume Property 5 is true because
of the following observation.

Proposition 5 ([7]) There is a chain C∗ of n circles
with stretch factor Γn, in which both PA and PB are
shortest paths.

Figure 4: A chain of 4 circles with stretch factor 1.5907.

Proposition 5 was proved in [7] using a technique that
transforms any chain of n circles into C∗ without reduc-
ing the stretch factor. A similar technique of transfor-
mation may be helpful in proving other properties.

If Conjecture 4 is true, the task of finding the tight
bound of the stretch factor of the Delaunay triangula-
tion is reduced to answering the following question.

Question: What is the worst stretch factor of
a chain satisfying Conditions 1–5.

Even without proving Conjecture 4, the answer to this
question will give an improved lower bound of the
stretch factor of the Delaunay triangulation.

Finally, note that a chain of even number of circles
with the maximum stretch factor may not have the sym-
metry exhibited by the chains of odd number of circles.
See Figure 4 for a chain of 4 circles with stretch factor
1.5907. This chain is not symmetric and all circles in it
have different sizes.

References

[1] P. Bose, L. Devroye, M. Löffler, J. Snoeyink, and
V. Verma. The spanning ratio of the Delaunay tri-
angulation is greater than π/2. In Proceedings of
CCCG, 2009.

[2] P. Bose, L. Devroye, M. Löffler, J. Snoeyink, and
V. Verma. Almost all delaunay triangulations have
stretch factor greater than π/2. Computational Ge-
ometry, 44(2):121 – 127, 2011.

[3] P. Chew. There are planar graphs almost as good
as the complete graph. Journal of Computer and
System Sciences, 39(2):205–219, 1989.

CCCG 2011, Toronto ON, August 10–12, 2011

179

23d Canadian Conference on Computational Geometry, 2011

[4] S. Cui, I.A. Kanj, and G. Xia. On the stretch factor
of delaunay triangulations of points in convex po-
sition. Computational Geometry, 44(2):104 – 109,
2011.

[5] D. Dobkin, S. Friedman, and K. Supowit. Delau-
nay graphs are almost as good as complete graphs.
Discrete and Comp. Geom., 5(4):399–407, 1990.

[6] J. Keil and C. Gutwin. Classes of graphs which ap-
proximate the complete Euclidean graph. Discrete
and Comp. Geom., 7:13–28, 1992.

[7] G. Xia. Improved upper bound on the stretch factor
of delaunay triangulations. to appear in Proceedings
of the 27th Annual Symposium on Computational
Geometry (SoCG 2011).

Appendix

In the following, we give the exact configurations of
chains of 31 circles, as shown in Figure 3 (f). Let n = 31.
ρn is the stretch factor, b1 is the angle from −→o1u to−−→o2o1, and bn is the angle from −−−−→on−1on to −→onv. For all
1 ≤ i ≤ n, (xi, yi) are the x- and y-coordinates of oi—
the center of Oi, and ri is the radius of Oi.

ρ31 = 1.59321532337905

(x1, y1) = (−82.83285023949975, −25.121488078241036)

r1 = 27.2227454174619

(x2, y2) = (−72.85751097488247, −28.607891622305775)

r2 = 37.5929692832941

(x3, y3) = (−65.06105288129035, −30.244664465966718)

r3 = 45.2705987926872

(x4, y4) = (−58.46281391202502, −30.896769916666095)

r4 = 51.5306676497054

(x5, y5) = (−52.71657386093427, −30.908699522242472)

r5 = 56.8317425129397

(x6, y6) = (−47.641009930136384, −30.47042857093014)

r6 = 61.4105580627107

(x7, y7) = (−43.12496351134913, −29.70369563073232)

r7 = 65.4084222645816

(x8, y8) = (−39.09176839012416, −28.69398435657018)

r8 = 68.9185983263288

(x9, y9) = (−35.4841587781849,−27.505033297273425)

r9 = 72.0068096919405

(x10, y10) = (−32.25667996954523, −26.186384074676056)

r10 = 74.7216529992949

(x11, y11) = (−29.371513326910353, −24.777713407816105)

r11 = 77.1003848112902

(x12, y12) = (−26.795869450721117, −23.311439841674048)

r12 = 79.1724821194007

(x13, y13) = (−24.50025982738938, −21.814336462991804)

r13 = 80.9619450886396

(x14, y14) = (−22.457239646974063, −20.308501263020666)

r14 = 82.488877282518

(x15, y15) = (−20.639566299045978, −18.8111754808014)

r15 = 83.7712177530083

(x16, y16) = (0.0, 0.0)

r16 = 100.0

(x17, y17) = (20.639566299045978, −18.8111754808014)

r17 = 83.7712177530083

(x18, y18) = (22.457239646974063, −20.308501263020666)

r18 = 82.488877282518

(x19, y19) = (24.50025982738938, −21.814336462991804)

r19 = 80.9619450886396

(x20, y20) = (26.795869450721117, −23.311439841674048)

r20 = 79.1724821194007

(x21, y21) = (29.371513326910353, −24.777713407816105)

r21 = 77.1003848112902

(x22, y22) = (32.25667996954523, −26.186384074676056)

r22 = 74.7216529992949

(x23, y23) = (35.4841587781849, −27.505033297273425)

r23 = 72.0068096919405

(x24, y24) = (39.09176839012416, −28.69398435657018)

r24 = 68.9185983263288

(x25, y25) = (43.12496351134913, −29.70369563073232)

r25 = 65.4084222645816

(x26, y26) = (47.641009930136384, −30.47042857093014)

r26 = 61.4105580627107

(x27, y27) = (52.71657386093427, −30.908699522242472)

r27 = 56.8317425129397

(x28, y28) = (58.46281391202502, −30.896769916666095)

r28 = 51.5306676497054

(x29, y29) = (65.06105288129035, −30.244664465966718)

r29 = 45.2705987926872

(x30, y30) = (72.85751097488247, −28.607891622305775)

r30 = 37.5929692832941

(x31, y31) = (82.83285023949975, −25.121488078241036)

r31 = 27.2227454174619

b1 = b31 = 0.22563636621218

23rd Canadian Conference on Computational Geometry, 2011

180

CCCG 2011, Toronto ON, August 10–12, 2011

Rigid components in fixed-lattice and cone frameworks∗

Matthew Berardi† Brent Heeringa‡ Justin Malestein† Louis Theran†

Abstract

We study the fundamental algorithmic rigidity problems
for generic frameworks periodic with respect to a fixed
lattice or a finite-order rotation in the plane. For fixed-
lattice frameworks we give an O(n2) algorithm for de-
ciding generic rigidity and an O(n3) algorithm for com-
puting rigid components. If the order of rotation is part
of the input, we give an O(n4) algorithm for deciding
rigidity; in the case where the rotation’s order is 3, a
more specialized algorithm solves all the fundamental
algorithmic rigidity problems in O(n2) time.

1 Introduction

The geometric setting for this paper involves two varia-
tions on the well-studied planar bar-joint rigidity model:
fixed-lattice periodic frameworks and cone frameworks.
A fixed-lattice periodic framework is an infinite struc-
ture, periodic with respect to a lattice, where the al-
lowed continuous motions preserve the lengths and con-
nectivity of the bars as well as the periodicity with re-
spect to a fixed lattice. See Figure 1(a). A cone frame-
work is also made of fixed-length bars connected by uni-
versal joints, but it is finite and symmetric with respect
to a finite order rotation; the allowed continuous mo-
tions preserve the bars’ lengths and connectivity and
symmetry with respect to a fixed rotation center. Cone
frameworks get their name from the fact that the quo-
tient of the plane by a finite order rotation is a flat cone
with opening angle 2π/k and the quotient framework,
embedded in the cone with geodesic “bars”, captures
all the geometric information [13]. Figure 2(a) shows
an example.

A fixed-lattice framework is rigid if the only allowed
motions are translations and flexible otherwise. A cone-
framework is rigid if the only allowed motions are isome-
tries of the cone, which is just rotation around the cone
point, and flexible otherwise. A framework is minimally
rigid if it is rigid, but ceases to be so if any of the bars
are removed.

∗Extended abstract. Full proofs are in [2].
†Department of Mathematics, Temple University,

{mberardi,justmale,theran}@temple.edu
‡Department of Computer Science, Williams College,

heeringa@cs.williams.edu

Generic rigidity The combinatorial model for the
fixed-lattice and cone frameworks introduced above is
given by a colored graph (G,γ): G = (V,E) is a finite
directed graph and γ = (γij)ij∈E is an assignment of a
group element γij ∈ Γ (the “color”) to each edge ij for
a group Γ. For fixed-lattice frameworks, the group Γ is
Z2, representing translations; for cone frameworks it is
Z/kZ with k ≥ 2 a natural number. See Figure 1(b)
and Figure 2(b).

The colors can be seen as efficiently encoding a map
ρ from the oriented cycle space of G into Γ; ρ is defined,
in detail, in Section 2. If the image of ρ restricted to
a subgraph G′ contains only the identity element, we
define the Γ-image of ρ to be trivial otherwise it is non-
trivial.

(a)

(0,1)

(0,-1)

(1,0)

(0,0)

(0,0)

(0,0)

(b)

Figure 1: Periodic frameworks and colored graphs: (a)
part of a periodic framework, with the representation
of the integer lattice Z2 shown in gray and the bars
shown in black; (b) one possibility for the the associated
colored graph with Z2 colors on the edges. (Graphics
from [12].)

In 2009 Elissa Ross announced the following theorem:

Theorem 1 ([12],[15]) A generic fixed-lattice periodic
framework with associated colored graph (G,γ) is min-
imally rigid if and only if: (1) G has n vertices and
2n− 2 edges; (2) all non-empty subgraphs G′ of G with
m′ edges and n′ vertices and trivial Z2-image satisfy
m′ ≤ 2n′− 3; (3) all non-empty subgraphs G′ with non-
trivial Z2-image satisfy m′ ≤ 2n′ − 2.

The colored graphs appearing in the statement of The-
orem 1 are defined to be Ross graphs; if only condi-
tions (2) and (3) are met, (G,γ) is Ross-sparse. Ross
graphs generalize the well-known Laman graphs which

CCCG 2011, Toronto ON, August 10–12, 2011

181

23d Canadian Conference on Computational Geometry, 2011

(a)

1

1

(b) (c)

Figure 2: Cone-Laman graphs: (a) a realization of the
framework on a cone with opening angle 2π/3 (graphic
from Chris Thompson); (b) a Z/3Z-colored graph (edges
without colors have color 0); (c) the developed graph
with Z/3Z-symmetry (dashed edges are lifts of dashed
edges in (b)).

are uncolored, have m = 2n − 3 edges, and satisfy (2).
By Theorem 1 the maximal rigid sub-frameworks of a
generic fixed-lattice framework on a Ross-sparse colored
graph (G,γ) correspond to maximal subgraphs of G
with m′ = 2n′ − 2; we define these to be the rigid com-
ponents of (G,γ).

Malestein and Theran [13] proved a similar statement
for cone frameworks:

Theorem 2 ([13]) A generic cone framework with as-
sociated colored graph (G,γ) is minimally rigid if and
only if: (1) G has n vertices and 2n − 1 edges; (2)
all non-empty subgraphs G′ of G with m′ edges and n′

vertices and trivial Z/kZ-image satisfy m′ ≤ 2n′ − 3;
(3) all non-empty subgraphs G′ with non-trivial Z/kZ-
image satisfy m′ ≤ 2n′ − 1.

The graphs appearing in the statement of Theorem 2
are called cone-Laman graphs. We define cone-Laman-
sparse colored graphs and their rigid components simi-
larly to the analogous definitions for Ross-sparse graphs,
with 2n′ − 1 replacing 2n′ − 2.

Ross and cone-Laman graphs are examples of the “Γ-
graded-sparse” colored graphs introduced in [12, 13].
They are all matroidal families [12, 13], which guar-
antees that greedy algorithms work correctly on them.

Main results In this paper we investigate the algorith-
mic theory of crystallographic rigidity of fixed-lattice
and cone frameworks. Given a colored graph (G,γ),

we are interested in the rigidity properties of an associ-
ated generic framework. Lee and Streinu [9] define three
fundamental algorithmic rigidity questions: Decision
Is the input rigid? ; Extraction Find a maximum sub-
graph of the input corresponding to independent length
constraints; Components Find the maximal rigid sub-
frameworks of a flexible input.

We give algorithms for these problems with running
times shown in the following table

Decision Extraction Components

Fixed-lattice O(n2) O(n3) O(n3)
Cone k 6= 3 O(n4) O(n5) O(n5)
Cone k = 3 O(n2) O(n2) O(n2)

Novelty Previously, the only known efficient combina-
torial algorithms for any of these problems were pointed
out in [12, 13]: the Edmonds Matroid Union algorithm
yields an algorithm with running times O(n4) for Deci-
sion and O(n5) Extraction. Recently, Ross presented
a Decision algorithm for Ross graphs very similar to
ours [15]. A folklore randomized algorithm based on
Gaussian elimination gives an O(n3 polylog(n)) algo-
rithm for Decision and Extraction of most rigidity
problems, but this doesn’t easily generalize to Compo-
nents.

The O(n2) running time of Decision for fixed-lattice
frameworks equals that from the pebble game [3, 8, 9]
for the corresponding problem in finite frameworks. Al-
though there are faster Decision algorithms [5] for fi-
nite frameworks, the pebble game is the standard tool
in the field due to its elegance and ease of implementa-
tion. Our algorithms for cone frameworks with order 3
rotation are a reduction to the pebble games of [3, 8, 9].

The O(n3) running time for Extraction and Com-
ponents in fixed-lattice frameworks is worse by a factor
of O(n) than the pebble games for finite frameworks.
However, it is equal to the O(n3) running time from [9]
for the “redundant rigidity” problem. Computing fun-
damental Laman circuits (definition in Section 2) plays
an important role (though for different reasons) in both
of these algorithms.

Roadmap and key ideas Our main contribution is a
pebble game algorithm for Ross graphs, from which
we can deduce the corresponding results for general
cone-Laman graphs. Intuitively, the algorithmic rigid-
ity problems should be harder for Ross graphs than for
Laman graphs, since the number of edges allowed in a
subgraph depends on whether the Z2-image of the sub-
graph is trivial or not. To derive an efficient algorithm
we use three key ideas (detailed definitions are given in
Section 2):

• The Lee-Streinu-Theran [11] approach of playing
several copies of the pebble game for (k, `)-graphs

23rd Canadian Conference on Computational Geometry, 2011

182

CCCG 2011, Toronto ON, August 10–12, 2011

[9] with different parameters to handle different
sparsity counts for different types of subgraphs.

• A new structural characterization of the edge-wise
minimal colored graphs which violate the Ross
counts (Section 3).

• A linear time algorithm for computing the Γ image
of a given subgraph (Section 4).

Our algorithms for general cone-Laman graphs then
use the Ross graph Decision algorithm as a subroutine.
When the order of the rotation is 3, we can reduce the
cone-Laman rigidity questions to Laman graph rigidity
questions directly, resulting in better running times.

Motivation Periodic frameworks, in which the lattice
can flex, arise in the study of zeolites, a class of micro-
porous crystals with a wide variety of industrial appli-
cations, notably in petroleum refining. Because zeolites
exhibit flexibility [16], computing the degrees of freedom
in potential [14, 18] zeolite structures is a well-motivated
algorithmic problem.

Other related work The general subject of periodic
and crystallographic rigidity has seen a lot of progress
recently[4, 12, 13], see [7] for a list of announcements.
Bernd Schulze [17] has studied Laman graphs with
a free Z/3Z action in a different context and Elissa
Ross’s recent thesis studies rigidity of infinite periodic
frameworks.[15].

2 Preliminaries

In this section, we introduce the required background
in colored graphs, hereditary sparsity, and introduce
a data structure for least common ancestor queries in
trees that is an essential tool for us.

Colored graphs and the map ρ A pair (G,γ) is defined
to be a colored graph with Γ a group, G = (V,E) a
finite, directed graph on n vertices and m edges, and
γ = (γij)ij∈E is an assignment of a group element γ ∈ Γ
to each edge.

Let (G,γ) be a colored graph, and let C be a cycle in
G with a fixed traversal order. We define ρ(C) to be

ρ(C) =
∑

ij∈C
ij traversed
forwards

γij −
∑

ij∈C
ij traversed
backwards

γij

Since Γ is always abelian in this paper, we need not be
concerned with the particular order of summation, and
since we are interested in whether ρ(C) is trivial or not,
we are not concerned with sign. For a subgraph G′ of
G, we define ρ(G′) to be trivial if its image on cycles

spanned by G′ contains only the identity and non-trivial
otherwise. We need the following fact about ρ.

Lemma 3 ([12, Lemma 2.2]) Let (G,γ) be a colored
graph. Then ρ(G) is trivial if and only if, for any span-
ning forest T of G, ρ is trivial on every fundamental
cycle induced by T .

(k, `)-sparsity and pebble games The hereditary spar-
sity counts defining Ross and cone-Laman graphs gener-
alize to (k, `)-sparse graphs which satisfy m′ ≤ kn′ − `
for all subgraphs; if in addition the total number of
edges is m = kn − `, the graph is a (k, `)-graph. We
also need the notion of a (k, `)-circuit, which is an edge-
minimal graph that is not (k, `)-sparse; these are always
(k, `− 1)-graphs [9]. If G is any graph, a (k, `)-basis of
G is a maximal subgraph that is (k, `)-sparse; if G′ is a
(k, `)-basis of G and ij ∈ E(G)−E(G′), the fundamen-
tal (k, `)-circuit of ij with respect to G′ is the unique
(k, `)-circuit in G′ + ij. See [9] for a detailed develop-
ment of this theory. As is standard in the field, we use
“(2, 3)-” and “Laman” interchangeably.

Although (k, `)-sparsity is defined by exponentially
many inequalities, it can be checked in quadratic time
using the pebble game [9], an incremental approach that
builds a (k, `)-sparse graph G one edge at a time. Here,
we will use the pebble game as a “black box” to: (1)
Check if an edge ij is in the span of any (k, `)-component
of G in O(1) time [9, 10]; (2) Assuming that G plus a
new edge ij is (k, `)-sparse, add the edge ij to G and
update the components in amortized O(n2) time [9];
(3) Compute the fundamental circuit with respect to a
given (k, `)-sparse graph G in O(n) time [9].

Least common ancestors in trees Let T be a rooted
tree with root r and let i and j be any vertices in T .
The least common ancestor (shortly, LCA) of i and j
is defined to be the vertex where the (unique, since T
is a tree) paths from i to r and j to r first converge.
If either i or j is r, then this is just r. A fundamental
result of Harel and Tarjan [6] is that LCA queries can
be answered in O(1) time after O(n) preprocessing.

3 Combinatorial lemmas

In this section we prove structural properties of Ross
and cone-Laman graphs that are required by our algo-
rithms.

Ross graphs Let (G,γ) be a colored graph and sup-
pose that G is a (2, 2)-graph. We can verify that (G,γ)
is Ross by checking the Z2-images of a relatively small
set of subgraphs.

Lemma 4 ([2]) Let (G,γ) be a colored graph and sup-
pose that G is a (2, 2)-graph. Then (G,γ) is a Ross

CCCG 2011, Toronto ON, August 10–12, 2011

183

23d Canadian Conference on Computational Geometry, 2011

graph if and only if for any Laman basis L of G, the
fundamental Laman circuit with respect to L of every
edge ij ∈ E − E(L) has non-trivial Z2-image.

Figure 3 shows two examples. The point is that we can
pick any Laman basis L of G. The main idea is that
G being a (2, 2)-graph forces all Laman circuits to be
edge-disjoint, from which we can deduce all of them are
fundamental Laman circuits of every Laman basis.

(1,0)

(a)

(1,0)

(b)

Figure 3: Examples of Ross and non-Ross graphs (edges
without colors have color (0, 0)): (a) a Ross graph; the
underlying graph is itself a Laman circuit; (b) the un-
derlying graph is a (2, 2)-graph, but the uncolored K4

subgraph has trivial image, so this is not a Ross graph.
Note that K4 is a Laman circuit, illustrating Lemma 4

Cone-Laman graphs Because cone-Laman graphs
have an underlying (2, 1)-graph, the statement of
Lemma 4, with (2, 1)- replacing (2, 2)- does not hold for
cone-Laman graphs. The analogous statement, proven
in the full version is:

Lemma 5 ([2]) Let (G,γ) be a colored graph. Then
(G,γ) is a cone-Laman graph if and only if: (1) G
is a (2, 1)-graph; (2) for any (2, 2)-basis R of G, the
fundamental (2, 2)-circuit G′ with respect to R of ij ∈
E(G)−E(R) becomes a Ross graph after removing any
edge from G′; (3) for any Laman-basis L of G, the fun-
damental Laman-circuits with respect to L have non-
trivial Γ-image.

Order three rotations In the special case where the
group Γ = Z/3Z, which corresponds to a cone with
opening angle 2π/3, we can give a simpler characteri-
zation of cone-Laman graphs in terms of their develop-
ment. The development G̃ is defined by the following
construction: G̃ has three copies of each vertex i: i0, i1
and i2; a directed edge ij with color γ then generates
three undirected edges ikjk+γ (addition is modulo 3).
See Figure 2(c)) for an example. The development has
a free Z/3Z-action; a subgraph of G̃ is defined to be
symmetric if it is fixed by this action.

Lemma 6 ([2]) Let (G,γ) be a colored graph with Γ =
Z/3Z. Then (G,γ) is a cone-Laman graph if and only

if its development G̃ is a Laman graph. Moreover, the
rigid components of (G,γ) correspond to the symmetric
rigid components of G̃.

4 Computing the Γ-image of ρ

We now focus on the problem of deciding whether the
Γ-image of the map ρ, defined in Section 2, is trivial
on a colored graph (G,γ). The case in which G is not
connected follows easily by considering connected com-
ponents one at a time, so we assume from now on that
G is connected. Let (G,γ) be a colored graph and T be
a spanning tree of G with root r. For a vertex i, there
is a unique path Pi in T from r to i. We define σri to
be

σri =
∑

jk∈Pi
jk traversed forwards

γjk −
∑

jk∈Pi
jk traversed backwards

γjk

The notation σri extends in a natural way: for a a vertex
j on Pi, we define σij to be σri−σrj ; if σji is defined, we
define σij = −σji. The key observation is the following
lemma:

Lemma 7 Let (G,γ) be a connected colored graph, let
T be a rooted spanning tree of G, let ij be an edge of
G not in T , and let a be the least common ancestor of
i and j. Then, if C is the fundamental cycle of ij with
respect to T , ρ(C) = σai + γij − σja.

Proof. Traversing the fundamental cycle of ij so that
ij is crossed from i to j means: going from i to j, from
j to the LCA a of i and j towards the root, and then
from a to i away from the root. �

We now show how to compute whether the Γ-image
of a colored graph is trivial in linear time. The idea used
here is closely related to a folklore O(n2) algorithm for
all-pairs-shortest paths in trees.1

Lemma 8 Let (G,γ) be a connected colored graph with
n vertices and m edges. There is an O(n+m) time algo-
rithm to decide whether the Γ-image of ρ(G) is trivial.

The rest of this section gives the proof of Lemma 8. We
first present the algorithm.
Input: A colored graph (G,γ)
Question: Is ρ(G) trivial?
Method:

• Pick a spanning tree T of G and root it.

• Compute σri for each vertex i of G.

• For each edge ij not in T , compute the image of its
fundamental cycle in T .

• Say ‘yes’ if any of these images are not the identity
and ‘no’ otherwise.

1We thank David Eppstein for clarifying the tree APSP trick’s
origins on MathOverflow.

23rd Canadian Conference on Computational Geometry, 2011

184

CCCG 2011, Toronto ON, August 10–12, 2011

Correctness This is an immediate consequence of
Lemma 3, since the algorithm checks all the fundamen-
tal cycles with respect to a spanning tree.

Running time Finding the spanning tree with BFS is
O(m) time, and once the tree is computed, the σri can
be computed with a single pass over it in O(n) time.
Lemma 7 says that the image of any fundamental cycle
with respect to T can be computed in O(1) time once
the LCA of the endpoints of the non-tree edge is known.
Using the Harel-Tarjan data structure, the total cost of
LCA queries is O(n+m), and the running time follows.

The pebble game for Ross graphs We have all the
pieces in place to describe our algorithm for the rigidity
problems in Ross graphs.

Algorithm: Rigid components in Ross graphs
Input: A colored graph (G,γ) with n vertices and m
edges.
Output: The rigid components of (G,γ).
Method: We will play the pebble game for (2, 3)-sparse
graphs and the pebble game for (2, 2)-sparse graphs in
parallel. To start, we initialize each of these separately,
including data structures for maintaining the (2, 2)- and
(2, 3)-components.

Then, for each colored edge ij ∈ E:

(A) If ij is in the span of a (2, 2)-component in the
(2, 2)-sparse graph we are maintaining, we discard
ij and proceed to the next edge.

(B) If ij is not in the span of any (2, 3)-component, we
add ij to both the (2, 2)-sparse and (2, 3)-sparse
graphs we are building, and update the components
of each.

(C) Otherwise, we use the (2, 3)-pebble game to identify
the smallest (2, 3)-block G′ spanning ij. We add ij
to this subgraph G′ and compute its Z2-image. If
this is trivial, we discard ij and proceed to the next
edge.

(D) If the image of G′ was non-trivial, add ij to the
(2, 2)-sparse graph we are maintaining and update
its rigid components.

The output is the (2,2)-components in the (2, 2)-
sparse graph we built.

Correctness By definition, the rigid components of a
Ross graph are its (2, 2)-components. Step (A) ensures
that we maintain a (2, 2)-sparse graph; steps (B) and
(C), by Lemma 4 imply that when new (2, 2)-blocks are
formed all of them have non-trivial Z2-image, which is
what is required for Ross-sparsity. Step (D) ensures
that the rigid components are updated at every step.

The matroidal property implies that a greedy algorithm
is correct.

Running time By [9, 10], steps (A), (B), and (D) re-
quire O(n2) time over the entire run of the algorithm
(the analysis of the time taken to update components
is amortized). Step (C), by [9] and Lemma 7 requires
O(n) time. Since Ω(m) iterations may enter step (C),
this becomes the bottleneck, resulting in an O(nm) run-
ning time, which is O(n3).

Modifications for other rigidity problems We have
presented and analyzed an algorithm for computing the
rigid components in Ross graphs. Minor modifications
give solutions to the Decision and Extraction prob-
lems. For Extraction, we just return the (2, 2)-sparse
graph we built; the running time remains O(n3). For
Decision, we simply stop and say ‘no’ if any edge is
ever discarded. Since we process at most O(n) edges,
the running time becomes O(n2).

5 Pebble games for cone-Laman graphs

We now describe our algorithms for cone-Laman graphs.

Order-three rotations We start with the special case
when the group Γ = Z/3Z. In this case, the follow-
ing algorithm’s correctness is immediate from Lemma
6. The running time follows from [3, 9, 10] and the fact
that the development can be computed in linear time.

Input: A colored graph (G,γ) with n vertices and
m edges.
Output: The rigid components of (G,γ).
Method:

(A) Compute the development G̃ of (G,γ).

(B) Use the (2, 3)-pebble game to compute the rigid
components of G̃.

(C) Return the subgraphs of G corresponding to the
symmetric rigid components in G̃.

General cone-Laman graphs For colored graphs with
Γ = Z/kZ, we don’t have an analogue of Lemma 6,
and the development may not be polynomial size. How-
ever, we can modify our pebble game for Ross graphs to
compute the rigid components. Here is the algorithm:
Input: A colored graph (G,γ) with n vertices and m
edges, and an integer k.
Output: The rigid components of (G,γ).
Method: We initialize a (2, 1)-pebble game, a (2, 2)-
pebble game, and a (2, 3)-pebble game. Then, for each
edge ij ∈ E(G):

CCCG 2011, Toronto ON, August 10–12, 2011

185

23d Canadian Conference on Computational Geometry, 2011

(A) If ij is in the span of a (2, 1)-component in the
(2, 1)-sparse graph we are maintaining, we discard
ij and proceed to the next edge.

(B) If ij is not in the span of any (2, 3)-component, we
add ij to all three sparse graphs we are building,
update the components of each, and proceed to the
next edge.

(C) If ij is not in the span of any (2, 2)-component,
we check that its fundamental Laman circuit in the
(2, 3)-sparse graph has non-trivial Z/kZ-image. If
not, discard ij. Otherwise, add ij to the (2, 1)- and
(2, 2)-sparse graphs and update components.

(D) Otherwise ij is not in the span of any (2, 1)-
component. We find the minimal (2, 2)-block G′

spanning ij and check if G′ + ij becomes a Ross
graph after removing any edge. If so, add ij to the
(2, 1)-graph we are building. Otherwise discard ij.

The output is the (2, 1)-components in the (2, 1)-
sparse graph we built.

Analysis The proof of correctness follows from Lemma
5 and an argument similar to the one used to show that
the pebble game for Ross graphs is correct. Each loop
iteration takes O(n3) time, from which the claimed run-
ning times follow.

6 Conclusions and remarks

We studied the three main algorithmic rigidity ques-
tions for generic fixed-lattice periodic frameworks and
cone frameworks. We gave algorithms based on the peb-
ble game for each of them. Along the way we introduced
several new ideas: a linear time algorithm for comput-
ing the Γ-image of a colored graph, a characterization
of Ross graphs in terms of Laman circuits, and a char-
acterization of cone-Laman graphs in terms of the de-
velopment for k = 3 and Ross graphs for general k.

Implementation issues The pebble game has become
the standard algorithm in the rigidity modeling com-
munity because of its elegance, ease of implementation,
and reasonable implicit constants. The original data
structure of Harel and Tarjan [6], unfortunately, is too
complicated to be of much use except as a theoretical
tool. More recent work of Bender and Farach-Colton
[1] gives a vastly simpler data structure for O(1)-time
LCA that is not much more complicated than the union
pair-find data structure of [10] used in the pebble game.
This means that the algorithm presented here is imple-
mentable as well.

References

[1] M. A. Bender and M. Farach-Colton. The LCA problem
revisited. In Proc. LATIN’00, pages 88–94, 2000.

[2] M. Berardi, B. Heeringa, J. Malestein, and L. Theran.
Rigid components in fixed-lattice and cone frameworks.
Preprint, arXiv:1105.3234, 2011.

[3] A. R. Berg and T. Jordán. Algorithms for graph rigidity
and scene analysis. In ESA 2003, volume 2832 of LNCS,
pages 78–89. 2003.

[4] C. Borcea and I. Streinu. Periodic frameworks and flex-
ibility. Proc. of the Royal Soc. A, 466:2633–2649, 2010.

[5] H. N. Gabow and H. H. Westermann. Forests, frames,
and games: algorithms for matroid sums and applica-
tions. Algorithmica, 7(5-6):465–497, 1992.

[6] D. Harel and R. E. Tarjan. Fast algorithms for finding
nearest common ancestors. SIAM J. Comput., 13:338–
355, May 1984.

[7] B. Jackson, J. Owen, and S. Power. London mathemat-
ical society workshop : Rigidity of frameworks and ap-
plications. http://www.maths.lancs.ac.uk/~power/

LancRigidFrameworks.htm, 2010.

[8] D. J. Jacobs and B. Hendrickson. An algorithm for two-
dimensional rigidity percolation: the pebble game. J.
Comput. Phys., 137(2):346–365, 1997.

[9] A. Lee and I. Streinu. Pebble game algorithms and
sparse graphs. Discrete Math., 308(8):1425–1437, 2008.

[10] A. Lee, I. Streinu, and L. Theran. Finding and main-
taining rigid components. In Proc. CCCG’05, 2005.

[11] A. Lee, I. Streinu, and L. Theran. Graded sparse graphs
and matroids. Journal of Universal Computer Science,
13(11):1671–1679, 2007.

[12] J. Malestein and L. Theran. Generic combina-
torial rigidity of periodic frameworks. Preprint,
arXiv:1008.1837, 2010.

[13] J. Malestein and L. Theran. Generic combinatorial
rigidity of crystallographic frameworks. Preprint, 2011.

[14] I. Rivin. Geometric simulations - a lesson from virtual
zeolites. Nature Materials, 5(12):931–932, Dec 2006.

[15] E. Ross. The Rigidity of Periodic Frameworks as
Graphs on a Torus. PhD thesis, York University, May
2011.

[16] A. Sartbaeva, S. Wells, M. Treacy, and M. Thorpe. The
flexibility window in zeolites. Nature Materials, Jan
2006.

[17] B. Schulze. Symmetric versions of Laman’s theorem.
Discrete Comput. Geom., 44(4):946–972, 2010.

[18] M. Treacy, I. Rivin, E. Balkovsky, and K. Randall. Enu-
meration of periodic tetrahedral frameworks. II. Polyn-
odal graphs. Microporous and Mesoporous Materials,
74:121–132, 2004.

23rd Canadian Conference on Computational Geometry, 2011

186

CCCG 2011, Toronto ON, August 10–12, 2011

Orientations of Simplices
Determined by Orderings on the Coordinates of their Vertices∗

Emeric Gioan1,2 Kevin Sol2 Gérard Subsol1,2

Abstract

We address the problem of testing when orderings on
coordinates of n points in an (n− 1)-dimensional affine
space, one ordering for each coordinate, suffice to deter-
mine if these points are the vertices of a simplex (i.e.
are affinely independent), and the orientation of this
simplex, independently of the real values of the coor-
dinates. In other words, we want to know when the
sign (or the non-nullity) of the determinant of a ma-
trix whose columns correspond to affine points is de-
termined by orderings given on the values on each row.
We completely solve the problem in dimensions 2 and
3, providing a direct combinatorial characterization, to-
gether with a formal calculus method, that can be seen
also as a decision algorithm, which relies on testing the
existence of a suitable inductive cofactor expansion of
the determinant. We conjecture that the method we
use generalizes in higher dimensions. The motivation
for this work is to be part of a study on how oriented
matroids encode shapes of 3-dimensional objects, with
applications in particular to the analysis of anatomical
data for physical anthropology and clinical research.
Keywords: simplex orientation, determinant sign,

chirotope, coordinate ordering, combinatorial algorithm,
formal calculus, oriented matroid, 3D model.

1 Introduction

We consider n points in an (n−1)-dimensional real affine
space. For each of the n − 1 coordinates, an ordering
is given, applied on the n values of the points with re-
spect to this coordinate. We address the problem of
testing if these points are the vertices of a simplex (i.e.
are affinely independent, i.e. do not belong to a same
hyperplane), and of determining the orientation of this
simplex, assuming only that their coordinates satisfy
the given orderings, independently of their real values.

More formally, we consider the following generic ma-
trix (where each ei is the label of a point and each bi is

∗Research supported by the OMSMO Project LIRMM France
and the TEOMATRO Grant ANR-10-BLAN 0207.

1CNRS
2LIRMM, Univ. Montpellier 2, France. {lastname}@lirmm.fr

the index of a coordinate)

ME,B =

1 1 . . . 1
xe1,b1 xe2,b1 . . . xen,b1
xe1,b2 xe2,b2 . . . xen,b2

...
...

...
xe1,bn−1

xe2,bn−1
. . . xen,bn−1

together with orderings given on the values on each row,
and we want to know when the sign (or the non-nullity)
of its determinant is determined by these orderings only.

Equivalently, we consider the above formal matrix
and the affine algebraic variety of Rn×(n−1) whose equa-
tion is det(ME,B) = 0. Then we look for which regions of
Rn×(n−1), delimited by the hyperplanes xei,bk = xej ,bk ,
for all 1 ≤ i, j ≤ n and all 1 ≤ k ≤ n − 1, have a
non-empty intersection with this variety (obviously, re-
gions delimited by these hyperplanes are in canonical
bijection with coordinate linear orderings).

In this paper, we completely solve the problem in di-
mensions 2 (Section 4) and 3 (Section 5), providing a
direct combinatorial characterization, together with a
combinatorial formal calculus method, that can be seen
also as a decision algorithm, to test if the orientation is
determined or not. More precisely, our method relies on
testing the existence of a suitable inductive cofactor ex-
pansion of the determinant, from which a combinatorial
formal calculus is able to determine the sign of the de-
terminant. We conjecture that such a characterization
generalizes in higher dimensions (Section 3).

The motivation for this work is to be part of a
study on how oriented matroids [1] encode shapes of 3-
dimensional objects, with applications in particular to
the analysis of anatomical data for physical anthropol-
ogy and clinical research [3]. In these applications, we
usually study a set of models belonging to a given group
(e.g. a set of 3D landmark points located on human or
primate skulls) and we look for the significant properties
encoded by the combinatorial structure. The above re-
sults allow us to distinguish chirotopes (i.e. simplex ori-
entations) which are determined by the “generic” form
(e.g. in any skull, the mouth is below the eyes) from
those which are specific to anatomical variations. As
an example, some results on anatomical 3D data are
presented in Section 6.

CCCG 2011, Toronto ON, August 10–12, 2011

187

23d Canadian Conference on Computational Geometry, 2011

2 Formalism and terminology of the problem

We warn the reader that we use on purpose a rather
abstract formalism throughtout the paper (formal vari-
ables instead of real values, indices within arbitrary or-
dered sets instead of integers). This will allow us to get
easier and non-ambiguous constructions and definitions.

Let us fix an (ordered) set E = {e1, . . . , en}, with
size n, of labels, and an (ordered) canonical basis B =
{b1, . . . , bn−1}, with size n−1, of the (n−1)-dimensional
real space Rn−1. We denoteME,B - orM for short when
the context is clear - the formal matrix whose entry at
column i and row j+1, for 1 ≤ i ≤ n and 1 ≤ j ≤ n−1,
is the formal variable xei,bj , as represented in Section 1.
The determinant det(ME,B) of this formal matrix is a
multivariate polynomial on these formal variables, and
the main object studied in this paper.

Let P be a set of n points, labeled by E , in Rn−1
considered as an affine space. We denote ME,B(P) - or
M(P) for short - the matrix whose columns give the
coordinates of points in P w.r.t. the basis B, that is
specifying real values for the formal variables xei,bj in
the matrixME,B above. For e ∈ E and b ∈ B, we denote
xe,b(P) the real value given to the formal variable xe,b
in P. We may sometimes denote xe,b for short instead
of xe,b(P) when the context is clear. We call orienta-
tion of P, or chirotope of P in the oriented matroid
terminology, the sign of det(M(P)), belonging to the
set {+,−, 0}. It is the sign of the real evaluation of the
polynomial det(M) at the real values given by P. This
sign is not equal to zero if and only if P forms a simplex
(basis of the affine space).

We call ordering configuration on (E ,B) - or configu-
ration for short - a set C of n−1 orderings<b1 , . . . , <bn−1

on E , one ordering for each element of B. In general,
such an ordering can be any partial ordering. If ev-
ery ordering <b, b ∈ B, is linear, then C is called a
linear ordering configuration. An element of E which
is the smallest or the greatest in a linear ordering on
E is called extreme in this ordering. We call reversion
of an ordering the ordering obtained by reversing every
inequality in this ordering.

Given a configuration C on (E ,B) and a set of n points
P labeled by E , we say that P satisfies C if, for all b ∈ B,
the natural order (in the set of real numbers R) of the
coordinates b of the points in P is compatible with the
ordering <b of C, that is precisely :

∀b ∈ B, ∀e, f ∈ E , e <b f ⇒ xe,b(P) < xf,b(P).

One may observe that the set of all P satisfying C forms
a convex polyhedron, more precisely: a (full dimen-
sional) region of the space Rn×(n−1), delimited by some
hyperplanes of equations of type xe,b = xf,b for b ∈ B
and e, f ∈ E .

We say that a configuration C is fixed if all the sets
of points P satisfying C form a simplex and have the

same orientation. In this case, the sign of det(M(P))
is the same for all P satisfying C. Then we call sign
of det(M) this sign, belonging to { + , − } accordingly,
and we denote it σC(det(M)). If C is non-fixed, then its
sign is σC(det(M)) = ± .

The following lemma is easy to prove.

Lemma 1 The following propositions are equivalent:
(a) The configuration C is non-fixed, that is

σC(det(M)) = ± .
(b) There exist two sets of points P1 and P2 satisfying

C and forming simplices that do not have the same ori-
entation, that is det(M(P1)) > 0 and det(M(P2)) < 0;
(c) There exists a set of points P satisfying C and

such that the points of P belong to one hyperplane, that
is det(M(P)) = 0.

Two configurations on (E ,B) are called equivalent if
they are equal up to a permutation of B, a permuta-
tion of E (relabelling), and some reversions of orderings
(symmetries from the geometrical viewpoint). Note that
changing a configuration into an equivalent one comes,
in a matricial setting, to change the orderings of rows,
of columns, and to multiply some rows by −1. Ob-
viously those operations do not change the non-nullity
of the determinant, hence two equivalent configurations
are fixed or non-fixed simultaneously.

Now, given an ordering configuration C, the aim of
the paper is to determine if C is fixed or non-fixed.

3 Computable fixity criteria and conjectures

3.1 From partial orderings to linear orderings

We recall that a linear extension of an ordering on a
set E is a linear ordering on E compatible with this or-
dering. A linear extension of an ordering configuration
C on (E ,B) is a linear ordering configuration on (E ,B)
obtained by replacing each ordering on E in C by one
of its linear extensions.

Lemma 2 Let C be a configuration on (E ,B). If there
exists a set P of n points satisfying C and contained
in an hyperplane, then there exists a set of n points P ′
contained in an hyperplane and a linear extension C′ of
C satisfied by P ′.

From the previous (easy) lemma, we get (directly) the
above proposition.

Proposition 1 Let C be a configuration on (E ,B). The
configuration C is non-fixed if and only if there exists a
non-fixed linear extension of C. The configuration C is
fixed if and only if every linear extension of C is fixed.

The above result allows to test only the fixity of lin-
ear ordering configurations to deduce the fixity of any
configuration. In what follows, we will concentrate on
linear ordering configurations.

23rd Canadian Conference on Computational Geometry, 2011

188

CCCG 2011, Toronto ON, August 10–12, 2011

3.2 Formal fixity

Let C be a linear ordering configuration on (E ,B). We
consider formal expression of type xe,b−xf,b for e, f ∈ E ,
e 6= f , and b ∈ B, which we may sometimes denote
xe−f,b for short. Such a formal expression gets a formal
sign w.r.t. C denoted σC(xe,b − xf,b) and belonging to
{ + , − }, the following way:

σC(xe,b − xf,b) = + if f <b e;

σC(xe,b − xf,b) = − if e <b f.

Recall that the polynomial det(ME,B) is a multivari-
ate polynomial on variables xe,b for b ∈ B and e ∈ E .
Assume a particular formal expression of det(ME,B) is
a sum of multivariate monomials where each variable
is replaced by some xe,b − xf,b, for b ∈ B and e, f ∈ E .
Various expressions of this type can be obtained by suit-
able transformations and determinant cofactor expan-
sions from the matrix M , as we will do more precisely
below. This particular expression of det(ME,B) gets a
formal sign w.r.t. C belonging to { + , − , ? }, by re-
placing each expression of type xe,b−xf,b with its formal
sign σC(xe,b − xf,b) and applying the following formal
calculus rules:

+ · + = − · − = + ,

+ · − = − · + = − ,
+ + + = + − − = + ,

− + − = − − + = − ,
+ + − = − + + = ? ,

and the result of any operation involving a ? term or
factor is also ? .

We say that C is formally fixed if det(ME,B) has such
a formal expression whose formal sign is not ? .

Example. Consider the following matrix M = ME,B for
E = {a, b, c} and B = {1, 2}:

M =

1 1 1
xa,1 xb,1 xc,1
xa,2 xb,2 xc,2

and consider the configuration C defined by:
a <1 b <1 c
b <2 c <2 a

A formal expression of det(M) is:
det(M) = xb−a,1 · xc−a,2 − xb−a,2 · xc−a,1

whose formal sign w.r.t. C is
+ · − − − · + = ? .

Another formal expression of det(M) is:
det(M) = xb−a,1 · xc−b,2 − xb−a,2 · xc−b,1

whose formal sign w.r.t. C is
+ · + − − · + = + .

This second expression shows that C is formally fixed.

Observation 1 If C is formally fixed, then C is fixed.

More precisely, given an expression as above whose
formal sign w.r.t. C is + or − , the evaluation of this
determinant for any set of real values P satisfying C nec-
essarily provides a real number whose sign is consistent
with the formal sign of this expression. In this case, this
resulting sign does not depend on the chosen expression
as soon as it is not ? , and σC(det(M)) equals this sign.

Conversely, one may wonder if for every fixed config-
uration there would exist a suitable expression of the
determinant showing formally that C is fixed by this
way. That is, equivalently: if every formal expression of
det(ME,B) has formal sign ? , then σC(det(M)) = ± .
We strongly believe in this result, which we state as a
conjecture, and which we will prove for n ≤ 4.

Conjecture 1 Let C be a linear ordering configuration
on (E ,B). Then C is fixed if and only if C is formally
fixed.

3.3 Formal fixity by expansion

Let C be a configuration on (E ,B), and E ′ = E \ {e},
B′ = B\{b} for some e ∈ E , b ∈ B. We call configuration
induced by C on (E ′,B′) the configuration on (E ′,B′)
obtained by restricting every ordering <b′ , b′ ∈ B′, of
C to E ′. Moreover, we say that all the configurations
induced by C on E ′ are fixed if, for every b ∈ B, the
configuration induced by C on (E ′,B \ {b}) is a fixed
configuration.

Let M = ME,B as previously, with E = {e1, ..., en}<
and B = {b1, ..., bn−1}<. Let ei, ej ∈ E , with ei 6= ej .
Consider the matrix obtained from M by substracting
the j-th column (corresponding to ej), from the i-th
column (corresponding to ei), that is:

1 . . . 1 0
xe1,b1 . . . xei−1,b1 xei,b1 − xej ,b1
xe1,b2 . . . xei−1,b2 xei,b2 − xej ,b2

...
...

...
xe1,bn−1

. . . xei−1,bn−1
xei,bn−1

− xej ,bn−1

1 . . . 1
xei+1,b1 . . . xen,b1
xei+1,b2 . . . xen,b2

...
...

xei+1,bn−1
. . . xen,bn−1

The determinant of this matrix equals det(M). The
cofactor expansion formula for the determinant of this
matrix with respect to its i-th column yields:
det(ME,B) =

∑n−1
k=1 (−1)i+k+1 · (xei,bk − xej ,bk)

· det
(
ME\{ei},B\{bk}

)

which we call expression of det(M) by expansion with
respect to (ei, ej).

Then the above particular expression of det(M) gets
a formal sign w.r.t. C the following way. First,

CCCG 2011, Toronto ON, August 10–12, 2011

189

23d Canadian Conference on Computational Geometry, 2011

replace each expression of type xe,b − xf,b with its
formal sign w.r.t. C in { + , − }, and replace each
det(ME\{ei},B\{bk}), 1 ≤ k ≤ n − 1, with its sign
σCk(det(ME\{ei},B\{bk})) ∈ { + , − , ± }, where Ck is
the configuration induced by C on (E \ {ei},B \ {bk}).
This leads to the formal expression:∑n−1

k=1 (−1)i+k+1 · σC(xei,bk − xej ,bk)

· σCk

(
det
(
ME\{ei},B\{bk}

))
,

Then, provide the formal sign of this expression by using
the same formal calculus rules as previously, completed
with the following one:

+ · ± = − · ± = ? .

If there exists such an expression of det(M) by ex-
pansion whose formal sign is + or − , then C is called
formally fixed by expansion.

Observation 2 If C is formally fixed by expansion,
then C is fixed.

The above observation is similar to Observation 1:
if C is formally fixed by expansion then σC(det(M)) is
given as the formal sign of any expression certifying
that C is formally fixed by expansion. Notice that if
C is formally fixed by expansion then all those configu-
rations Ck induced by C are fixed, since one must have
σCk(det(ME\{ei},B\{bk})) ∈ { + , − }.
Conjecture 2 Let C be a linear ordering configuration
on (E ,B). Then C is fixed if and only if C is formally
fixed by expansion.

We point out that if Conjecture 1 is true in dimension
n−1, then Conjecture 2 in dimension n implies Conjec-
ture 1 in dimension n. Indeed, in this case, the fixity of
the (n−1)-dimensional configurations corresponding to
cofactors can be determined using formal expressions.

Finally, the point of this paper is to deal with the
property of being formally fixed by expansion as an in-
ductive criterion for fixity. In what follows, we will prove
Conjecture 2 for n = 4, together with more precise and
direct characterizations in this case.

3.4 A non-fixity criterion

The following Lemma 3 will be our main tool to prove
that a configuration is non-fixed. We point out that,
when n = 4, the sufficient condition for being non-fixed
provided by Lemma 3 turns out to be a necessary and
sufficient condition (see Theorem 4). However, the au-
thors feel that this equivalence result is too hazardous
to be stated as a general conjecture in dimension n.

Lemma 3 Let C be a configuration on (E ,B). If the
configuration C′ induced by C on (E \ {e},B \ {b}) for
some e ∈ E and b ∈ B satisfies the following properties:
C′ is non-fixed and e is extreme in the ordering <b of C,
then C is non-fixed.

4 Results in dimension 2

In this section we fix n = 3 and E = {A,B,C}. In
order to lighten notations of variables xe,b for e ∈ E and
b ∈ B, we rather denote:

M =

1 1 1
xA xB xC
yA yB yC

We will denote also B = {x, y} and <x, <y the orderings
in a configuration.

The following theorems are easy to prove. First it is
easy to check that, up to equivalence of configurations,
there exist exactly two linear ordering configurations:

A <x B <x C
A <y B <y C

A <x B <x C
B <y C <y A

They correspond respectively to the following grid rep-
resentations:

A

B

C

C

B

A

Theorem 1 Let C be a linear ordering configuration on
(E ,B) with n = 3, E = {A,B,C} and B = {x, y}. The
following properties are equivalent:
a) C is non-fixed;
b) the two orderings on E in C are either equal or

equal to reversions of each other;

c) up to equivalence, C is equal to A <x B <x C
A <y B <y C

Theorem 2 Let C be a linear ordering configuration on
(E ,B) with n = 3, E = {A,B,C} and B = {x, y}. The
folowing properties are equivalent:
a) C is fixed;
b) C is formally fixed;

c) up to equivalence, C is equal to A <x B <x C
B <y C <y A

Now that we have listed fixed and non-fixed linear or-
dering configurations, we are able to determine all fixed
and non-fixed configurations using Proposition 1 (up to
equivalence, and omitting those obviously non-fixed for
which two elements of E are comparable in no ordering
in the configuration):

A <x B <x C
B <y A
B <y C

A

B

C

fixed

A <x B <x C
B <y A
C <y A

C

A

B

non-fixed

A <x B <x C
A CB non-fixed

23rd Canadian Conference on Computational Geometry, 2011

190

CCCG 2011, Toronto ON, August 10–12, 2011

A <x C
B <x C
B <y A
C <y A

B

A

C

non-fixed

5 Results in dimension 3

In this section we fix n = 4 and E = {A,B,C,D}. In
order to lighten notations of variables xe,b for e ∈ E and
b ∈ B, we rather denote:

M =

1 1 1 1
xA xB xC xD
yA yB yC yD
zA zB zC zD

We will denote also B = {x, y, z} and <x, <y, <z the
orderings in a configuration.

As noticed in Section 3, in order to prove that a con-
figuration C is formally fixed by expansion, we need to
find an element e ∈ E such that all the configurations
induced by C on E \{e} are fixed. The proposition below
characterizes such induced configurations.

Proposition 2 Let C be a configuration on (E ,B) with
n = 4, E = {A,B,C,D} and B = {x, y, z}. All the
configurations induced by C on {A,B,C} are fixed if and
only if C is equivalent to a configuration whose orderings

satisfy:
B <x C <x A
C <y A <y B
A <z B <z C

We will now state Theorem 3 which is the main re-
sult of the paper. Its detailed proof is about five pages
long. Briefly, it consists in separating configurations
having a triplet such that all induced configurations
w.r.t. this triplet are fixed, and the other ones. In the
first group, characterized by Proposition 2, we prove a
sufficient condition for fixity. Then we prove that ev-
ery configuration in the first group not satisfying this
condition, and every configuration in the second group,
is non-fixed, by analysing several cases, and always us-
ing Lemma 3 together with Theorem 1. So, it turns
out that Lemma 3 completely characterizes non-fixed
configurations, which proves also Theorem 4.

Theorem 3 Let C be a configuration on (E ,B) with n =
4, E = {A,B,C,D} and B = {x, y, z}. The following
propositions are equivalent:
a) C is fixed;
b) C is formally fixed;
c) C is formally fixed by expansion;
d) up to equivalence, C satsifies:

B <x C <x A
C <y A <y B
A <z B <z C

and there exists X ∈ {A,B,C} such that either X <b D
for every b ∈ B, or D <b X for every b ∈ B.

Theorem 4 Let C be a linear ordering configuration on
(E ,B) with n = 4. Then C is non-fixed if and only if
conditions of Lemma 3 are satisfied, that is: there exist
e ∈ E and b ∈ B such that the configuration C′ induced
by C on (E \ {e},B \ {b}) is non-fixed and e is extreme
in the ordering <b of C.

We computed the result provided by Theorem 3 to list
the fixed linear ordering configurations when n = 4. Up
to equivalences, there are exactly 4 such configurations,
within 21 linear ordering configurations:

B <x C <x A <x D
C <y A <y B <y D
A <z B <z C <z D

B <x C <x D <x A
C <y A <y B <y D
A <z B <z C <z D

B <x D <x C <x A
C <y A <y B <y D
A <z B <z C <z D

B <x C <x D <x A
C <y D <y A <y B
A <z B <z C <z D

The interest of the results of this section is to pro-
vide a combinatorial characterization as well as an (eas-
ily computable) algorithm deciding if a configuration is
fixed or not. Also, we point out that our result state-
ments deal with being fixed or not, but not with the
exact value + or − of the considered fixed configu-
ration. This sign can be derived easily from the con-
struction stating the fixity. As well, this sign can be
obtained by choosing any set of points P satisfying the
configuration and evaluating the sign of the real number
det(M(P)). Finally, from the list of fixed linear order-
ing configurations given above, one may compute the
list of all fixed (partial) ordering configurations using
Proposition 1, but we do not give this list here.

6 An example from applications to anatomical data

Let us consider ten anatomical landmark points in R3

chosen by experts on the 3D model of a skull from [2],
as shown on Figure 1. We choose a canonical basis
(O,~x, ~y, ~z) such that the axis ~x goes from the right of
the skull to its left, the axis ~y goes from the bottom of
the skull to its top, and the axis ~z goes from the front
of the skull to its back. The specificity of this 3D model
as being a skull implies that some coordinate ordering
relations are satisfied by those points: for instance the
point 9 (right internal ear) will always be on the right,
above and behind w.r.t. point 5 (right part of the chin).
Figures 2 and 3 show respectively those points from the
front and from the right of the model, together with
a grid representing those coordinate ordering relations.
By this way, the ordering configurations are represented
on Figures 2 and 3, with E any set of four points, and
B corresponding to the three axis {x, y, z}.

CCCG 2011, Toronto ON, August 10–12, 2011

191

23d Canadian Conference on Computational Geometry, 2011

Figure 1: Ten anatomic points on a skull model [2]

8

9

y

x

1 2

4
10

3

7

5 6

Figure 2: View from the front
2

y

z

8

5

9
4

310

1

6

7

Figure 3: View from the right

We are usually given a set of such models, coming
from various individuals (with possibly some patholo-
gies) and species (e.g. primates and humans), by ex-
perts of those fields who are interested in characterizing
and classifying mathematically those models. In this
paper, our aim is to detect which configurations are
fixed, independently of the real values of the landmarks,
meaning that the relative positions of points satisfying
these configurations do not depend on some anatomical
variabilities (e.g. being a primate or a human skull),
but just on the generic shape of the model (i.e. being a
skull).

Example 1. Fixed linear ordering configurations provid-
ing a fixed partial ordering configuration: the configura-
tion on E = {2, 5, 8, 9} is fixed.

This configuration is given by the orderings:

9 <x 5 <x 2 <x 8
5 <y 8 <y 9 <y 2

2 <z 8 <z 9 and 5 <z 8 <z 9

Its two linear extensions, respectively C1 and C2, are
the following:

9 <x 5 <x 2 <x 8
5 <y 8 <y 9 <y 2
2 <z 5 <z 8 <z 9

9 <x 5 <x 2 <x 8
5 <y 8 <y 9 <y 2
5 <z 2 <z 8 <z 9

Let us write these orderings in another way:
2 <z 5 <z 8 <z 9
5 <y 8 <y 9 <y 2
9 <x 5 <x 2 <x 8

5 <z 2 <z 8 <z 9
5 <y 8 <y 9 <y 2
9 <x 5 <x 2 <x 8

By this way, we see that, up to a permutation of B,
that is for {i, j, k} = {x, y, z}, and if we choose A = 9,
B = 2, C = 8 and D = 5, then the orderings in those
configurations both satisfy:

B <i C <i A
C <j A <j B
A <k B <k C

as required by Theorem 3. Moreover, for each of these
orderings we haveD smaller than C (i.e. 5 <x 8, 5 <y 8,
5 <z 8). So, by Theorem 3, those two configurations are
fixed. Then, C is fixed by Proposition 1.

Example 2. A non-fixed ordering configuration implied
by a non-fixed linear ordering configuration: the config-
uration on E = {1, 3, 7, 10} is non-fixed.

It is given by the orderings:

7 <x 3 <x 10 and 7 <x 1 <x 10
7 <y 3 <y 1 and 7 <y 10 <y 1
1 <z 7 <z 10 and 3 <z 7 <z 10

One of its linear extensions is C′:
7 <x 3 <x 1 <x 10
7 <y 10 <y 3 <y 1
3 <z 1 <z 7 <z 10

whose configuration induced on ({7, 3, 1}, {x, y}) is
7 <x 3 <x 1
7 <y 3 <y 1

which is non-fixed by Theorem 1. Then 10 is extreme in
the ordering <z of configuration C′, hence C′ is non-fixed
by Lemma 3, and so is C by Proposition 1.

References

[1] A. Björner, M. Las Vergnas, B. Sturmfels, N. White,
G. Ziegler, Oriented matroids 2nd ed., Encyclopedia of
Mathematics and its Applications 46, Cambridge Uni-
versity Press, Cambridge, UK 1999.

[2] J. Braga, J. Treil. Estimation of pediatric skeletal age
using geometric morphometrics and three-dimensional
cranial size changes. Int. J. Legal. Med. (2007) 121:439–
443.

[3] E. Gioan, K. Sol, G. Subsol, Y. Heuzé, J. Richst-
meier, J. Braga, F. Thackeray. A new 3D morphometric
method based on a combinatorial encoding of 3D point
configurations: application to skull anatomy for clini-
cal research and physical anthropology. Presented at
80th Annual Meeting of the American Association of
Physical Anthropologists, Minneapolis (U.S.A.), April
2011. Abstract published in American Journal of Phys-
ical Anthropology, p. 280, Vol. 144 Issue S52, 2011.

23rd Canadian Conference on Computational Geometry, 2011

192

CCCG 2011, Toronto ON, August 10–12, 2011

Pushing the boundaries of polytopal realizability

David Bremner∗ Antoine Deza† William Hua‡ Lars Schewe§

Abstract

Let ∆(d, n) be the maximum possible diameter of the
vertex-edge graph over all d-dimensional polytopes de-
fined by n inequalities. The Hirsch bound holds for
particular n and d if ∆(d, n) ≤ n − d. Francisco San-
tos recently resolved a question open for more than five
decades by showing that ∆(d, 2d) = d + 1 for d = 43;
the dimension was then lowered to 20 by Matchske,
Santos and Weibel. This progress has stimulated in-
terest in related questions. The existence of a poly-
nomial upper bound for ∆(d, n) is still an open ques-
tion, the best bound being the quasi-polynomial one
due to Kalai and Kleitman in 1992. Another natural
question is for how large n and d the Hirsch bound
holds. Goodey showed in 1972 that ∆(4, 10) = 5 and
∆(5, 11) = 6, and more recently, Bremner and Schewe
showed ∆(4, 11) = ∆(6, 12) = 6. Here we show that
∆(4, 12) = ∆(5, 12) = 7 and present strong evidence
that ∆(6, 13) = 7.

1 Introduction

Finding a good bound on the maximal diameter ∆(d, n)
of the 1-skeleton (vertex-edge graph) of a polytope in
terms of its dimension d and the number of its facets n
is one of the basic open questions in polytope theory [9].
Although some bounds are known, the behaviour of the
function ∆(d, n) is largely unknown. The Hirsch conjec-
ture, formulated in 1957 and reported in [4], states that
∆(d, n) is linear in n and d: ∆(d, n) ≤ n−d. The conjec-
ture was recently disproved by Santos [18] by exhibit-
ing a counterexample for ∆(d, 2d) with d = 43 which
was further improved to d = 20 [17]. The conjecture is
known to hold in small dimensions, i.e. for d ≤ 3 [14],
along with other specific pairs of d and n (Table 1).
However, the asymptotic behaviour of ∆(d, n) is not

∗Faculty of Computer Science, University of New Brunswick,
Box 4400, Fredericton NB, Canada. bremner@unb.ca
†Advanced Optimization Laboratory, Department of Com-

puting and Software, McMaster University, Hamilton, Ontario,
Canada and Equipe Combinatoire et Optimisation, Université
Pierre et Marie Curie, Paris, France. deza@mcmaster.ca
‡Advanced Optimization Laboratory, Department of Com-

puting and Software, McMaster University, Hamilton, Ontario,
Canada. huaw@mcmaster.ca
§Department of Mathematics, Friedrich-

Alexander-University, Erlangen-Nuremberg, Germany.
lars.schewe@math.uni-erlangen.de

well understood: the best upper bound — due to Kalai
and Kleitman — is quasi-polynomial [11].

The behaviour of ∆(d, n) is not only a natural
question of extremal discrete geometry, but is histor-
ically closely connected with the theory of the sim-
plex method. The approach of using abstract mod-
els [6, 7, 12] to study linear optimization has recently
achieved the exciting result of a subexponential lower
bound for Zadeh’s rule [7], another long standing open
problem. On the positive side, several authors have re-
cently shown upper bounds for interesting special cases
of the simplex method [21] and the diameter prob-
lem [16].

In this article we will show that ∆(4, 12) = ∆(5, 12) =
7 and present strong evidence for ∆(6, 13) = 7. The first
of these new values continues the pattern of ∆(4, n) =
n−5 for n ≥ 10. It would be very interesting to establish
a general sub-Hirsch bound for d = 4. The considered
computational approaches might help to narrow the gap
between the smallest entries for d and n − d yielding
a counterexample and the largest ones for which the
Hirsch conjecture still holds.

Our approach is computational and builds on the ap-
proach used by Bremner and Schewe [3]. As in [3] we
reduce the determination of ∆(d, n) to a set of simplicial
complex realizability problems. Section 2 introduces
our computational framework and some related back-
ground. A common theme in the SAT literature is that
the hardest instances to solve are those that are “al-
most satisfiable”; we find a similar classification of our
realizability problems. Compared to [3], this work in-
volves significantly more computation, and we discuss a
simple but effective parallelization strategy in Section 2.
Finally we discuss our new bounds in Section 3. Again
comparing with [3], the results here have the feature
that they do not rely on having a priori upper bounds
on the value of ∆(d, n) to be computed, but rather
on inductive computation of ∆(d, n) using bounds on
∆(d− 1, n− 1).

2 General approach

In this section we give a summary of our general ap-
proach. For more on the theoretical background, the
reader is referred to [3].

It is easy to see via a perturbation argument that
∆(d, n) is always achieved by some simple polytope.

CCCG 2011, Toronto ON, August 10–12, 2011

193

23rd Canadian Conference on Computational Geometry, 2011

n− 2d
0 1 2 3 4

d

4 4 5 5 6 7+
5 5 6 7-8 7+ 8+
6 6 7-9 8+ 9+ 9+
7 7-10 8+ 9+ 10+ 11+
8 8+ 9+ 10+ 11+ 12+

Table 1: Previously known bounds on ∆(d, n) [3, 8, 10,
15].

By a reduction applied from [15], we only need to con-
sider end-disjoint paths: paths where the end vertices
do not lie on a common facet (facet-disjointness). It will
be convenient both from an expository and a computa-
tional view to work in a polar setting where we consider
the lengths of facet-paths on the boundary of simplicial
polytopes. We apply the term end-disjoint equally to
the corresponding facet paths, where it has the simple
interpretation that two end facets do not intersect.

For any set Z = {x1 . . . xr−2, y1 . . . y4 } ⊂ Rr, as a
special case of the Grassmann-Plücker relations [1, §3.5]
on determinants we have

det(X, y1, y2) · det(X, y3, y4)

+ det(X, y1, y4) · det(X, y2, y3)

−det(X, y1, y3) · det(X, y2, y4) = 0

(1)

where X = {x1 . . . xd−1 }. We are in particular inter-
ested in the case where r = d+1 and Z represents (d+3)-
points in Rd in homogeneous coordinates; the various
determinants are then signed volumes of simplices. In
the case of points drawn from the vertices of a simpli-
cial polytope, we may assume without loss of generality
that these simplices are never flat, i.e. determinant 0.
Thus if we define χ(v1 . . . vd+1) = sign(det(v1 . . . vd+1))
it follows from (1) that

{χ(X, y1, y2)χ(X, y3, y4),

−χ(X, y1, y3)χ(X, y2, y4),

χ(X, y1, y4)χ(X, y2, y3)} = {−1,+1}.

Any alternating map χ : Ed+1 → {−,+} satisfying
these constraints for all (d + 3)-subsets is called a uni-
form chirotope; this is one of the many axiomatizations
of uniform oriented matroids [1]. In the rest of this
paper we call uniform chirotopes simply chirotopes. A
facet is a d-set F ⊂ E such that for all g ∈ E\F , χ(F, g)
has the same sign. An interior point of a chirotope is
some g ∈ E that is not contained in any facet. We
are mainly concerned with convex chirotopes, i.e. those
without interior points.

A combinatorial facet-path is a simplicial complex
with a path as dual graph, where edges are defined by
two d-simplices sharing a (d − 1)-simplex. Our general

Figure 1: Illustrating a non-shortest facet-path.

strategy is to show ∆(d, n) 6= k by generating all non-
isomorphic combinatorial facet-paths of length k on n
vertices in dimension d and showing that none can be
embedded on the boundary of a chirotope as a shortest
path. This is established by showing for each candidate
combinatorial facet-path π that there is no alternating
sign map χ(·) that

P1 Satisfies the Grassman-Plücker constraints, i.e. is a
chirotope,

P2 Forces each d-simplex of the candidate facet-path to
be a facet of the chirotope,

P3 Does not induce a shortcut, i.e. a facet-path of
length shorter than k between the end facets of π.
See Figure 2 for an illustration of a shortcut on a
3-dimensional polytope.

There are
(
n
d+3

)
Grassman-Plücker constraints in their

natural encoding, and this further expands by a factor
of 16 when converted to conjunctive normal form (CNF)
suitable for a SAT solver.

Facet constraints actually remove variables from the
problem, since they define sets of equations. Equations
can in principle be removed as a preprocessing step,
although most modern SAT solvers deal with equality
constraints quite effectively, even when the constraints
are transformed to conjunctive normal form.

Each potential shortcut can be eliminated with 2 con-
straints encoding the fact that some d-simplex of the po-
tential shortcut is not a facet. In principle one can gen-
erate all conceivable shortcuts by considering all short
paths in the graph of all possible pivots between d-
simplices, but this approach is generally impractical.
We therefore use an incremental approach where can-
didate chirotopes are generated and any shortcuts on

23rd Canadian Conference on Computational Geometry, 2011

194

CCCG 2011, Toronto ON, August 10–12, 2011

the boundary of these candidate solutions are used to
generate new constraints.

A notable omission from the list of constraints above
is that we do not explicitly constrain the alternating
map χ(·) to be convex. We note that either every ele-
ment is in some facet, and thus the chirotope is convex
by definition, or there is some interior point not used by
the long facet-path. A realization with interior points
corresponds to a realization on a smaller number of ele-
ments. In the work here we are always have bounds for
∆(d, j) for j < n when working on a bound for ∆(d, n),
so we effectively reduce non-convex cases to smaller con-
vex ones.

Chirotopes can be viewed as a generalization of real
polytopes in the sense that for every real polytope, we
can obtain its chirotope directly. Therefore, showing the
non-existence of chirotopes satisfying properties P1–P3
immediately precludes the existence of real polytopes
satisfying the same properties.

The search for a chirotope with properties P1 and
P2 is encoded as an instance of SAT [19, 20, 3], with
P3 handled implicitly via adding constraints and re-
solving. Each SAT problem is solved with MiniSat [5].
MiniSat itself discovers many constraints during the so-
lution process, and these are carried forward between
successive subproblems.

The generation of all possible paths for particular
d and n begins with case where the paths are non-
revisiting, i.e. paths where no vertex is visited more than
once. These can be generated via a simple recursive
scheme, using a bijection with restricted growth strings,
i.e. k-ary strings where the symbols first occur in or-
der. Each symbol represents a choice of pivot, and the
strings can be unpacked into combinatorial facet-paths.

Multiple revisit facet-paths are generated from facet-
paths with one less revisit by identifying pairs of ver-
tices. Such an identification is valid only if it results in
another facet-path, i.e. does not introduce new ridges,
and if the resulting facet-path is still end-disjoint.

If a vertex is not used in a facet-path we call this
occurrence a drop. See Figure 2 for an illustration of
a path of length 6 involving 1 revisit (vertex 2) and
and 1 drop (vertex 8) with n = 9 and d = 3. We can
then classify paths by dimension d, primal-facets/dual-
vertices n, length k, the number of revisits m, and the
number of drops l. For end-disjoint paths, a simple
counting argument yields:

m− l = k + d− n
m ≤ k − d
l ≤ n− 2d

Table 2 provides the number of paths to consider for
each possible combination of d, n, k, m, and l.

With the implementation of [3], we were able to re-
confirm Goodey’s results for ∆(4, 10) and ∆(5, 11) in a

Figure 2: Example of a facet-path.

d n k m l #
4 10 6 0 0 15
4 10 6 1 1 24
4 10 6 2 2 16
4 11 7 0 0 50
4 11 7 1 1 200
4 11 7 2 2 354
4 11 7 3 3 96
4 12 8 0 0 160
4 12 8 1 1 1258
4 12 8 2 2 5172
4 12 8 3 3 7398
4 12 8 4 4 1512
5 11 7 1 0 98
5 11 7 2 1 98
5 12 8 1 0 1079
5 12 8 2 1 3184
5 12 8 3 2 2904
6 12 7 1 0 11
6 13 8 1 0 293
6 13 8 2 1 452

Table 2: Number of paths to consider, SAT instances to
solve.

matter of minutes. While the number of paths to con-
sider increases with the number of the revisits, in our
experiments these paths are much less computationally
demanding than the ones with fewer revisits. For exam-
ple, the 7,398 paths of length 8 on 4-polytopes with 12
facets and involving 3 revisits and 3 drops require only
a tiny fraction of the computational effort to tackle the
160 paths without a drop or revisit.

In order to deal with the intractability of the problem
as the dimension, number of facets, and path length in-
creased, we proceeded by splitting our original facet em-
bedding problem into subproblems by fixing chirotope

CCCG 2011, Toronto ON, August 10–12, 2011

195

23rd Canadian Conference on Computational Geometry, 2011

b, g, d, c, h, e, a, f

+ + +−−+−

+ + +−−−−

−+ +−−−−

−+ +−−+−

k

i

n

j

m

o

k

n

i

k

m

j

k

n

o

n

+,−,+,−,−,−,+,−

−

+

k, l,m = +,−,−

+

−

n, o = −,−

i, j = +,+

k, l, o = +,−,−

−

+
−

Figure 3: Using partial backtracking to generate sub-
problems

signs. We use the non-SAT based mpc backtracking soft-
ware [2] to backtrack to a certain fixed level of the search
tree; every leaf job was then processed in parallel on
the Shared Hierarchical Academic Research Computing
Network (SHARCNET). Figure 3 (a partial trace of the
execution of mpc) illustrates the splitting process on a
problem generated from the octahedron. Note that vari-
able propagation (similar to the unit propagation used
by SAT solvers) reduces the number of leaves of the tree.

Jobs requiring a long time to complete were further
split and executed on the cluster until the entire search
space was covered. Table 3 provides the number of paths
which were computationally difficult enough to require
splitting. For example, out of 160 paths of length 8
on 4-polytopes with 12 facets without drop or revisit, 2
required splitting.

d n k m l #
4 12 8 0 0 2
5 12 8 1 0 15
5 12 8 2 1 6
6 13 8 1 0 138
6 13 8 2 1 63

Table 3: Number of difficult paths.

3 Results

Summarizing the computational results, we have:

Proposition 1 There are no (4, 12)- or (5, 12)- poly-
topes with facet-disjoint vertices at distance 8.

Note that we actually prove something slightly
stronger: for (d, n) = (4, 12) or (5, 12), no (d, n)-
chirotope has has vertex-disjoint facets at distance 8,
where distance is defined by the shortest facet-path.

While the non-existence of k-length paths implies the
non-existence of (k+1)-length paths, it is not obvious if
the non-existence of end-disjoint k-length paths implies
the non-existence of (k+ 1)-length paths. To be able to
rule out vertices — not necessarily facet-disjoint — at
distance l > k, we introduce the following lemma.

Lemma 1 If ∆(d−1, n−1) < k and there is no (d, n)-
polytope with two facet-disjoint vertices at distance k,
then ∆(d, n) < k.

Proof. Assume the contrary. Let u and v be vertices
on a (d, n)-polytope at distance l ≥ k. By considering a
shortest path from u to v, there is a vertex w at distance
k from u. u and w must share a common facet F to
prevent a contradiction. F is a (d − 1, n − 1)-polytope
with diameter at least k. �

By Proposition 1 and because ∆(3, 11) = 6 and
∆(4, 11) = 6 (see [14, 3]) we can apply Lemma 1 to
obtain the following new entry for ∆(d, n).

Corollary 1 ∆(4, 12) = ∆(5, 12) = 7

We recall the following result of Klee and Walkup [15]:

Property 1 ∆(d, 2d+k) ≤ ∆(d−1, 2d+k−1)+bk/2c+
1 for 0 ≤ k ≤ 3

Applying Property 1 to ∆(5, 12) = 7 yields a new
upper bound ∆(6, 13) ≤ 8, from which we could ob-
tain ∆(6, 13) = 7 if the still underway computations for
remaining 8-paths keep on showing unsatisfiability for
(d, n) = (6, 13).

Property 1 along with the 2 new entries for ∆(d, n)
and, assuming ∆(6, 13) = 7, would imply the additional
upper bounds: ∆(5, 13) ≤ 9, ∆(6, 14) ≤ 11, ∆(7, 14) ≤
8, ∆(7, 15) ≤ 12 and ∆(8, 16) ≤ 13; see Table 4.

n− 2d
0 1 2 3 4

d

4 4 5 5 6 7
5 5 6 7 7-9 8+
6 6 7 8-11 9+ 9+
7 7-8 8-12 9+ 10+ 11+
8 8-13 9+ 10+ 11+ 12+

Table 4: Summary of bounds on ∆(d, n) assuming
∆(6, 13) = 7.

23rd Canadian Conference on Computational Geometry, 2011

196

CCCG 2011, Toronto ON, August 10–12, 2011

4 Conclusions

In this paper we have presented new bounds for the
diameter of the 1-skeleton of convex polytopes in di-
mensions 4 and 5. It remains open to find the small-
est n and d for which the Hirsch bound fails to hold;
we are also interested if the current trend which shows
∆(4, n) = n − 5 continues beyond n = 12. The tools
used here are mainly computational as in [3], although
further analysis of the relationship between bounds on
end-disjoint paths and bounds on more general paths
was needed in order to establish new bounds without
requiring a priori upper bounds. Furthermore, the scale
of the computations forced us to solve individual cases
in parallel. The simple strategy we used may be effec-
tive for other so called tree search problems. Finally,
we observe experimentally that among our unrealizable
simplicial complexes, the most difficult to show unsat-
isfiable are those with the simplest topology.

Acknowledgements

This work was supported by the Natural Sciences
and Engineering Research Council of Canada and MI-
TACS, and by the Canada Research Chair program,
and made possible by the facilities of the Shared
Hierarchical Academic Research Computing Network
(http://www.sharcnet.ca/).

References

[1] Anders Björner, Michel Las Vergnas, Bernd Sturm-
fels, Neil White, and Günter M. Ziegler, Oriented
Matroids, Cambridge University Press, second edi-
tion, 1999.

[2] David Bremner, Jürgen Bokowski, and
Gábor Gévay, Symmetric matroid polytopes
and their generation, European Journal of Combi-
natorics, 30 (2009) no. 8, 1758–1777.

[3] David Bremner and Lars Schewe, Edge-graph
diameter bounds for convex polytopes with few
facets, Experimental Mathematics, to appear
(2011). arXiv:0809.0915.

[4] George B. Dantzig, Linear Programming and Exten-
sions, Princeton University Press, Princeton, N.J.
(1963).

[5] Niklas Eén and Niklas Sörensson, MiniSat HP,
http://minisat.se/

[6] Friedrich Eisenbrand, Nicolai Hähnle, Alexander
Razborov, and Thomas Rothvoß, Diameter of poly-
hedra: limits of abstraction, Mathematics of Opera-
tions Research, 35 (2010), no. 35, 786-794.

[7] Oliver Friedmann, Thomas Hansen, and Uri Zwick,
Subexponential lower bounds for randomized pivoting
rules for the simplex algorithm, In Proceedings of
the 43rd ACM Symposium on Theory of Computing,
STOC’11, San Jose, CA, USA, (2011).

[8] Paul R. Goodey, Some upper bounds for the diam-
eters of convex polytopes, Israel Journal of Mathe-
matics 11 (1972), no. 4, 380-385.

[9] Branko Grünbaum, Convex Polytopes, 2nd ed.,
Graduate Texts in Mathematics, vol. 221, Springer-
Verlag, New York, 2003. Prepared and with a pref-
ace by Volker Kaibel, Victor Klee and Günter M.
Ziegler, 341-355.

[10] Fred Holt and Victor Klee, Many polytopes meeting
the conjectured Hirsch bound, Discrete and Compu-
tational Geometry 20 (1998), 1-17.

[11] Gil Kalai and Daniel J. Kleitman, A quasi-
polynomial bound for the diameter of graphs of poly-
hedra, Bulletin of the American Mathematical Soci-
ety 26 (1992), no. 2, 315-316.

[12] Edward D. Kim, Polyhedral graph abstractions and
an approach to the Linear Hirsch Conjecture, avail-
able at arXiv:1103.3362.

[13] Edward D. Kim and Francisco Santos, An up-
date on the Hirsch conjecture, Jahresbericht der
Deutschen Mathematiker-Vereinigung, 112 (2010),
no. 2, 73-98.

[14] Victor Klee, Diameters of polyhedral graphs, Cana-
dian Journal of Mathematics 16 (1964), 602-614.

[15] Victor Klee and David W. Walkup, The d-step
conjecture for polyhedra of dimension d < 6, Acta
Mathematica 117 (1967), no. 1, 53-78.

[16] Jesús A. De Loera, Edward D. Kim, Shmuel Onn,
and Francisco Santos, Graphs of transportation poly-
topes, Journal of Combinatorial Theory, Series A
116 (2009), no. 8, 1306-1325.

[17] Benjamin Matschke, Francisco Santos, and
Christophe Weibel, The width of 5-prismatoids
and smaller non-Hirsch polytopes, http:

//www.cs.dartmouth.edu/~weibel/hirsch.php

(2011).

[18] Francisco Santos, A counter-example to the Hirsch
conjecture, available at arXiv:1006.2814.

[19] Lars Schewe, Satisfiability Problems in Discrete
Geometry, Dissertation, TU Darmstadt, 2007.

CCCG 2011, Toronto ON, August 10–12, 2011

197

23rd Canadian Conference on Computational Geometry, 2011

[20] Lars Schewe, Non-realizable minimal vertex trian-
gulations of surfaces: Showing non-realizability us-
ing oriented matroids and satisfiability solvers, Dis-
crete and Computational Geometry 43 (2009) no. 2,
289-302.

[21] Yinyu Ye, The simplex method is strongly polyno-
mial for the Markov decision problem with a fixed
discount rate, Available at http://www.stanford.

edu/~yyye/simplexmdp1.pdf.

23rd Canadian Conference on Computational Geometry, 2011

198

CCCG 2011, Toronto ON, August 10–12, 2011

On the generation of topological (nk)-configurations

Jürgen Bokowski ∗ Vincent Pilaud ‡

Abstract

An (nk)-configuration is a set of n points and n lines in
the projective plane such that the point – line incidence
graph is k-regular. The configuration is geometric, topo-
logical, or combinatorial depending on whether lines are
considered to be straight lines, pseudolines or just com-
binatorial lines.

We provide an algorithm for generating all combina-
torial (nk)-configurations that admit a topological real-
ization, for given n and k. This is done without enu-
merating first all combinatorial (nk)-configurations.

Among other results, our algorithm enables us to con-
firm, in just one hour with a Java code of the second
author, a satisfiability result of Lars Schewe in [11], ob-
tained after several months of CPU-time.

1 Introduction

An (nk)-configuration (P,L) is a set P of n points and
a set L of n lines such that each point of P is contained
in k lines of L and each line of L contains k points
of P . Two lines of L are allowed to meet in at most
one point of P and two points of P can lie in at most
one common line of L. According to the underlying
incidence structure, we distinguish three different levels
of configurations, in increasing generality:

Geometric configurations: Points and lines are ordinary
points and lines in the real projective plane P.

Topological configurations: Points are ordinary points
in P, but lines are pseudolines, i.e. non-separating
simple closed curves of P.

Combinatorial configurations: Points and lines are just
required to form an abstract incidence structure
(P,L) as described above.

The study of point – line configurations has a long
history in discrete 2-dimensional geometry. We refer
to Branko Grünbaum’s recent monograph [8] for a de-
tailed treatment of the topic. The current challenge is
to determine for which values of n do geometric, topo-
logical, and combinatorial (nk)-configurations exist for
a given k, and to enumerate and classify them.

∗Tech. Univ. Darmstadt, juergen.bokowski@googlemail.com
‡Univ. Paris 7, vincent.pilaud@liafa.jussieu.fr, Research

supported by Spanish MEC grant MTM2008-04699-C03-02.

For k = 3, the existence of (n3)-configurations is well
understood: combinatorial (n3)-configurations exist for
every n ≥ 7, but topological and geometric (n3)-confi-
gurations exist only for every n ≥ 9. For example,
Fano’s combinatorial (73)-configuration cannot be re-
alized as a topological configuration. As further ex-
amples, Pappus’ and Desargues’ theorems form famous
(93)- and (103)-configurations respectively. This de-
scription is still almost complete for k = 4: combina-
torial (n4)-configurations exist iff n ≥ 13, topological
(n4)-configurations exist iff n ≥ 17 [3] and geometric
(n4)-configurations exist iff n ≥ 18 [7, 4], with the pos-
sible exceptions of 19, 22, 23, 26, 37 and 43. For gen-
eral k, the situation is more involved, and the existence
of combinatorial, topological and geometric (nk)-confi-
gurations is not determined in general.

In this paper, we describe an algorithm for generating,
for given n and k, all combinatorial (nk)-configurations
that admit a topological realization, without enumerat-
ing first all combinatorial (nk)-configurations. The al-
gorithm sweeps the projective plane to construct a topo-
logical (nk)-configuration (P,L), but only considers as
relevant the events corresponding to the sweep of points
of P . This strategy enables us to identify along the way
some topological configurations which realize the same
combinatorial configuration, and thus to maintain a rea-
sonable computation space and time.

We developed two different implementations of this
algorithm. The first one was written in Haskell by the
first author to develop the strategy of the enumeration
process. Once the general idea of the algorithm was set-
tled, the second author wrote another implementation
in Java, focusing on the optimization of computation
space and time of the process.

We underline three motivations for this algorithm.
First, the algorithm is interesting in its own right. Be-
fore describing some special methods for constructing
topological configurations, Branko Grünbaum writes in
[8, p. 165] that “the examples of topological configura-
tions presented so far have been ad hoc, obtained es-
sentially through (lots of) trial and error”. Our al-
gorithm can reduce considerably the trial and error
method. Second our algorithm enables us to check and
confirm the previous results obtained in earlier papers,
e.g. for k = 4 and n ≤ 18 in [4, 11]. We can use a sin-
gle method and reduce considerably the computation
time (e.g. the computation of the (184)-configurations

CCCG 2011, Toronto ON, August 10–12, 2011

199

23rd Canadian Conference on Computational Geometry, 2011

1

1

2

12
11
10

9

8
7 6

5

34

13 14

15

16 17 18 4

12

11

10
9

8

56
7

3 2

1514

13
1817

16

1

1

7

17
16

10

4
3
2

8

9
56

18

12

11 15 13
14 6

17
18

10

2
3

4

8

95 7

16

12

11
1413

15

Figure 1: Two rather different (184)-configuration which are combinatorially equivalent.

needed several months of CPU-time in [11], and only
one hour with our Java implementation). Finally, our
algorithm opens new opportunities of research based
on enumeration to answer several open questions on
configurations. Among others: Is there a symmetri-
cal topological (194)-configuration [8, p. 169]? What is
the smallest topological (n5)-configuration? Is there a
geometric (194)-configuration?

Topological configurations are pseudoline arrange-
ments, or rank 3 oriented matroids. We assume the
reader to have some basic knowledge on these topics —
see [2, 1, 9].

2 Preliminaries

What do we need? Our guideline and motivation
in the study of configurations is the question of the
existence of geometric (nk)-configurations. In partic-
ular, it is challenging to determine, for a given k,
which is the first n for which geometric (nk)-configu-
rations exist. For k = 3, Pappus’ configuration is
the first example (with two other combinatorially dis-
tinct (93)-configurations). For k = 4, it was known for
a long time that no combinatorial (n4)-configurations
exist when n ≤ 12. However, the smallest geometric
configuration was unknown until the first author proved
with Lars Schewe that no topological (n4)-configura-
tions exist when n ≤ 16 [4], that the only combinatorial
(174)-configuration which is topologically realizable is
not geometrically realizable [5], and that there exists a
geometric (184)-configuration [5].

The method presented in [5] makes it possible to de-
cide whether a combinatorial configuration is geometri-
cally realizable. The goal of our algorithm is to limit
the research to combinatorial configurations which are
already topologically realizable. In other words, for
given n and k, we want to enumerate all topological
(nk)-configurations under combinatorial equivalence.

Three equivalence relations. There are three distinct
notions of equivalence on topological configurations.

The finest notion is the usual notion of equivalence be-
tween pseudoline arrangements in the projective plane:
two configurations are topologically equivalent if there
is an homeomorphism of their underlying projective
planes that sends one arrangement onto the other.

The coarsest notion is combinatorial equivalence:
two (nk)-configurations are combinatorially equivalent
if they realize the same combinatorial (nk)-configura-
tion.

The intermediate notion is based on the graph of
admissible mutations. Remember that a mutation in
a pseudoline arrangement is a local transformation of
the arrangement where only one pseudoline ` moves,
sweeping a single vertex v of the remaining arrange-
ment. It only changes the position of the crossings of `
with the pseudolines incident to v. If those crossings
are all 2-crossings, the mutation does not perturb the
k-crossings of the arrangement, and thus produces an-
other topological (nk)-configuration. We say that such
a mutation is admissible. Two configurations are mu-
tation equivalent if they belong to the same connected
component of the graph of admissible mutations.

mutation

Figure 2: An admissible mutation.

Obviously, topological equivalence implies mutation
equivalence, which in turn implies combinatorial equiv-
alence. The reciprocal implications are wrong.

Note that the topological equivalence between two
(nk)-configurations can be tested in Θ(n3) time. In-
deed, since the topological configurations are embedded

23rd Canadian Conference on Computational Geometry, 2011

200

CCCG 2011, Toronto ON, August 10–12, 2011

on the projective plane, the images of two pseudolines
under an isomorphism of the projective plane determine
the images of all the other pseudolines. Thus, the com-
plexity to compute the topological equivalence classes
among p topological (nk)-configurations is in Θ(p2n3).
Both combinatorial and mutation equivalences are how-
ever much harder to decide computationally.

In order to limit unnecessary computation, we can
use topological (resp. mutation, resp. combinatorial) in-
variants associated to topological configurations. If two
configurations have distinct invariants, they cannot be
equivalent. Reciprocally, if they share the same invari-
ant, it provides us information on the possible isomor-
phism between these two configurations. For example,
the face size vector (the number of faces of each size) is
a topological invariant, and the distribution of the tri-
angles on the pseudolines is a combinatorial invariant
(a triangle of a configuration (P,L) is a triple of points
of P which are pairwise related by pseudolines of L).

As an illustration, the two (184)-configurations de-
picted in Figure 1 are combinatorially equivalent (the
labels on the pseudolines provide a combinatorial iso-
morphism) but not topologically equivalent (the left one
has 22 quadrangles and 2 pentagons, while the right one
has 23 quadrangles). In fact, one can even check that
they are not mutation equivalent.

What do we obtain? Our algorithm can enumerate all
topological (nk)-configurations up to either topological
or combinatorial equivalence. In order to maintain a
reasonable computation space and time, the main idea
is to focus on the relative positions of the points of the
configurations and to ignore at first the relative posi-
tions of the other crossings among the pseudolines. In
other words, to work modulo mutation equivalence.

More precisely, we first enumerate at least one repre-
sentative of each mutation equivalence class of topolog-
ical (nk)-configuration. From these representatives, we
can derive:

1. all topological (nk)-configurations up to topological
equivalence: we explore each connected component
of the mutation graph with our representatives as
starting nodes.

2. all combinatorial (nk)-configurations that are topo-
logically realizable: we reduce the result modulo
combinatorial equivalence.

3 Representation of arrangements

Simple configurations. A topological configuration
(P,L) is simple if no three pseudolines of L meet at a
common point except if it is a point of P . Since any
topological (nk)-configuration can be arbitrarily per-
turbed to become simple, we only consider simple topo-

logical (nk)-configurations. Once we obtain all simple
topological (nk)-configurations, it is usual to obtain all
(non-necessarily simple) topological (nk)-configurations
up to topological equivalence by exploring the mutation
graph, and we do not report on this aspect.

In a simple (nk)-configuration (P,L), there are two
kinds of intersection points among pseudolines of L: the
points of P , which we also call k-crossings, and the other
points, which we call 2-crossings. Each pseudoline of L
contains k k-crossings and n− 1− k(k− 1) 2-crossings.
In total, a simple (nk)-configuration has n k-crossings
and

(
n
2

)
− n(

(
k
2

)
− 1) 2-crossings.

Segment length distributions. A segment of a topo-
logical configuration (P,L) is the portion of a pseudo-
line of L located between two consecutive points of P .
If (P,L) is simple, a segment contains no k-crossing ex-
cept its endpoints, but may contain some 2-crossings.
The length of a segment is the number of 2-crossings it
contains.

The lengths of the segments of a pseudoline of L form
a k-partition of n − 1 − k(k − 1). We call a maxi-
mal representative of a k-tuple the lexicographic maxi-
mum of its orbit under the action of the dihedral group
(i.e. rotations and reflections of the k-tuple). We de-
note by Π the list of all distinct maximal representa-
tives of the k-partitions of n − 1 − k(k − 1), ordered
lexicograhically. For example, when k = 4 and n = 17,
Π = [4, 0, 0, 0], [3, 1, 0, 0], [3, 0, 1, 0], [2, 2, 0, 0], [2, 0, 2, 0],
[2, 1, 1, 0], [2, 1, 0, 1], [1, 1, 1, 1].

A suitable representation. We represent the projec-
tive plane as a disk where we identify antipodal bound-
ary points. Given a simple topological (nk)-configura-
tion (P,L), we fix a representation of its underlying pro-
jective plane which satisfies the following properties (see
Figure 3 left).

The leftmost point of the disk (which is identified with
the rightmost point of the disk) is a point of P , which
we call the basepoint. The k pseudolines of L passing
through the basepoint are called the frame pseudolines,
while the other n− k pseudolines of L are called work-
ing pseudolines. The frame pseudolines decompose the
projective plane into k connected regions which we call
frame regions. A crossing is a frame crossing if it in-
volves a frame pseudoline and a working crossing if it
involves only working pseudolines.

The boundary of the disk is a frame pseudoline, which
we call the baseline. We furthermore assume that the
segment length distribution Λ on the top half-circle ap-
pears in Π (i.e. is its own maximal representative), and
that no maximal representative of the segment length
distribution of a pseudoline of L appears before Λ in Π.
In particular, the leftmost segment of the baseline is a
longest segment of the configuration.

CCCG 2011, Toronto ON, August 10–12, 2011

201

23rd Canadian Conference on Computational Geometry, 2011

12 11 10 9 8 7 6 5 4 3 2 1 0

12 11 8 9 10 5 6 7 4 3 0 1 2

12 11 8 9 5 6 0 4 7 10 3 1 2

12 8 0 5 9 11 6 4 7 10 3 1 2

0 8 12 5 9 4 6 11 7 1 3 10 2

0 8 4 5 12 1 6 9 3 7 11 10 2

0 1 4 8 5 3 6 12 9 7 2 10 11

0 1 4 8 5 3 6 2 7 9 12 10 11

0 1 4 2 3 5 8 6 7 9 12 10 11

0 1 2 3 4 5 6 7 8 9 10 11 12

baseline

basepoint

frame
pseudolines

working
pseudolines

working
crossings

frame
crossings

sweepline

Begin

Working
crossing
Working
crossing

End

Working
crossing
Working
crossing

Frame
sweep
Frame
sweep
Frame
sweep

Figure 3: Suitable representation of a (174)-configuration, and the corresponding wiring diagram.

Wiring diagram and allowable sequence. Another in-
teresting representation of our (nk)-configuration is the
wiring diagram [6] of its working pseudolines (see Fig-
ure 3 right). It is obtained by sending the basepoint
to infinity in the horizontal direction. The frame pseu-
dolines are k horizontal lines, and the n − k working
pseudolines are vertical wires. The orders of the work-
ing pseudolines on a horizontal line sweeping the wiring
diagram from top to bottom form the so-called allow-
able sequence of the working arrangement, as defined
in [6].

4 Description of the algorithm

Main idea. Let us recall here the main idea of the al-
gorithm: to enumerate (nk)-configurations, we focus on
the relative positions of the k-crossings and ignore at
first the relative positions of the 2-crossings. More pre-
cisely, we first generate at least one (but as few as pos-
sible) representative of each mutation equivalent class
of (nk)-configurations.

Sweeping process. The algorithm sweeps the projec-
tive plane to construct a topological (nk)-configuration.
The sweepline sweeps the configuration from the base-
line on the top of the disk to the baseline on the bottom
of the disk. It always passes through the basepoint and
always completes the configuration into an arrangement
of n + 1 pseudolines. In other words, it sweeps the k
frame regions from top to bottom, reaching the sepa-
rating frame pseudoline when passing from one frame
region to the next one, and discovers along the way the
working pseudolines. Except those located on the frame
pseudolines, we assume that the crossings of the configu-

ration are reached one after the other by the sweepline.
After the sweepline swept a crossing, we remember the
order of its intersections with the working pseudolines.
In other words, the sweeping process provides us with
the allowable sequence of the working pseudolines of our
configuration.

Since any admissible mutation is irrelevant for us, we
only focus on the steps of the sweeping process where
our sweepline sweeps a k-crossing. Thus, two different
events can occur: when the sweepline sweeps a working
k-crossing, and when the sweepline sweeps a frame pseu-
doline. In the later case, we sweep simultaneously k− 1
frame k-crossings (each involving the frame pseudoline
and k − 1 working pseudolines), and n − 1 − k(k − 1)
frame 2-crossings (each involving the frame pseudoline
and a working pseudoline). Between two such events,
the sweepline may sweep working 2-crossings which are
only taken into account when we reach a new event.
Let us repeat again that the precise positions of these
working 2-crossings is irrelevant in our enumeration.

To obtain all possible solutions, we maintain a pri-
ority queue with all subconfigurations which have been
constructed so far, remembering for each one (i) the or-
der of the working pseudolines on the current sweepline,
(ii) the number of frame and working k-crossings and
2-crossings which have already been swept on each work-
ing pseudoline, (iii) the length of the segment currently
swept by the sweepline, and (iv) the history of the
sweeps which have been performed to reach this subcon-
figuration. At each step, we remove the first subconfigu-
ration from the priority queue, and insert all admissible
subconfigurations which can arise after sweeping a new
working k-crossing or a new frame pseudoline. We fi-
nally accept a configuration once we have swept k frame
pseudolines and n− k(k − 1)− 1 working k-crossings.

23rd Canadian Conference on Computational Geometry, 2011

202

CCCG 2011, Toronto ON, August 10–12, 2011

left right

kernel

k-crossing

before

after
left right

kernel

k-crossingk-crossingk-crossing

Figure 4: Sweeping a working k-crossing (left) and a frame pseudoline (right).

Any subconfiguration considered during the algo-
rithm is a potential (nk)-configuration. Throughout
the process, we make sure that any pair of working
pseudolines cross at most once, that the number of
frame pseudolines (resp. of working k-crossings) already
swept never exceeds k (resp. n − 1 − k(k − 1)), and
that the total number of working 2-crossings never ex-
ceeds (n − 2k)(n − 1 − k(k − 1))/2. Furthermore,
on each pseudoline, the number of frame and working
k-crossings (resp. 2-crossings) already swept never ex-
ceeds k (resp. n− 1− k(k − 1)), the number of work-
ing 2- and k-crossings already swept never exceeds
n− 1− k(k − 1), and the segment currently swept is
not longer than the leftmost segment of the baseline.

Initialization. We initialize our algorithm sweeping the
baseline. We only have to choose the distribution of the
lengths of the segments on the baseline. The possibili-
ties are given by the list Π of maximal representatives
of k-partitions of n− 1− k(k − 1).

Sweep a working k-crossing. If we decide to sweep
a working k-crossing, we have to choose the k working
pseudolines which intersect at this k-crossing, and the
direction of the other working pseudolines.

Since we are allowed to perform any admissible mu-
tation, we can assume that all the pseudolines located
to the left of the leftmost pseudoline of the working
k-crossing, and all those located to the right of the right-
most pseudoline of the working k-crossing do not move.

We say that the pseudolines located between the
leftmost and the rightmost pseudolines of the working
k-crossing form the kernel of the working k-crossing.
We have to choose the positions of the pseudolines of
the kernel after the flip: each pseudoline of the kernel
either belongs to the working k-crossing, or goes to its
left, or goes to its right (see Figure 4 left).

A choice of directions for the kernel is admissible pro-
vided that (i) each pseudoline involved in the k-crossing
can still accept a working k-crossing; (ii) each pseu-
doline of the kernel can still accept as many working
2-crossings as implied by the choice of directions for the
kernel; (iii) no segment becomes longer than the left-
most segment of the baseline; and (iv) any two pseudo-

lines which are forced to cross by the choice of directions
for the kernel did not cross earlier (i.e. they still form an
inversion on the sweepline before we sweep the working
k-crossing).

Sweep a frame pseudoline. If we decide to sweep
a frame pseudoline, we have to choose the (k − 1)2

working pseudolines involved in one of the k − 1 frame
k-crossings, and the direction of the other working pseu-
dolines.

As before, we can assume that a pseudoline does not
move if it is located to the left of the leftmost pseudoline
involved in one of the k− 1 frame k-crossings, or to the
right of the rightmost pseudoline involved in one of the
k − 1 frame k-crossings. Otherwise, we can perform
admissible mutations to ensure this situation.

The other pseudolines form again the kernel of the
frame sweep, and we have to choose their positions after
the flip. Each pseudoline of the kernel either belongs to
one of the k−1 frame k-crossings, or can choose among
k possible directions: before the first frame k-crossing,
or between two consecutive frame k-crossings, or after
the last frame k-crossing (see Figure 4 right).

As before, a choice of directions for the kernel is ad-
missible if (i) each pseudoline involved (resp. not in-
volved) in one of the k − 1 frame k-crossings can still
accept a frame k-crossing (resp. a frame 2-crossing);
(ii) each pseudoline of the kernel can still accept as
many working 2-crossings as implied by the choice of di-
rections for the kernel; (iii) no segment becomes longer
than the leftmost segment of the baseline; and (iv) any
two pseudolines which are forced to cross by the choice
of directions for the kernel did not cross earlier (i.e. they
still form an inversion on the sweepline before we sweep
the frame pseudoline).

Sweep the last frame region. Our sweeping process
finishes once we have swept n − 1 − k(k − 1) work-
ing k-crossings and k frame pseudolines. Each result-
ing subconfiguration should still be completed into a
topological (nk)-configuration with some necessary re-
maining 2-crossings. More precisely, we need to add on
each working pseudoline as many working 2-crossings
as its number of inversions in the permutation given by

CCCG 2011, Toronto ON, August 10–12, 2011

203

23rd Canadian Conference on Computational Geometry, 2011

the working pseudolines on the final sweepline, without
creating segments that are too long.

All the constructed configurations are guaranteed to
be valid topological (nk)-configurations. To make sure
that we indeed obtain the representation presented in
Section 3, we remove each configuration (P,L) in which
the maximal representative of the segment length distri-
bution of a pseudoline of L appears in the list Π before
the segment length distribution of its baseline.

Parallelization. To close this description, we observe
that our algorithm is easily parallelizable on different
computers since it is a dynamic research in a tree. We
did not use parallelization to obtain the current results,
but it will certainly be an important advantage of the
algorithm for exploring the question of finding the first
integer n for which topological (n5)-configurations exist.

5 Results

Check former results. As a first application, our algo-
rithm enables us to check easily all former enumerations
of topologically realizable combinatorial (nk)-configura-
tions. The Java implementation developed by the sec-
ond author finds all (nk)-configurations in less than a
minute1 when k = 3 and n ≤ 11, or when k = 4 and
n ≤ 17. In particular, we checked that there is no topo-
logical (n4)-configuration when n ≤ 16 [4], and that
there is a single combinatorial (174)-configuration which
can be realized by (several) topological (174)-configura-
tions, but which cannot be realized geometrically [5].
When k = 4 and k = 18, we reconstructed the 16 com-
binatorial equivalence classes of topological (184)-confi-
gurations depicted in [5, Figure 6]. To obtain this re-
sult, our implementation needed about one hour1, com-
pared to months of CPU-time used in [11]. The two
(184)-configurations presented in Figure 1, which are
combinatorially equivalent but not mutation equivalent,
occured while we were reducing the list of (184)-configu-
rations up to combinatorial equivalence, using as a first
reduction a certain invariant of mutation equivalence.

Obtain new results. Our algorithm can furthermore
be used to derive new enumerative results. To answer
the question of the existence of geometric (194)-configu-
rations, our first step is to compute the complete list of
combinatorial (194)-configurations that admit a topo-
logical realization. We found 4028 combinatorially dis-
tinct topologically realizable (194)-configurations (222
of which are self-dual). This task has been accomplished
by our algorithm within 16 days of CPU-time1. We un-
derline again that we did not use the extended list of
all 269224652 combinatorial (194)-configurations com-
puted in [10] to obtain this result. A detailed investi-

1Computation times on a double core processor on 2.4 GHz.

gation and analysis of this result will be published in a
subsequent paper.

Acknowledgements

The first author thanks Leah Berman from the Uni-
versity of Alaska Fairbanks for discussions about the
subject. He also thanks three colleagues from the
Universidad Nacional Autónoma de México, namely
Rodolfo San Augustin Chi, Ricardo Strausz Santiago,
and Octavio Paez Osuna, for many stimulating discus-
sions about various different earlier versions of the pre-
sented algorithm during his one year sabbatical stay
(2008/2009) in México City.

References

[1] A. Björner, M. Las Vergnas, B. Sturmfels, N. White,
and G. M. Ziegler. Oriented matroids, volume 46 of En-
cyclopedia of Mathematics and its Applications. Cam-
bridge University Press, Cambridge, second edition,
1999.

[2] J. Bokowski. Computational oriented matroids. Cam-
bridge University Press, Cambridge, 2006.

[3] J. Bokowski, B. Grünbaum, and L. Schewe. Topologi-
cal configurations (n4) exist for all n ≥ 17. European
J. Combin., 30(8):1778–1785, 2009.

[4] J. Bokowski and L. Schewe. There are no realizable 154-
and 164-configurations. Rev. Roumaine Math. Pures
Appl., 50(5-6):483–493, 2005.

[5] J. Bokowski and L. Schewe. On the finite set of missing
geometric configurations (n4). To appear in Computa-
tional Geometry: Theory and Applications, 2011.

[6] J. E. Goodman and R. Pollack. Allowable sequences
and order types in discrete and computational geome-
try. In New trends in discrete and computational geom-
etry, volume 10 of Algorithms Combin., pages 103–134.
Springer, Berlin, 1993.

[7] B. Grünbaum. Connected (n4) configurations exist
for almost all n—second update. Geombinatorics,
16(2):254–261, 2006.

[8] B. Grünbaum. Configurations of points and lines, vol-
ume 103 of Graduate Studies in Mathematics. American
Mathematical Society, Providence, RI, 2009.

[9] D. E. Knuth. Axioms and hulls, volume 606 of Lecture
Notes in Computer Science. Springer-Verlag, Berlin,
1992.

[10] O. Páez Osuna and R. San Agust́ın Chi. The combina-
torial (194) configurations. Preprint, 2011.

[11] L. Schewe. Satisfiability Problems in Discrete Geom-
etry. PhD thesis, Technische Universität Darmstadt,
2007.

23rd Canadian Conference on Computational Geometry, 2011

204

CCCG 2011, Toronto ON, August 10–12, 2011

Sliding labels for dynamic point labeling

Andreas Gemsa∗ Martin Nöllenburg? Ignaz Rutter?

Abstract

We study a dynamic labeling problem for points on a
line that is closely related to labeling of zoomable maps.
Typically, labels have a constant size on screen, which
means that, as the scale of the map decreases during
zooming, the labels grow relatively to the set of points,
and conflicts may occur due to overlapping labels. Our
algorithmic problem is a combined dynamic selection
and placement problem in a sliding-label model: (i) se-
lect for each label ` a contiguous active range of map
scales at which ` is displayed, and (ii) place each label
at an appropriate position relative to its anchor point
by sliding it along the point. The active range optimiza-
tion (ARO) problem is to select active ranges and slider
positions so that no two labels intersect at any scale and
the sum of the lengths of active ranges is maximized.
We present a dynamic programming algorithm to solve
the discrete k-position ARO problem optimally and an
FPTAS for the continuous sliding ARO problem.

1 Introduction

With the increasing practical importance of dynamic
maps that allow continuous operations like zooming,
panning, or rotations, dynamic labeling of map features
becomes a critical aspect of the visual quality of a map.
Examples of dynamic maps range from maps on small-
screen mobile devices to professional desktop GIS appli-
cations. The map dynamics add new dimensions to label
placement, which result in challenging geometric opti-
mization problems that are quite different from static
labeling problems. Changes in dynamic maps due to con-
tinuous map movements need to be smoothly animated
in order to preserve a coherent context and minimize
the user’s cognitive load for re-orientation [12]. This
requirement is also known as “frame coherency” [2] or
“temporal continuity” [5]. Hence we cannot simply solve
the arising labeling problems independently for each in-
termediate map view during the animation; rather we
need to solve the labeling problem globally such that the
animations of all possible trajectories using the given set
of navigation operations satisfy the quality constraints.

In order to avoid distraction and irritation of the user
a dynamic map should—according to Been et al. [3]—

∗Department of Computer Science, Karlsruhe Insti-
tute of Technology (KIT), Germany, {gemsa, noellenburg,

rutter}@kit.edu

adhere to the following quality constraints or consistency
desiderata for dynamic map labeling: During mono-
tone map movement labels should neither “jump” (non-
continuously change position or size) nor “pop” (vanish
when zooming in or appear when zooming out); more-
over, the labeling should be a function of the selected
map viewport and not depend on the navigation his-
tory. In this paper we are only interested in dynamic
labelings that are consistent in that sense. Of course
each static map view in a dynamic map also needs to
satisfy the quality standards for static maps [8], i.e., all
labels—usually modeled as rectangles—are pairwise dis-
joint, each label is close to its anchor point, and, globally
over all possible map views, the number of visible labels
is maximum.

Been et al. [4] presented a first extensive study of
algorithms for dynamic map labeling in several different
models for one- and two-dimensional input point sets.
However, they focused on the dynamic label selection
problem, i.e., which set of labels to select at which scale,
and assumed that for each label a single, fixed position
relative to the anchor point is given in the input. They
left dynamic label placement as an open problem, i.e.,
the problem where to place each label relative to its
anchor point. One model for label placement is the k-
position or fixed-position model, where each label can
be placed at a position from a set of k (usually 4 or 8)
possible positions [1,6, 17]. Another more general model
is the slider model, where the finite-position assumption
is dropped and each label can take any position such
that the anchor point coincides with a point on the label
boundary [15, 16]. In this paper we present labeling
algorithms in a dynamic scenario that allows continuous
zooming for the visualization of a one-dimensional input
point set. To the best of our knowledge our algorithms
are the first to combine the dynamic label selection
problem with label placement in both the fixed-position
and the slider model, thus answering (partially) an open
question of Been et al. [4].

Related Work. Most previous algorithmic research
on automated label placement deals with static fixed-
position or slider models for point, line, or area features.
The problem of maximizing the number of selected la-
bels is NP-hard even for the simplest labeling models,
whereas there are efficient algorithms for the decision
problem that asks whether all points can be labeled in

CCCG 2011, Toronto ON, August 10–12, 2011

205

23d Canadian Conference on Computational Geometry, 2011

some of the simpler models (see, e.g., the discussion by
Klau and Mutzel [9] or the comprehensive map label-
ing bibliography [19]). Approximation results [1, 16],
heuristics [18], and exact approaches [9] are known for
many variants of the static label number maximization
problem.

More recently, dynamic map labeling has emerged as a
new research topic that gives rise to many unsolved algo-
rithmic problems. Petzold et al. [13] used a preprocessing
step to generate a reactive conflict graph that represents
possible label overlaps for maps of all scales. For any
fixed scale and map region, their method computes a
conflict-free labeling in the slider model using heuristics.
Poon and Shin [14] described algorithms for labeling
one- and two-dimensional point sets that precompute a
hierarchical data structure storing solutions for a number
of different scales; this allows them to answer adaptive
zooming queries efficiently. Mote [10] presented another
fast heuristic method for dynamic conflict resolution in
label placement that does not require preprocessing and
assumes a 4-position model. The consistency desiderata
of Been et al. [3] for dynamic labeling, however, are
not satisfied by any of these three methods. Been et
al. [4] showed NP-hardness of the label number maxi-
mization problem in the consistent labeling model and
presented several approximation algorithms for labeling
two-dimensional point sets and an exact algorithm for
one-dimensional point sets. They focused on dynamic
label selection, i.e., assumed a 1-position model for la-
bel placement. Nöllenburg et al. [11] recently studied
a dynamic version of the alternative boundary labeling
model allowing continuous zooming and panning, where
labels are placed at the sides of the map and connected
to their points by leaders. Algorithms and complexity
results for dynamic label selection in fixed-scale rotating
maps that satisfy similar consistency desiderata were
presented by Gemsa et al. [7].

Contribution. In this paper we present algorithms for
labeling a set of points on a line with labels of arbitrary,
non-uniform length in a dynamic scenario that supports
continuous zooming of the points’ visualization. Un-
like previous efforts [4] we consider label placement in
a k-position and slider model: we must select both an
interval of scales at which each label is selected (dynamic
selection problem) and an admissible label position for
each label relative to its anchor point (dynamic place-
ment problem). We require that the label position re-
mains the same for all scales. In Section 2 we introduce
a model for dynamic point labeling with sliding labels in
the framework of Been et al. [3]. Section 3 presents a dy-
namic programming algorithm for dynamically labeling
points in the k-position model. Our main contribution
is the fully polynomial-time approximation scheme (FP-
TAS) described in Section 4 for the more general sliding

model. We conclude in Section 5 with several remaining
open questions that arise from our results.

2 Preliminaries

In this section we describe our model for dynamic label-
ing in the general framework of Been et al. [3, 4].

Model. Let P = {p1, . . . , pn} be a set of points on the
x-axis (also called the base line) together with a set
L = {`1, . . . , `n} of labels. The point pi is called the
anchor point of the label `i. Each label `i is a rectangle
of (target) width wi modeling the bounding box of the
text describing the point pi. Since we focus on labeling
a one-dimensional point set, we can think of each label
`i as actually being a line segment of width wi. During
zooming of the points’ visualization we wish to keep the
label size constant on screen, which means that if we
scale the map by a factor of 1/s we need to increase the
label size by a factor of s in order to maintain its width
on screen constant. This is the label size invariance
property of Been et al. [3]. So the width of `i on the
base line required for a map of scale 1/s is given by the
linear function wi(s) = wis.

The label proximity constraint in map labeling says
that each label must be close to its anchor point [8], i.e.,
we require for each label that the anchor point coincides
with a point of the label. We consider sliding labels
and define the shift position ti ∈ [0, 1] of a label `i as
the fraction of `i that is to the right of pi. For ti = 0
the label is in its leftmost position, and for ti = 1 it is
in its rightmost position. In the fixed-position model
only a finite subset of positions from [0, 1] is allowed. In
this paper we consider invariant point placements [3],
i.e., once a shift position t is selected for a label `, `
maintains that position relative to its anchor point. This
immediately prevents the labels from jumping. Figure 1
shows a set of five points with labels zoomed to four
different scales. Note that as the scale decreases, the
points move closer together and some labels must be
removed to avoid conflicting labels.

GeometryCanadian

GeometryComputationalCanadian

GeometryComputationalonConferenceCanadian

GeometryComputationalonConferenceCanadian

Figure 1: Five (partially) labeled points on a line zoomed
from smaller (top) to larger scales (bottom).

Following Been et al. [3, 4] we define an extended two-
dimensional coordinate system defined by the x-axis,

23rd Canadian Conference on Computational Geometry, 2011

206

CCCG 2011, Toronto ON, August 10–12, 2011

Canadian Conference on Computational Geometry

y

x

s0

Figure 2: Triangular truncated extrusions (shaded blue)
induced by the example of Figure 1.

which models the positions of the points P , and the
y-axis, which models the inverse s of the scale 1/s. We
denote s as the scale factor that is used to enlarge the
labels before the whole base line (including the labels)
is scaled down by the target scale 1/s to produce the
actual visualization. We say a label is active at scale
factor s if it is selected as being visible at s; otherwise
it is inactive. The (static) placement of an active label `
with target width w and anchor point p at scale factor s
is determined by a shift position t ∈ [0, 1], i.e., the label
is represented by the interval [p− (1− t)ws, p+ tws]. A
dynamic placement of ` is a placement of ` for each scale
factor s at which ` is active. Since we consider invariant
point placements, the shift position is the same for all
scales. If we extrude the growing label segment with its
constant shift position t along the y-axis from y = 0 to
some maximum scale factor smax we obtain a triangle
whose apex is placed at the point p and whose top side is
parallel to the x-axis, see Figure 2. We call this triangle
the extrusion E of `. The shift position t determines the
slant of E, but for a label ` of width w the width of E at
any fixed scale factor s is ws independent of t. Let the
trace trs(E) of E at scale factor s be the intersection of
E with the horizontal line y = s. By definition trs(E)
corresponds to the placement of ` at s if ` is active at s.

If the extrusions E and E′ of two labels intersect at
some scale factor s this means that the two labels `
and `′ overlap at scale 1/s. A standard requirement
in point labeling, however, is that all labels must be
pairwise disjoint [8]. Accordingly, at most one of ` or
`′ can be active at scale factor s. Since one of the
desiderata for consistent dynamic map labeling is that
labels do not ‘pop’ during monotonous zooming in order
to avoid flickering effects [3] we require that labels never
vanish when zooming in and never appear when zooming
out. This lets us define the active range of a label
`i as an interval of scale factors [0, ai) for which `i is
active. This active range implies that when zooming in
the label `i appears exactly once at scale factor ai and
then remains active, or, conversely, when zooming out it
disappears exactly once at scale factor ai and remains
inactive. The truncated extrusion Ti is the restriction
of the extrusion Ei of `i to its active range [0, ai), see
Figure 2 for an example. Now a consistent dynamic

labeling for the points P corresponds to an assignment
of a scale-independent shift position ti and an active
range [0, ai) for each label `i such that the truncated
extrusions T = {T1, . . . , Tn} are pairwise disjoint. Hence
we need to solve both a dynamic selection problem and a
dynamic placement problem according to Been et al. [3].
Informally speaking, we can adjust the slant and the
height of the truncated extrusions as long as they do not
intersect each other.

Objective. A common objective in point labeling is to
maximize the number of labeled points, and accordingly
our goal is to maximize the total active range length,
which is defined as the sum H =

∑n
i=1 ai of all active

range lengths. Maximizing H corresponds to displaying
a maximum number of labels integrated over all scale
factors s ∈ [0, smax]. This problem is known as the active
range optimization problem (ARO) [4]. We consider
two one-dimensional variants of ARO: In the discrete
k-position 1d ARO problem the set of admissible shift
positions is restricted to a subset Si ⊂ [0, 1] of cardinality
|Si| ≤ k. In the general sliding 1d ARO problem any
shift position in [0, 1] is admissible.

3 A dynamic program for k-position 1d ARO

In this section we give a dynamic program for computing
an optimal solution for the k-position version of the 1d
ARO problem. For ease of notation we define two dummy
points p0 and pn+1, where p0 = min{pi − smaxwi | 1 ≤
i ≤ n} and pn+1 = max{pi + smaxwi | 1 ≤ i ≤ n}. The
only shift position of `0 is S0 = {0} and the only shift
position of `n+1 is Sn+1 = {1}. Both labels have width 1.
It is easy to see that in any optimal solution the height
of T0 and Tn+1 must be smax since none of the extrusions
Ti can intersect T0 or Tn+1.

For a pair of points pi and pj with i < j and shift
positions ki ∈ Si and kj ∈ Sj we define the free space
∆(i, j, ki, kj) as the polygon bounded by the line s = 0,
the supporting line of the right edge of Ti in shift position
ki, the supporting line of the left edge of Tj in shift posi-
tion kj , and, if the two supporting lines of Ti and Tj do
not intersect below smax, the line s = smax. See Figure 3
for an example. Let A[i, j, ki, kj] be the maximum total
active range height for the points pi+1, . . . , pj−1, where
all truncated extrusions Ti+1, . . . Tj−1 are contained in
∆(i, j, ki, kj).

We observe that the tallest truncated extrusion Tl
(i < l < j) in any optimal solution of the subinstance I
induced by ∆(i, j, ki, kj) must touch the left, right, or
top boundary of ∆(i, j, ki, kj), otherwise we could im-
prove the total active range height. We use Tl in order
to split I into two smaller independent subinstances I ′

and I ′′ induced by ∆(i, l, ki, kl) and ∆(l, j, kl, kj), see

Figure 3. For each l = i+1, . . . , j−1 let h
i,j,ki,kj
l,kl

denote

CCCG 2011, Toronto ON, August 10–12, 2011

207

23d Canadian Conference on Computational Geometry, 2011

pi pj

smax

pl

Ti TjTl

∆(i, l, ki, kl)

∆(l, j, kl, kj)

h
i,j,ki,kj
l,kl

Figure 3: The subinstance induced by ∆(i, j, ki, kj) is
split into two smaller independent subinstances by Tl.

the height at which Tl at shift position kl ∈ Sl first
hits a non-bottom edge of ∆(i, j, ki, kj). We initialize
A[i, i + 1, ·, ·] = 0 for all i = 0, . . . , n and then recur-

sively defineA[i, j, ki, kj] = max{A[i, l, ki, kl]+h
i,j,ki,kj
l,kl

+
A[l, j, kl, kj] | i < l < j and kl ∈ Sl}. By definition of A
the solution to the ARO problem is A[0, n+ 1, 0, 1]. We
can compute the value A[0, n+ 1, 0, 1] by dynamic pro-
gramming in O(n3k3) time: each of the O(n2k2) values
in A is defined as the maximum of a set of O(nk) values,
each of which can be computed by two table look-ups
and two O(1)-time line intersection queries.

The correctness of the above dynamic program follows
by induction on the number of points in a subinstance.
Clearly for an empty subinstance ∆(i, i+ 1, ki, ki+1) the
maximum total active range height A[i, i+1, ki, ki+1] is 0.
Let’s consider a subinstance induced by ∆(i, j, ki, kj),
where j − i = r and assume by induction that the val-
ues in A are correct for all subinstances ∆(i′, j′, ki′ , kj′),
where j′ − i′ < r. Let B be an optimal active range
assignment of the labels `i+1, . . . , `j−1 within the free
space ∆(i, j, ki, kj) and let H(B) be its value. Let further
Tl be a tallest truncated extrusion with shift position

kl in B. Obviously Tl must have height h
i,j,ki,kj
l,kl

if B
is optimal. Since our algorithm explicitly considers all
labels and all shift positions as candidates for the tallest
truncated extrusion, it also considers Tl and its shift
position kl, which splits the given instance into two inde-
pendent subinstances with free spaces ∆(i, l, ki, kl) and
∆(l, j, kl, kj). Since l− i < r and j− l < r we know that

A[i, j, ki, kj] ≥ A[i, l, ki, kl] + h
i,j,ki,kj
l,kl

+ A[l, j, kl, kj] =
H(B).

Since the free space ∆(0, n + 1, 0, 1) is chosen such
that none of the truncated extrusions T1, . . . , Tn can
touch T0 or Tn+1, A(0, n + 1, 0, 1) indeed contains the
value of an optimal solution to the k-position ARO
problem. We can easily augment the algorithm to keep
track of the pair (l, kl) that achieved the maximum value
in order to reconstruct the solution by backtracking
from A(0, n+ 1, 0, 1). We summarize this result in the
following theorem.

Theorem 1 Given n points P = {p1, . . . , pn} on the
x-axis, a label `i of base width wi for each point pi, and

a set Si ⊂ [0, 1] of at most k shift positions for each label
`i, we can compute an optimal solution to the k-position
1d ARO problem in O(n3k3) time and O(n2k2) space.

We note that this algorithm generalizes theO(n3)-time
algorithm of Been et al. [4] for the 1-position 1d ARO
problem, where each label has only a single available
shift position.

4 An FPTAS for general 1d sliding ARO

In this section we present an FPTAS for approximating
the optimal solution of the sliding 1d ARO problem
within a factor of (1 − ε). The idea of the FPTAS is
based on uniformly discretizing the interval [0, 1] of shift
positions. Let k > 0 be an integer and define the set
of shift positions Sk = {i/k | i ∈ Z, 0 ≤ i ≤ k}. For
an instance I of the sliding 1d ARO problem consisting
of a point set P = {p1, . . . , pn} and corresponding label
set L, we consider instead the (k + 1)-position 1d ARO
problem for the instance I ′ consisting of P , L, and
the shift position sets Si = Sk for 1 ≤ i ≤ n. By
Theorem 1 this instance I ′ can be solved in O(n3k3)
time and O(n2k2) space using the dynamic programming
algorithm of Section 3. In the following theorem we
show that this approach gives an FPTAS for the original
sliding 1d ARO problem.

Theorem 2 Given n points P = {p1, . . . , pn} on the
x-axis and a corresponding label set L = {`1, . . . , `n},
where label `i has base width wi, we can compute a (1−ε)-
approximate solution to the sliding 1d ARO problem in
O(n3(1/ε)3) time and O(n2(1/ε)2) space.

Proof. We need to show that for a suitably chosen
parameter k = k(ε) the optimal solution for the (k + 1)-
position 1d ARO instance I ′ as defined above is actually
a (1− ε) approximate solution for the sliding 1d ARO
instance I. Let us assume that we know an optimal
solution A? for I, i.e., a shift position ti ∈ [0, 1] and an
active range [0, ai) ⊆ [0, smax] for each label `i. Since A?

is optimal, each truncated extrusion Ti has either height
ai = smax or touches the left or right supporting line
of another, taller, truncated extrusion Tj . In the latter
case ai is the smallest scale factor, where the extrusions
Ei and Ej intersect.

For proving the approximation factor we derive a
discretized solution A′ from A?, where each shift position
t′i ∈ Sk and the active ranges are shortened to [0, a′i) ⊆
[0, ai) as to satisfy the label disjointness property. For
every shift position ti in A? we define the new shift
position t′i in A′ as follows

t′i =

{
bktic/k if ti < 1/2

dktie/k if ti ≥ 1/2.

23rd Canadian Conference on Computational Geometry, 2011

208

CCCG 2011, Toronto ON, August 10–12, 2011

In other words, we tilt Ti towards its “heavier” side until
it reaches a shift position in the set Sk. Due to the
tilting the truncated extrusions are no longer necessarily
disjoint and we need to shorten the active ranges for
some labels. Figure 4 shows an example.

ai

pi pj

(a)

wit
′
iai

α β

ai

pi pj

(b)

Figure 4: Discretizing the shift positions of two labels
for k = 4.

Let T ′i and T ′j be two tilted truncated extrusions that
intersect in their interior. Without loss of generality let
T ′i be the smaller one such that, before the tilting, its
top right corner was touching the left edge of T ′j as in
Figure 4a. We first consider the case that T ′i and T ′j are
tilted towards each other. Then the right edge of T ′i ,
the left edge of T ′j , and the horizontal line y = ai define
a triangle D as in Figures 4b and 5. We decrease the
active range of label `i to [0, a′i), where a′i = ai − h for
the height h of D. Obviously the truncated extrusions
T ′i and T ′j no longer intersect in their interior for the
new active range [0, a′i).

αβ

h

c }x

Figure 5: Intersection triangle D.

Next, we bound the height h of D. Let α be the
angle between the right edge of T ′i and the x-axis. The
same angle α is found at the top right corner of D.
From Figure 4b we obtain that tan(α) = ai/(wit

′
iai) =

1/(wit
′
i) and from Figure 5 that tan(α) = h/x, where x

is distance between the base point of the height h on the
top side c and the top right corner. Since T ′i is tilted
to the right and T ′j to the left we have t′i ≥ 1/2 and
(1− t′j) ≥ 1/2. By definition of the new shift positions
t′i and t′j we know that the length of the top side c of
D is at most (wiai + wjai)/k. This is because at scale
factor s the tilt moves each truncated extrusion with
base width w horizontally by at most a 1/k fraction of

its width ws at s. With x ≤ c this yields

h =
x

wit′i
≤ c

wi/2
≤ 2ai

k

wi + wj
wi

.

Similar reasoning for the angle β in Figures 4b and 5
yields tan(β) = ai/(wj(1− t′j)ai) = h/(c− x) and sub-
sequently h ≤ 2ai/k · (wi + wj)/wj . Again without
loss of generality we assume that wi ≥ wj and obtain
min{(wi + wj)/wi, (wi + wj)/wj} = (wi + wj)/wi ≤ 2.
So we can finally bound the height of D by h ≤ 4ai/k.

We still need to consider the case that both truncated
extrusions are tilted in the same direction, say to the left
(the case that both are tilted to the right is symmetric).
A conflict can still occur if T ′j is tilted further to the left
than T ′i . The triangle D is defined as before, but now
we know that the length of the side c is at most wjai/k.
Since T ′j is tilted to the left we still have (1− t′j) ≥ 1/2.
Now we argue about the angle β using the same identities
as before and obtain h ≤ c/(wj(1− t′j)) ≤ 2ai/k.

In the case that T ′i and T ′j are tilted away from each
other obviously no conflict can occur. Furthermore, the
analysis still holds for conflicts involving the top left
corner of T ′i instead of the top right corner.

So each truncated extrusion Ti of height ai is shortened
by at most 4ai/k due to the discretization of the shift
positions, or, equivalently, a′i ≥ (1 − 4/k)ai. If we set
k = 4/ε we arrive at

∑n
i=1 a

′
i ≥ (1− ε)∑n

i=1 ai. �

5 Discussion

In this paper we studied an extension of the initial
ARO problem, introduced by Been et al. [4], where we
additionally allow to slide the labels. Our dynamic
programming approach for discrete k-position 1d ARO
is a generalization of their approach to solve simple 1d
ARO with proportional dilation. It shows that k-position
1d ARO can be solved in polynomial time.

Based on the dynamic program for k-position 1d ARO,
we further derived an FPTAS for sliding 1d ARO by
suitably discretizing the set of allowed shifts for the
labels. While this shows that we can approximate the
optimal value arbitrarily closely in polynomial time, the
complexity of sliding 1d ARO is still open. The main
difficulty in devising an NP-hardness proof is that the
problem becomes efficiently solvable when every label has
only a polynomial number of relevant sliding positions.
It thus seems difficult to encode binary decisions as label
positions.

Note that in our model the shift position of each label,
once selected, remains fixed for all scales. For the k-
position model this is actually required in order to avoid
jumping labels, whereas in a more general sliding model
we leave as an open problem to determine a continuous
function that defines the label position for every scale.
Here we might require that this function is monotone or
that its slope is bounded.

CCCG 2011, Toronto ON, August 10–12, 2011

209

23d Canadian Conference on Computational Geometry, 2011

In practice it is common that some points are more
important than others and hence the active ranges of
their labels should be more influential in the objective
function. More precisely, let γi > 0 be a weight for each
point pi. We can then optimize the weighted total active
range length Hγ =

∑n
i=1 γiai instead of H. It is easy to

see that both the dynamic programming algorithm and
the FPTAS remain valid for optimizing Hγ .

Another problem variant is to use a non-linear ob-
jective function, motivated by the observation that H
favors active labels at large values of s, i.e., in maps with
small scales 1/s. It might be reasonable in practice to
choose a logarithmic function over a linear function for
measuring the active ranges. Using the objective func-
tion Hlog =

∑n
i=1 log ai instead of H has the effect that

doubling the scale range at which a label is active has a
fixed impact on the objective function regardless of the
actual scale. The dynamic programming algorithm can
immediately deal with Hlog. Even the approximation
scheme of Section 4 remains an FPTAS under the mild
additional assumptions that the minimum scale factor
is 1 (instead of 0), that each ai ≥ 2, and that ε ≤ 1/2.

Ultimately, the challenge in 2d dynamic map labeling
is to consistently support multiple modes of interaction
(zooming, panning, rotations) using a slider model for the
labels. In this sense, our results are a first step towards
consistent dynamic labeling of 2d zoomable maps with
sliding labels. Unfortunately, our algorithms do not
easily generalize to 2d point sets. In fact, it can be easily
seen that k-position 2d ARO and sliding 2d ARO are
both NP-hard. The result of Been et al. [4] essentially
shows that 1-position 2d ARO, and thus also k-position
2d ARO is NP-hard. For the sliding 2d ARO problem
deciding whether all labels may be active at all scales
amounts to deciding whether all labels can be placed
at scale smax. A slight modification of the NP-hardness
proof for map labeling in the four-slider model [16] shows
that this problem is NP-hard, even if all labels are unit
squares.

Acknowledgments

We thank an anonymous reviewer for helpful sugges-
tions. A. Gemsa and M. Nöllenburg are supported by
the Concept for the Future of KIT under project YIG
10-209 within the framework of the German Excellence
Initiative and by a Google Research Award.

References

[1] P. K. Agarwal, M. van Kreveld, and S. Suri. Label
placement by maximum independent set in rectangles.
Comput. Geom. Theory Appl., 11:209–218, 1998.

[2] K. Ali, K. Hartmann, and T. Strothotte. Label layout
for interactive 3D illustrations. Journal of the WSCG,
13(1):1–8, 2005.

[3] K. Been, E. Daiches, and C. Yap. Dynamic map label-
ing. IEEE Transactions on Visualization and Computer
Graphics, 12(5):773–780, 2006.

[4] K. Been, M. Nöllenburg, S.-H. Poon, and A. Wolff.
Optimizing active ranges for consistent dynamic map
labeling. Comput. Geom. Theory Appl., 43(3):312–328,
2010.

[5] B. Bell, S. Feiner, and T. Höllerer. View management
for virtual and augmented reality. In ACM Sympos.
on User Interface Software and Technology (UIST’01),
pages 101–110, 2001.

[6] M. Formann and F. Wagner. A packing problem with
applications to lettering of maps. In Proc. 7th Annual
ACM Sympos. on Computational Geometry (SoCG’91),
pages 281–288, 1991.

[7] A. Gemsa, M. Nöllenburg, and I. Rutter. Consistent
labeling of rotating maps. In Proc. 12th Algorithms and
Data Structures Symposium (WADS’11). To appear,
2011.

[8] E. Imhof. Positioning names on maps. The American
Cartographer, 2(2):128–144, 1975.

[9] G. W. Klau and P. Mutzel. Optimal labeling of point
features in rectangular labeling models. Mathematical
Programming (Series B), pages 435–458, 2003.

[10] K. D. Mote. Fast point-feature label placement for
dynamic visualizations. Information Visualization,
6(4):249–260, 2007.

[11] M. Nöllenburg, V. Polishchuk, and M. Sysikaski. Dy-
namic one-sided boundary labeling. In Proc. 18th ACM
SIGSPATIAL Int’l Conf. Advances in Geographic Infor-
mation Systems, pages 310–319. ACM Press, 2010.

[12] K. Ooms, W. Kellens, and V. Fack. Dynamic map label-
ing for users. In Proc. 24th Int’l Cartographic Conference
(ICC’09), Santiago, Chile, 2009.

[13] I. Petzold, G. Gröger, and L. Plümer. Fast screen map
labeling—data-structures and algorithms. In Proc. 23rd
Internat. Cartographic Conf. (ICC’03), pages 288–298,
Durban, South Africa, 2003.

[14] S.-H. Poon and C.-S. Shin. Adaptive zooming in point
set labeling. In Proc. 15th Internat. Sympos. Fundam.
Comput. Theory (FCT’05), volume 3623 of Lecture Notes
Comput. Sci., pages 233–244. Springer-Verlag, 2005.

[15] T. Strijk and M. van Kreveld. Practical extensions
of point labeling in the slider model. GeoInformatica,
6(2):181–197, 2002.

[16] M. van Kreveld, T. Strijk, and A. Wolff. Point labeling
with sliding labels. Comput. Geom. Theory Appl., 13:21–
47, 1999.

[17] F. Wagner and A. Wolff. A practical map labeling
algorithm. Comput. Geom. Theory Appl., 7:387–404,
1997.

[18] F. Wagner, A. Wolff, V. Kapoor, and T. Strijk. Three
rules suffice for good label placement. Algorithmica,
30(2):334–349, 2001.

[19] A. Wolff and T. Strijk. The Map-Labeling Bibliography,
1996.

23rd Canadian Conference on Computational Geometry, 2011

210

CCCG 2011, Toronto ON, August 10–12, 2011

A Discrete and Dynamic Version of Klee’s Measure Problem

Hakan Yıldız∗ John Hershberger† Subhash Suri∗

Abstract

Given a set of axis-aligned boxes B = {B1, B2, . . . , Bn}
and a set of points P = {p1, p2, . . . , pm} in d-space, let
the discrete measure of B with respect to P be defined
as meas(B,P) = |P ∩ {⋃ni=1Bi}|, namely, the number
of points of P contained in the union of boxes of B.
This is a discrete and dynamic version of Klee’s measure
problem, which asks for the Euclidean volume of a union
of boxes. Our result is a data structure for maintaining
meas(B,P) under dynamic updates to both P and B,

with O(logd n + m1− 1
d) time for each insert or delete

operation in B, O(logd n + logm) time for each insert
and O(logm) time for each delete operation in P, and
O(1) time for the measure query. Our bound is slightly
better than what can be achieved by applying a more
general technique of Chan [3], but the primary appeal
is that the method is simpler and more direct.

1 Introduction

A classical problem in computational geometry, known
as Klee’s Measure Problem, asks for an efficient algo-
rithm to compute the volume of the union of n axis-
aligned boxes in d dimensions. While optimal O(n log n)
time algorithms are known for dimensions one and
two [1, 7], the best bound in higher dimensions is
roughly O(nd/2) [4]. Indeed, despite more than twenty
years of effort, the barrier of O(n3/2) remains unbroken
even in three dimensions. It is known, however, that
as the dimension becomes large, the problem is NP–
hard [2].

In this paper, we consider a discrete and dynamic
version of Klee’s problem, in which the volume of a box
is defined as the cardinality of its intersection with a
finite point set P, and both the boxes and the points
are subject to insertion and deletion. In particular, we
have a set of axis-aligned boxes B = {B1, B2, . . . , Bn},
a set of points P = {p1, p2, . . . , pm} in d-space, and we
wish to maintain the discrete measure of B with respect
to P, namely, meas(B,P) = |P ∩ {⋃ni=1Bi}|, under
insertion and deletion of both points and boxes.

The problem is fundamental, and arises naturally in
several applications dealing with multi-attribute data.

∗Department of Computer Science, University of California,
Santa Barbara, {hakan,suri}@cs.ucsb.edu
†Mentor Graphics Corp., john_hershberger@mentor.com

In databases, for instances, data records with d inde-
pendent attributes are viewed as d-dimensional points,
and selection rules are given as ranges over these at-
tributes. A conjunction of ranges over d attributes is
then equivalent to a d-dimensional box. Given a set
of selection rules, the problem of counting all the data
records that satisfy the union (namely, the disjunction)
of all the rules is our discrete measure problem. Sim-
ilarly, one may ask for the set of records that fail to
satisfy any of the rules, and thus form the set of points
“not covered” by the union of boxes.

Similarly, the management of firewall rules for net-
work access can also be formulated as a discrete mea-
sure problem. The data packets in the Internet are clas-
sified by a small number of fields, such as IP address of
the source and destination, the network port number,
etc. The managers of a local area network (LAN) use
a number of “firewall rules” based on these attributes
to block some external services (such as ftp) from their
network. The discrete measure problem in this setting
keeps track of the number of services blocked by all the
firewall rules; conversely, one can keep track of the num-
ber of services that become “exposed” by the deletion
of a box.

Problem Formulation and Our Results

We begin with a formal definition of the problem. A
d-dimensional box B is the Cartesian product of d one-
dimensional ranges, namely B =

∏d
i=1[ai, bi], where ai

and bi are reals. The discrete measure of a single box B
with respect to a finite set of points P is the cardinality
of the intersection P ∩ B. The discrete measure of the
set of boxes B with respect to P, denoted meas(B,P),
is the cardinality of P ∩ {⋃B∈B B}. (Because a point
may lie in multiple boxes, the discrete measure of B is
not the sum of the measures of the individual boxes.) In
this paper, we consider the problem of maintaining the
discrete measure under insertion and deletion of both
points and boxes. Specifically, we propose a data struc-
ture that supports modifying P through insertion or
deletion of a point, modifying B through insertion or
deletion of a box, and querying for the current discrete
measure meas(B,P).

Despite its natural formulation, the problem appears
not to have been studied in this form. This may be
partially attributed to the fact that the static ver-
sion of the problem is easy to solve using standard

CCCG 2011, Toronto ON, August 10–12, 2011

211

23rd Canadian Conference on Computational Geometry, 2011

data structures of computational geometry: build a d-
dimensional version of a segment tree for the set of
boxes, and then query separately for each point to de-
termine whether any box contains it, for a total of
O(n logd n+m logd−1 n) time. This approach, however,
is inefficient when the set of boxes is dynamic, because
each insertion or deletion can affect a large number of
points, requiring Ω(m) recomputation time per update.

During the writing of this paper, we discovered that a
technique of Chan [3] can be used to solve this problem.
In [3], he describes a data structure for maintaining a set
of points and a set of hyperplanes in d-space to answer
queries of the form “does any of the points lie below
the lower envelope of the hyperplanes.” One can use
this data structure in combination with standard range
searching structures and a dynamization technique by
Overmars and van Leeuwen [9] to solve our discrete mea-
sure problem so that point insertions and box updates
require O(log2m+ logd n) and O(m1− 1

d logm+ logd n)
time respectively.1

Compared to this bound, the time complexity of our
data structure is better by a factor of logm. However,
a more important contribution may be the simplicity of
our method and the fact that it solves the problem in
a more direct way, making it more appealing for imple-
mentation. Specifically, our result gives a dynamic data
structure for the discrete measure problem with the fol-
lowing performance: a box can be inserted or deleted in
time O(m1− 1

d + logd n); a point can be inserted in time
O(logm + logd n) and deleted in time O(logm). The
data structure always updates its measure, so a query
takes O(1) time.

The data structure also solves the reporting problem
in output-sensitive time. Specifically, if k is the num-
ber of points in the union of the boxes, then they can
be found in O(k + k log m

k) worst-case time. The same
bound also holds if one wants to report the points not
contained in the union. Finally, we extend our results
to a stochastic version of the problem, in which each
point and each box is associated with an independent
probability of being present. In this case, one can nat-
urally define an expected discrete measure, which is the
expected number of points present that are covered by
the union of the boxes present. Our bounds for the
stochastic case are the same as the deterministic one.

2 Maintaining the Discrete Measure

In the following discussion we assume that all the boxes
in B and points in P have distinct coordinates.2 Be-
fore we describe our dynamic data structure, it is help-

1Reducing box update time is possible at the expense of in-
creasing the cost of point insertions and vice versa.

2This assumption merely simplifies the presentation; one can
use symbolic perturbation to break ties between identical coordi-
nates without affecting the result.

ful to consider a solution for the static problem. Let
B be a set of n boxes and P a set of m points in
d-space. For each point p ∈ P, we define its stab-
bing count, denoted stab(p), as the number of boxes
in B that contain p. The measure of a single point
p, meas(B, {p}), is 1 if stab(p) > 0 and 0 otherwise.
One can easily see that the overall discrete measure
can be written as the sum of point measures; that is,
meas(B,P) =

∑
p∈P meas(B, {p}). The stabbing count

of a point can be efficiently obtained using a multi-level
segment tree [10], which achieves the following perfor-
mance bounds.

Lemma 1 ([10]) The multi-level segment tree repre-
sents a set of n boxes in d-space. The structure can re-
port the stabbing count of any query point in O(logd−1 n)
time. It requires O(n logd−1 n) space and O(n logd n)
preprocessing time for construction.

By building a multi-level segment tree and then
querying it for the stabbing count of each point in
P, we can calculate the measure meas(B,P) for the
static problem in O(n logd n + m logd−1 n) time using
O(n logd−1 n) space.

2.1 Invariants for Stabbing and Measure

The static solution described above loses its appeal in
the dynamic setting because each box insertion or dele-
tion can invalidate the stabbing count of Ω(m) points.
We circumvent this problem by storing the stabbing
counts indirectly, using an idea from anonymous seg-
ment trees [12], so that only a small number of these
indirect values need to be modified after a box update.
We describe the technique in general first, deferring its
specialization for the efficient maintenance of the dis-
crete measure until later.

Consider a balanced tree (not necessarily binary)
whose leaves are in one-to-one correspondence with the
points of P. The point corresponding to a leaf v is de-
noted pv. In order to represent the stabbing counts of
the points, we store a non-negative integer field σ(w)
at each node w of the tree subject to the following sum
invariant : for each leaf v, the sum of σ(a) over all an-
cestors a of v (including v itself) equals stab(pv). By
assigning σ(v) = stab(pv) to each leaf v and σ(w) = 0
to all internal nodes w, we may obtain a trivial assign-
ment with the sum invariant. But, as we will see, the
flexibility afforded by these σ values allows us to update
the stabbing counts of many points by modifying only
a few σ values. As an example, if a box covering all the
points of P were inserted, then incrementing the single
value σ(root) by 1 suffices, where root denotes the root
of the tree.

We will maintain the discrete measure, meas(B,P),
through the σ values. In particular, at each node v, we

23rd Canadian Conference on Computational Geometry, 2011

212

CCCG 2011, Toronto ON, August 10–12, 2011

¾r

¾f
¾l · ¾r

¾l 0

¾f + ¾l

¾r ¡ ¾l

Figure 1: The push-up operation on a node with two
children.

store a quantity µ̄(v) representing the number of points
that have a stabbing count of 0, considering only the
information stored in the subtree rooted at v. (The no-
tation µ̄ is meant to suggest that it represents the com-
plement of the measure.) The quantity µ̄(v) is defined
recursively using the σ values as follows:

µ̄(v) =

0 if σ(v) > 0

1 if σ(v) = 0 ∧ v is a leaf∑
w∈child(v) µ̄(w) if σ(v) = 0 ∧

v is an internal node

where child(v) represents the children of a non-leaf
node v. It is easy to show that µ̄(root) is the num-
ber of points in P whose stabbing counts are 0. Conse-
quently, meas(B,P) = m− µ̄(root), and one can report
meas(B,P) in O(1) time.

We add one final constraint on σ values to achieve
uniqueness, which also contributes to the efficiency of
our specialized structure. In particular, we push the
σ values as high up the tree as possible to enforce the
following push-up invariant : at least one child of every
non-leaf node v has a σ value of 0. This specifies σ
uniquely, as shown by the following lemma.

Lemma 2 Let T be a tree representing a set of points
P and their stabbing counts as described above. Then
there exists a unique configuration of σ values satisfying
the sum and the push-up invariants in T .

Proof. We prove only the existence of the desired con-
figuration due to space limitation; the proof of unique-
ness can be found in the full version of the paper. Con-
sider an arbitrary configuration of σ values satisfying
the sum invariant. (For instance, σ(v) = stab(pv) for
each leaf and σ(v) = 0 for each non-leaf.) We then
apply the following push-up operation at each non-leaf
node v to revise its value: increment σ(v) by ∆ and
decrement σ(w) by ∆ for each child w of v, where
∆ = minw∈child(v) σ(w). (See Figure 1). This achieves
the push-up invariant at v while preserving the sum in-
variant in the tree. Repeated applications of the push-
up operation from the leaves to the root produce a con-
figuration of σ values satisfying both invariants.

�

p3

p2

p1
p5

p6

p4

p9

p8

p7 p1 p2 p3 p4 p5 p7p6 p8 p9

Figure 2: A measure tree of 9 points on the plane.

2.2 The Measure Tree and Dynamic Updates

In order to allow efficient insertion and deletion of boxes,
and the corresponding updates of the points’ stabbing
counts, we organize P in a balanced tree that supports
efficient range queries. A k-d tree, where points are
stored at the leaves, allows efficient range queries, but
is inefficient for insertion and deletion of points.3 The
structure we propose, which we call a measure tree, is a
variant of divided k-d trees [11], and allows both efficient
range queries and updates on the set of points. We note
that the tree described in this section has slightly slower
amortized bounds but these can be easily improved to
achieve our main result as explained in Section 2.5.

We describe the measure tree in two dimensions for
simplicity; the extension to d dimensions is conceptu-
ally straightforward, but we defer those details for later.
Given a dynamic set of points P in the plane, we repre-
sent P as a two-level tree. The first level consists of an
upper tree that partitions the points of P into at most
2
√
m subsets along the x-axis, each containing at most

2
√
m points, where m is the current size of P. Each

leaf of the upper tree acts as a root for a lower level
tree that further partitions the corresponding subset of
points using their y-coordinates. These lower trees form
the second level of our tree. Figure 2 shows an example.
Both levels of the tree are organized using 2-3 trees in
which each data element is stored in a single leaf. Con-
sequently, each leaf of the measure tree corresponds to
a single point of P and we can use our measure main-
tenance scheme to store σ and µ̄ values on the nodes.
We now discuss how to perform updates on the measure
tree while preserving the invariants.

Insertion or Deletion of a box B. Let us consider
insertion first. We find a set C of subtrees whose leaves
correspond to the points covered by B. This is a range
query, where we first perform a one-dimensional range
search on the upper tree to locate the subsets of points
that are completely or partially covered by the x-range
of B. Observe that at most two subsets are partially
covered. We then search the lower level trees corre-
sponding to the partially covered subsets to find the
points contained in B. The leaves corresponding to
these points are included in C. For each subset that
is completely covered by the x-range of B, we perform

3There is also no easy way to implement our scheme using
range trees because they contain multiple copies of the points.

CCCG 2011, Toronto ON, August 10–12, 2011

213

23rd Canadian Conference on Computational Geometry, 2011

a one-dimensional range search on the corresponding
lower tree to find a set of maximal subtrees containing
the points that lie in B. These maximal subtrees are
also included in C. It is straightforward to show that
the subtrees in C span the set of points covered by B
and the total cost of the range query is O(

√
m logm).

The insertion of B causes the stabbing count of each
point contained in B to increase by 1. We effect this by
incrementing the σ value of the root of each subtree in
C by 1. This corrects the sum invariant in the tree, but
may invalidate the push-up invariant. We therefore ap-
ply push-ups on the nodes whose σ values are updated.
Since each push-up may introduce a violation of the
push-up invariant at the parent, we continue applying
push-ups until all violations are resolved. Finally, we
recompute µ̄ for all ancestors of nodes whose σ values
changed. This recomputation is also done bottom-up,
since the µ̄ value of a node depends on the µ̄ values of
its descendants. We note that both the push-ups and
the recomputations of µ̄ values can be done as part of
the tree traversal of the range query. It follows that the
total cost of the box insertion is O(

√
m logm) time.

The handling of deletion is similar to insertion, ex-
cept that we decrement the σ value of the root of each
subtree found by the range query. The time complexity
is O(

√
m logm), as for insertion. Decrementing the σ’s

may cause some values to drop below zero, but the push-
up operations eliminate these negative values. In par-
ticular, observe that a push-up at a node v restores not
only the push-up invariant but also the non-negativity
of v’s children. To see that the final value of σ(root)
is non-negative, imagine a root-to-leaf path (as in the
proof of uniqueness for Lemma 2 found in the appendix)
such that σ is zero for all nodes on the path except root .
The path ends at a leaf v such that stab(pv) equals
σ(root), and so it follows that σ(root) is non-negative.

Insertion or Deletion of a point p. When inserting
a point p, we search the upper tree with the x-coordinate
of p to find the lower tree in which p should be inserted,
and then insert p using the standard 2-3 tree insertion
algorithm. This creates a new leaf v with pv = p. We
need to know the stabbing count of p in order to initial-
ize σ(v) correctly. For the moment, let us assume that
we know stab(p)—see Lemma 3—and focus on the up-
date of the tree. In order to preserve the sum invariant,
we set σ(v) to stab(p)− Σ, where Σ is the sum of σ(a)
over all strict ancestors a of v. If σ(v) is less than 0, we
apply push-ups to v and all of its ancestors to push the
negativity to the root, where it is canceled out. The 2-3
tree insertion may split one or more ancestors of v, and
during those splits, the σ values of the resulting nodes
are set to the original node’s σ value, thereby preserving
the sum invariant. After the split, we apply push-ups
on the resulting nodes to re-establish the push-up in-

0¾3

¾2

¾1

¾4 ¾5
¾1+¾2 ¾3+¾4 ¾3+¾5

Figure 3: Push-down in a merge.

variant. Altogether, O(logm) splits and push-ups are
performed, and so the cost of the insertion is O(logm).
The insertion might cause the size of the lower tree to
exceed 2

√
m, but this is discussed in Section 2.3.

When a point p is deleted, we locate the lower tree
containing it and simply delete the leaf corresponding
to p, and restructure the tree to reestablish the bal-
ance of the 2-3 tree. The sum invariant is unaffected
by the deletion, but we may need to apply push-ups
to the ancestors of v to restore the push-up invariant.
The deletion may also cause 2-3 tree merge or redis-
tribution operations, and to preserve the sum invariant
during these operations, we push the σ values of the
participating nodes down to their children (see Figure
3). After the operation, push-ups are applied on these
nodes to restore the push-up invariant. If the lower tree
becomes empty as a result of the deletion, we simply
delete it and apply the same deletion algorithm on the
upper tree. Due to the decrease in the value of m, the
sizes of some upper or lower trees may exceed 2

√
m; we

deal with this in Section 2.3.

2.3 Complexity Analysis

We use two types of operations to ensure that the upper
and the lower trees do not exceed their size thresholds.
First, when a lower tree’s size exceeds 2

√
m, we split

it into two new lower trees of equal size, destroying
the original tree and constructing the new trees from
scratch. During this process, we traverse the original
tree to obtain the stabbing counts of the points and
use those to construct the new trees. This split opera-
tion takes O(

√
m) time since the y-order of the points

is known. Second, we avoid violating the upper tree’s
threshold by periodically rebuilding the entire measure
tree. This reconstruction creates a lower tree for each
set of d√m e points along the x-axis (except perhaps
the last one in the sequence, which may be smaller).
Consequently, the size of the upper tree is at most

√
m.

The reconstruction takes O(m logm) time. (It can be
done in O(m) time if we maintain the x- and y-orders
of the points separately.) We determine when to do the
reconstruction as follows. Assume that the most recent
reconstruction of the tree was done when m = m0. We
reconstruct the tree after 1

5m0 point insertions or dele-
tions. This ensures that the upper tree does not exceed
its threshold. The proof is straightforward and left to

23rd Canadian Conference on Computational Geometry, 2011

214

CCCG 2011, Toronto ON, August 10–12, 2011

the reader.
Next, we discuss how to initialize the stabbing count

of a point when it is first inserted. We enable this
by maintaining a separate dynamic multi-level segment
tree [5], which provides the following functions dynam-
ically.

Lemma 3 ([5]) The dynamic multi-level segment tree
represents a dynamic set of n boxes in d-space. The
structure uses O(n logd−1 n) space and can report the
stabbing count of any query point in O(logd n) time. It
supports insertion or deletion of boxes in O(logd n) time
apiece.

Putting together these pieces, we obtain our main
result in two dimensions.

Theorem 4 We can maintain the discrete measure in
two dimensions using O(n log n + m) space, with con-
stant time measure queries, O(log2 n+

√
m logm) time

for insertion or deletion of a box, O(log2 n+logm) time
for a point insertion, and O(logm) time for a point dele-
tion time. (The logm term in the bounds is amortized.)

Proof. We use the measure tree along with a two-
dimensional dynamic segment tree. The bound on the
space complexity follows because the measure tree re-
quires linear space and the multi-level segment tree re-
quires O(n log n) space by Lemma 3. The query com-
plexity is obviously constant. The insertion or deletion
of a box takes O(

√
m logm) time for the measure tree

and O(log2 n) time for the segment tree. The cost of
inserting or deleting a point is O(logm) for the mea-
sure tree if there is no reconstruction of a lower tree or
the whole measure tree. Reconstruction of the measure
tree costs O(m logm). We charge the cost of this con-
struction to the Ω(m) point updates that must precede
it, which gives us an amortized cost of O(logm) per up-
date. The reconstruction of a lower tree costs O(

√
m).

One can easily show that Ω(
√
m) point insertions pre-

cede the construction, which gives us an amortized cost
of O(1). Finally, we do a stabbing count query costing
O(log2 n) time when we insert a point. This completes
the proof. �

2.4 Extension to Higher Dimensions

The measure tree naturally extends to higher dimen-
sions, as a d-level tree, with each level partitioning the
points along one of the coordinate axes. The tree at
the top level partitions the set of points into at most
2m1/d subsets, each of which is partitioned into at most
2m1/d subsets by a second level tree. This partitioning
continues through d levels. The measure is maintained
using the σ and µ̄ values, as in two dimensions.

All the update procedures are natural extensions of
their two-dimensional counterparts. The initial tree size

is at most dm1/de at all levels; a tree is split when its size
becomes larger than 2m1/d. Moreover, one can show
that there is a positive constant C such that recon-
structing the tree after each Cm0 point insertions or
deletions guarantees that the size of the upper tree is
bounded by 2m1/d. The following theorem summarizes
the bounds of the d-dimensional structure; its proof is
similar to that of Theorem 4.

Theorem 5 We can maintain the discrete measure in
d dimensions, for d ≥ 2, using O(n logd−1 n + m)
space, with constant time measure queries, O(logd n +

m1− 1
d logm) time for insertion or deletion of a box,

O(logd n + logm) time for insertion of a point, and
O(logm) time for the deletion of a point. (The logm
term in the bounds is amortized.)

2.5 Further Improvements

The amortized bounds of our structure can be converted
to worst case bounds, using a technique called global re-
building [8]. The idea, in brief, is to spread out the
process of subtree reconstruction over time, operating
on a shadow copy of the main data structure and then
swapping in the result when the reconstruction is fin-
ished.

Finally, the term m1− 1
d logm in box update bounds

can be improved to m1− 1
d by using an optimized version

of the measure tree. For instance, in two dimensions,
the partitioning parameter can be tuned to achieve
O(
√
m + log2 n) time for inserting or deleting a box,

by mimicking the construction of [6].

3 Extensions

3.1 Reporting Queries

In some applications, it is useful to report explicitly the
points covered (or uncovered) by the union of boxes.
Our structure can be used to answer such queries in
output-sensitive time as in the following theorem.

Theorem 6 A reporting query can be answered in
O(k + k log m

k) time, where k is the size of the output.

Proof. The proof will appear in the full version of the
paper. �

3.2 Stochastic Discrete Measure

The recent proliferation of data mining applications has
created an urgent need to deal with data uncertainty,
which may arise because the mining algorithms output
probability distributions over an output space, or be-
cause attributes whose values are not explicitly known
are modeled with a discrete set of probabilistic values.

CCCG 2011, Toronto ON, August 10–12, 2011

215

23rd Canadian Conference on Computational Geometry, 2011

This motivates a natural stochastic extension of our dis-
crete measure problem, in which both the underlying set
of points P and the set of boxes B are associated with
independent probabilities. Specifically, each point p in
P occurs with probability πp and each box B in B occurs
with probability πB . The probabilities are independent,
but otherwise can take any real values. A natural prob-
lem in this setting is to compute the expected size of the
discrete measure—that is, how large is meas(B,P) for
a random sample of boxes and points drawn from the
given probability distribution?

Our structure can be easily adapted to this stochastic
problem with the same complexity bounds. The details
will appear in a journal version of the paper.

Theorem 7 The d-dimensional stochastic measure
problem can be solved with a data structure that re-
quires O(n logd−1 n + m) space, O(1) query time,

O(logd n + m1− 1
d) time for insertion or deletion of a

box, O(logd n + logm) time for a point insertion and
O(logm) time for a point deletion.

4 Closing Remarks

We introduced a discrete measure problem, and pre-
sented a data structure that supports dynamic updates
to both the set of points and the set of boxes. The
queries for the current measure take constant time, the
updates to the set of points take polylogarithmic time,
while updates to the set of boxes take time polyloga-
rithmic in the number of boxes and sub-linear in the
number of points. The data structure permits output-
sensitive enumeration of the points covered by the union
of the boxes, and also lends itself to a stochastic setting
in which points and boxes are present with independent,
but arbitrary, probabilities.

Our work leads to a number of research problems.
First, can the update bounds be improved? Second,
is there a trade-off between the update time for boxes
and the update time for points? In particular, can one
achieve polylogarithmic complexity in both n and m?

References

[1] J. L. Bentley. Solutions to Klee’s rectangle problems.
Unpublished manuscript, Dept. of Comp. Sci., CMU,
Pittsburgh PA, 1977.

[2] K. Bringmann and T. Friedrich. Approximating the
volume of unions and intersections of high-dimensional
geometric objects. CGTA, 43:601–610, 2010.

[3] T. Chan. Semi-online maintenance of geometric optima
and measures. In Proc. 13th annual ACM-SIAM Sym-
posium on Discrete algorithms, pages 474–483, 2002.

[4] T. M. Chan. A (slightly) faster algorithm for Klee’s
measure problem. CGTA, 43(3):243–250, 2010.

[5] H. Edelsbrunner. Dynamic data structures for orthog-
onal intersection queries. Report F59, Institut für In-
form., TU Graz, 1980.

[6] K. Kanth and A. Singh. Optimal dynamic range search-
ing in non-replicating index structures. In Proc. ICDT,
page 257. Springer, 1998.

[7] V. Klee. Can the measure of ∪[ai, bi] be computed
in less than O(n lgn) steps? American Mathematical
Monthly, pages 284–285, 1977.

[8] M. Overmars. The design of dynamic data structures.
Springer, 1983.

[9] M. Overmars and J. van Leeuwen. Worst-case opti-
mal insertion and deletion methods for decomposable
searching problems. Information Processing Letters,
12(4):168–173, 1981.

[10] V. K. Vaishnavi. Computing point enclosures. IEEE
Trans. Comput., 31:22–29, January 1982.

[11] M. van Kreveld and M. Overmars. Divided k-d trees.
Algorithmica, 6(1):840–858, 1991.

[12] H. Yıldız, L. Foschini, J. Hershberger, and S. Suri. The
union of probabilistic boxes: Maintaining the volume.
In Proc. 19th Annual European Symposium on Algo-
rithms (ESA), 2011.

23rd Canadian Conference on Computational Geometry, 2011

216

CCCG 2011, Toronto ON, August 10–12, 2011

Kinetically-aware Conformational Distances in Molecular Dynamics

Chen Gu∗ Xiaoye Jiang† Leonidas Guibas‡

Abstract

In this paper, we present a novel approach for dis-
covering kinetically metastable states of biomolecular
conformations. Several kinetically-aware metrics which
encode both geometric and kinetic information about
biomolecules are proposed. We embed the new met-
rics into k-center clustering and r-cover clustering algo-
rithms to estimate the metastable states. Those cluster-
ing algorithms using kinetically-aware metrics are tested
on a large scale biomolecule conformation dataset. It
turns out that our algorithms are able to identify the
kinetic meaningful clusters.

1 Introduction

Conformational changes are of fundamental importance
in a wide range of biological processes including protein
folding [4], RNA folding [1] and the operation of key
cellular machinery [7]. Extensive genetic, biochemical,
biophysical and structural experiments can help to un-
derstand these conformational changes. However, prob-
ing the mechanisms of conformational changes at atomic
resolution is very difficult experimentally and without
these details it is impossible to understand the crucial
chemistry they perform. On the other hand, computer
simulations may complement such experiments by pro-
viding dynamic information at an atomic level. With
powerful individual processors, or large distributed clus-
ters of processors, one can routinely generate large
quantities of simulation data for a given phenomenon
of interest. As a result, a growing challenge is how to
mine such massive data sets so as to gain insight into
the interesting biochemical phenomena under study.

To meet such a challenge, a lot of recent effort has
been devoted to constructing stochastic kinetic mod-
els, often in the form of discrete-state Markov mod-
els, from relatively short molecular dynamics simula-
tions [2]. In order to construct useful mathematical
models that can faithfully represent the molecular dy-
namics at the timescales of interest, it is often necessary
to decompose the conformational space into a set of ki-
netically metastable states, or clusters.

In this paper, we present a new method for the dis-
covery of kinetically metastable states that are gen-

∗Institute for Computational and Mathematical Engineering,
Stanford University, guc@stanford.edu
†Institute for Computational and Mathematical Engineering,

Stanford University, xiaoyej@stanford.edu
‡Department of Computer Science, Stanford University,

guibas@cs.stanford.edu

Figure 1: Two conformations which are geometrically
close but kinetically far away. Red dots and blue lines
denote atoms and bonds respectively.

erally applicable to solvated macromolecules. Given
molecular dynamics trajectories consisting of thousands
of molecular conformations, our algorithm can identify
the long lived, kinetically metastable states by cluster-
ing with respect to the kinetically-aware conformational
distances. Such distance functions encode both the ge-
ometry and kinetic information about molecular confor-
mations, which allow robust partitioning of the confor-
mational space into kinetically related regions.

2 Conformational distance measures

2.1 cRMS distance

In bioinformatics, a commonly used metric for estimat-
ing the distance between two molecules is the coordi-
nate root mean squared (cRMS) distance. Such a dis-
tance can be evaluated as the root mean squared de-
viation (RMSD) distance1 of the Cartesian coordinates
of heavy atoms in the molecules, optimally aligned by
a rigid body translation and rotation minimizing the
RMSD [6]. The cRMS distance is a popular choice
for biological computation because it possesses all the
qualities of a proper distance metric [9], which takes
account of both local similarities between molecule con-
formations and global ones. Moreover, the complexity
of estimating the cRMS distance is proportional to the
number of atoms, which makes it possible to compute
distances between large molecules quickly.

However, a key disadvantage of the cRMS distance
is that it ignores the kinetic deformation change from
one conformation to another. As illustrated in Figure 1,
each of the two conformations has two folded arms, yet
the orders that the arms overlap are different. Thus, the
two conformations are close geometrically, while they in-
deed differ greatly kinetically because the deformation
change from one to the other has to follow a long trajec-
tory without self-collision in the conformational space.
Therefore, it would be more appropriate if we can in-
corporate such kinetic information from trajectories into
the distance functions.

1The RMSD distance between two vectors x = (x1, . . . , xN)T ,

y = (y1, . . . , yN)T is
√∑N

i=1(xi − yi)2/N = ‖x− y‖2/
√
N .

CCCG 2011, Toronto ON, August 10–12, 2011

217

23rd Canadian Conference on Computational Geometry, 2011

j

j−1

j−3
j−4

j+3
j+4

j−2

j+1
j+2

AA

A
A

A
A

A

A i

i+1
i+2

i−1
i−2

i−3

i−4

i+3

B
B

B B

BB
B

B
B

Figure 2: An illustration of the delayed coordinates dis-
tance.

2.2 Kinetically-aware conformational distances

In this section, we propose two different kinetically-
aware conformational distance functions. The first dis-
tance function is defined using the delayed coordinates
of conformations which incorporate information of con-
formational changes at nearby timesteps. The second
distance function is given by the shortest path graph
distance, while such a graph is constructed based on
trajectory dynamics.

2.2.1 Delayed coordinates distance

To define the delayed coordinates distance between two
conformations, we examine their path context – a set of
conformations surrounding them in the trajectory where
they come from. Here we assume that the sampling is at
the same rate along all trajectories, and each conforma-
tion belongs to a unique trajectory in simulation. When
we compare two conformations Ai and Bj , we take
2h+1 samples around each conformation on their paths:
{Ai−h, . . . , Ai, . . . , Ai+h} and {Bj−h, . . . , Bj , . . . , Bj+h}
(h is a pre-given sample window size), and define the dis-
tance between Ai and Bj as a weighted average of the
cRMS distances between the corresponding samples:

D(Ai, Bj) =

h∑

`=−h
w`d(Ai+`, Bj+`) (1)

In (1), d(Ai+`, Bj+`) is the cRMS distance between
Ai+` and Bj+`, and all weights w`’s are non-negative. It
is easy to verify that the distances defined in (1) satisfy
the triangle inequality:

D(Ai, Bj) +D(Bj , Ck)

=
h∑

`=−h
w`d(Ai+`, Bj+`) +

h∑
`=−h

w`d(Bj+`, Ck+`)

=
h∑

`=−h
w`

(
d(Ai+`, Bj+`) + d(Bj+`, Ck+`)

)

≥
h∑

`=−h
w`d(Ai+`, Ck+`) = D(Ai, Ck).

Therefore, the above defined delayed coordinates dis-
tance is a valid metric.

As depicted in Figure 2, Ai and Bj are geometrically
very close in the conformational space, but they occur
on paths that pass through in very different ways. By
considering their path neighbors, we can better charac-
terize their distance because the nearby conformations
can help address the kinetic difference between them.

Notice that in (1), we need to compute the best align-
ment for each conformation pair in the sample win-

dow. Alternatively, we can optimize one alignment
jointly for all conformation pairs. Without loss of gen-
erality, we assume all conformations are centered at
the origin (after optimal translation). We map Ai
to A′i = [w−hAi−h, . . . , w0Ai, . . . , whAi+h]T and Bj to
B′j = [w−hBj−h, . . . , w0Bj , . . . , whBj+h]T , and define
D(Ai, Bj) as the cRMS distance between A′i and B′j ,
which is also a valid metric. The optimal alignment
(rotation) f between A′i and B′j will minimize the fol-
lowing objective function:

D2(Ai, Bj) = d2(A′i, B
′
j) = ‖f(A′i)−B′j‖22

=
h∑

`=−h
‖f(w`Ai+`)− w`Bj+`‖22

=
h∑

`=−h
‖w`f(Ai+`)− w`Bj+`‖22

=
h∑

`=−h
w2
`‖f(Ai+`)−Bj+`‖22 (2)

(ignoring the constant sacling factor 1/N in RMSD
definition). So, f gives the best alignment jointly for all
conformation pairs in the sample window.

2.2.2 Shortest path graph distance

Given a large number of relatively short conformational
trajectories, we can adapt the cRMS distance to reflect
the fact that successive conformations along a trajec-
tory should in some sense be closer to each other than
their cRMS distance represents, capturing the affinity
between the conformations implied by the physical pro-
cess generating the trajectory.

Since ultimately we deal with a discrete set of con-
formations, we can consider a large graph of all the
conformations along the generated trajectories as nodes
and add edges between all pairs with weights given by
their corresponding cRMS. To incorporate kinetic in-
formation into our distance function, for conformation
pairs that are neighbors along a trajectory, we reduce
their cRMS distance by multiplying a certain factor
0 < c < 1, so that conformations along a trajectory
are closer to each other than their static distances.

However, after discounting the cRMS distance for cer-
tain edges that correspond to conformations along the
same trajectory, these new weights may violate the tri-
angle inequality. To retain the metric property, we de-
fine the new distances as the lengths of shortest paths
in this graph connecting the two conformations in ques-
tion, which clearly define a metric.

The factor c controls the tradeoff between the static
cRMS distances and the kinetic information from tra-
jectories. When c = 1 , the distance function is purely
static; On the other hand, when c → 0, all conforma-
tions along a trajectory are arbitrarily close to each

j−h j−1 j+1j j+hB

A i−h

B BB B

i−1
A i

A A
i+1 i+h

A

Figure 3: Relation between two distance functions.

23rd Canadian Conference on Computational Geometry, 2011

218

CCCG 2011, Toronto ON, August 10–12, 2011

other. As a result, each trajectory becomes a cluster
itself. Thus, by varying the factor c, we can control
the relative amount of geometry and kinetic informa-
tion that are used in the new distance function.

2.2.3 Relation between two distance functions

Intuitively, these two distance functions represent two
different ways to incorporate kinetic information from
trajectoties: either penalize conformation pairs from
different trajectories, or maintain conformation pairs
along a same trajectory close to one another. In fact,
both of them can be viewed as graph distances (see Fig-
ure 3). In the delayed coordinates distance, we consider
a set of 2h+1 paths fromAi toBj : {Ai → . . .→ Ai+` →
Bj+` → . . .→ Bj}|h`=−h. Notice that d(Ai+`, Bj+`) can
be seen as the length of the path {Ai → . . .→ Ai+` →
Bj+` → . . . → Bj} with a discount factor c = 0, so

the delayed coordinates distance D
(1)
w,h(Ai, Bj) is equal

to the weighted average of these 2h+1 path lengths. In

contrast, the shortest path graph distance D
(2)
c (Ai, Bj)

is defined as the minimum path length among all possi-
ble paths from Ai to Bj in the complete graph. There-

fore, D
(1)
w,h(Ai, Bj) ≥

h∑
`=−h

w` ·D(2)
c=0(Ai, Bj).

3 Clustering massive data sets

3.1 k-center clustering

Due to the heterogeneous nature of many biological pro-
cesses at the molecular scale, we usually need a large
quantity of simulation data to mine in order to gain in-
sight into the fundamental biochemical phenomena un-
der study. To reach an understanding into the data
scientifically, one often needs to shrink the data sets by
applying a clustering algorithm to yield a family of clus-
ters (metastable states) of much smaller size than the
original data set. Since it is common for simulations
conducted on supercomupters to generate data sets that
contain 105−107 conformations in up to 104 trajectories,
we would prefer a clustering algorithm with computa-
tional complexity linear in the number of conformations.
In non-Euclidean space, a good candidate for clustering
such massive data sets is the k-center clustering.

The k-center problem originates from the facility lo-
cation problem, whose goal is to open k facilities centers
among n points such that every point is near some fa-
cility center. The problem is formulated as follows:

k-center problem: Given n demand points D in a met-
ric space, find k supply points S ⊆ D, such that the
maximum distance between a demand point p ∈ D and
its nearest supply point q ∈ S is minimized.

In the k-center problem, the goal is to find the opti-
mal value r = min

S
max
p∈D

min
q∈S
|p− q|, and to specify which

points should be chosen as centers to satisfy the con-
straints with that value of r. Notice that if we draw k
balls centered at these supply points with radius r, they
will cover all n demand points (see Figure 4). Therefore,

(a) (b)

Figure 4: k-center problem (a) and its equivalent for-
mulation (b).

the k-center problem can be equivalently formulated as
follows: Given n points D in a metric space, find k balls
of smallest radius centered at S ⊆ D which altogether
cover every point in D.

A basic fact about the k-center problem is that it is
NP-hard. Thus there is no efficient algorithm that al-
ways returns the optimal solution. However, there is
a simple greedy algorithm called farthest-first traversal
[3] that works fairly well in practice. The algorithm iter-
atively picks a new center farthest from the ones chosen
so far, and it returns a 2-approximation solution for the
k-center problem. In fact, it is not possible to achieve a
better approximation ratio for arbitrary metric spaces:
even getting a factor 2− ε for any ε > 0 is NP-hard [8].

Assuming we can fetch the distance between two
points in O(1) time, farthest-first traversal takes O(kn)
running time and O(n) working space. So, this algo-
rithm is good for clustering using delayed coordinates
distance. However, in the case of shortest path graph
distance, we cannot get the pairwise distance from the
graph in constant time. As a result, the running time
grows to O(kn2) since we need to run Dijkstra’s algo-
rithm to update the distances from every point to its
nearest center in each iteration. In scenarios when k is
also large (e.g., clustering all conformations into hun-
dreds of microstates), farthest-first traversal becomes
too slow. In the next section, we propose a new cluster-
ing algorithm using shortest path distances by consid-
ering a related variant problem of the k-center problem,
namely, the problem of computing covering numbers.

3.2 r-cover clustering

When we use the k-center clustering, a natural question
is how many clusters should we choose (especially for
the case when k is large)? As we have seen before,
when we cluster data, we implicitly compute the radius
r. If we choose a large number for k, then r should
be small. In contrast, when k is small, the returned
number r should be large. Therefore, it is equivalent
to ask how large is the radius we want for clustering?
From this observation, we transfer the original k-center
problem into a variant problem of computing covering
numbers, by swapping the input k and the output r .
r-covering number: Given n demand points D in a

metric space, an r-cover of D is a set of supply points
S ⊆ D such that every demand point p ∈ D is at most
distance r away from its nearest supply point q ∈ S.
The r-covering number of D is the size of its smallest

CCCG 2011, Toronto ON, August 10–12, 2011

219

23rd Canadian Conference on Computational Geometry, 2011

r-cover, i.e., N (D,r) = min
S
{|S| : max

p∈D
min
q∈S
|p− q| ≤ r}.

In the farthest-first traversal algorithm, we repeat-
edly choose a new center that is farthest from all previ-
ous centers, which costs O(n2) per iteration for shortest
path distances. The main problem here is that we spend
a lot of time to compute the real shortest path distances
between nodes that are very far from each other. How-
ever, by transforming the k-center problem into the r-
cover model, it is possible for us to combine Dijkstra’s
shortest path algorithm and clustering together (see Al-
gorithm 1).

In this r-cover clustering algorithm, we randomly
choose an uncovered node as a new center, and run Di-
jkstra’s algorithm to cover all nodes that are at most r
away from this new center. Recall that Dijkstra’s algo-
rithm finds the real shortest path distances for all nodes
in an increasing order. Once we find a node whose real
shortest path distance is greater than r from the source,
we can stop Dijkstra’s algorithm, because all the re-
maining nodes are outside this cluster and we do not
care about their real shortest path distances. Finally, if
a node is covered by multiple clusters, it will be assigned
to its nearest center at the end of this algorithm.

Let S be the r-cover returned by Algorithm 1. Then,
N (D, r) ≤ |S| ≤ N (D, r/2) because all centers in S are
more than r away from each other. Theoretically, this
may not be a good approximation for N (D, r), and the
design of a better approximation algorithm for covering
numbers is still an open problem [3]. However, our goal
here is not to compute covering numbers but use the
r-cover model for clustering. Moreover, we can adjust
the returned size |S| by varying the input radius r to
approximate the number of clusters we want. We will
discuss the running time of Algorithm 1 in Section 4.3.

4 Experiments

4.1 Test model - alanine dipeptide

We test our clustering algorithms using kinetically-
aware conformational distances on a simple model sys-
tem, terminally blocked alanine peptide (sequence Ace-
Ala-Nme) in explicit solvent. This data set covers both
thermodynamic simulations and kinetic simulations use-
ful for testing algorithms analyzing the biomolecular
systems, and has already been used in several research
papers before [2].

The trajectories were obtained from the 400K replica
of a 20ns/replica parallel tempering simulation, and
consisted of an equilibrium pool of 1, 000 constant-
energy, constant-volume trajectory segments 20ps in
length with conformations stored every 0.1ps. A small
population of the trajectories contained an ω peptide
bond in the cis state, rather than the typical trans state,
were removed from the set of trajectories used for anal-
ysis, leaving 975 trajectories with a total of 195, 000
conformations. The minimum cRMS distance between
conformation pairs is 3.54 × 10−2, and the maximum
cRMS distance between conformation pairs is 1.87.

Algorithm 1 r-cover clustering
Input: A complete graph G =< V,E > and a radius r.
Output: An r-cover of V , according to shortest path distances.
Procedure:
1) Initialize r-cover S = φ.
2) Assign to every node a label `(v) = ∞ (distance to its nearest
center).
3) Randomly pick an uncovered node s as a new center, S = S∪{s}.
4) Assign to every node a distance label: d(s) = 0 and d(v) = ∞
for all other nodes.
5) Mark all nodes as unvisited.
6) Extract node u with smallest d(u) among all unvisited nodes (if
all nodes are visited, go to step 12).
7) If d(u) > r, go to step 12.
8) If d(u) ≥ `(u), go to step 11.
9) Update `(u) = d(u) (assign node u into this new cluster).
10) Update d(v) = min{d(v), d(u) +w(u, v)} for all unvisited node
v.
11) Mark node u as visited, go to step 6.
12) If all nodes are covered, return S; otherwise, go to step 3.

Figure 5: The terminally blocked alanine dipeptide with
φ, ψ, ω backbone torsions are labeled on the left. Poten-
tial of mean force and state decompositions for alanine
dipeptide are labeled manually on the right. This pic-
ture is taken from [2].

In the protein backbone geometry, although there are
many degrees of freedom, many of these are not im-
portant and what really matters are only a few local
angles: the torsion angles φ and ψ (see Figure 5) are
the primary degrees of freedom on the backbone. Since
the slow degrees of freedom (φ and ψ) are known a pri-
ori, it is relatively straightforward to manually iden-
tify metastable states from examination of the poten-
tial of mean force, making it a popular choice for the
study of biomolecular dynamics. Previously, a master
equation model constructed using six manually identi-
fied states was shown to reproduce dynamics over long
times. We therefore determine whether our algorithms
can recover a model of equivalent utility to this manu-
ally constructed six-state decomposition for this system.
Because the algorithm uses the solute Cartesian coordi-
nates, rather than the (φ, ψ) torsions, this is a good test
of whether good approximations to the true metastable
states can be discovered without prior knowledge of the
slow degrees of freedom.

For ease of visualization, we still project the state
assignments onto the (φ, ψ) torsion map for compar-
ison with the manually constructed states. As de-
picted in Figure 5, a two-dimensional potential of mean
force at 400K in the (φ, ψ) backbone torsions was es-
timated from the parallel tempering simulation using
the weighted histogram analysis method by discretizing

23rd Canadian Conference on Computational Geometry, 2011

220

CCCG 2011, Toronto ON, August 10–12, 2011

Figure 6: Good manual state decompositions and
automatic state decompositions with their implied
timescales plots. This picture is taken from [2].

each degree of freedom into 10◦ bins. The six such states
identified in the previous study can be seen adequately
separate the free energy basins observed at 400K. In [2],
the authors designed an automatic state decomposition
algorithm using the method of splitting and lumping to
get a good clustering result (see Figure 6). We will take
these decompositions as our references of groundtruth
decomposition and compare the results from our algo-
rithms with them.

4.2 Clustering results

Among the six states in the manual state decomposi-
tions (see Figure 5), states 1 and 2 are the two densest
clusters. It is usually difficult to distinguish these two
states using the original cRMS distance, because they
are more kinetically distinct rather than structurally
distinct. States 3 and 4 are two large clusters that are
also difficult to be distinguished, but the internal kinetic
barrier separating them is smaller than the barrier sep-
arating states 1 and 2. The remaining two states 5 and
6 have much smaller sizes than states 1-4.

The clustering result using the cRMS distance is
shown in Figure 7-(1). It turns out that directly apply-
ing the cRMS metric will cluster states 1 and 2 together.
Thus, such a clustering result is a poor decomposition
because its states include internal kinetic barriers.

We first test the clustering quality of kinetically-aware
conformational distances using delayed coordinates. We
set the weights w` = exp(−λ|`|) which decay exponen-
tially around the center. When the window size h = 0,
the metric is simply cRMS. Figure 7-(2-4) shows the
clustering results with decay rate λ = 1 and window
sizes h = 2, 5, 10 respectively. We can see that as we
increase the window size, the conformations in states
1 and 2 become separated. For h = 10, the returned
six clusters are almost in the same locations as the
groundtruth (Figure 7-(4)). If we further increase the
window size h, the clustering result will not change too
much, because conformations that are far from the cen-
ter have small weights w` in the distance function (1).

Figure 7-(5,6) shows two more clustering results that
are close to the groundtruth decomposition with differ-
ent decay rates λ. In Figure 7-(5), the decay rate λ = 0

and sample window size h = 12, so all conformations in
the sample window are equally weighted. As a result,
the boundaries of the clustering result become ambigu-
ous as there are many outliers in the (φ, ψ) torsion map.
In Figure 7-(6), the decay rate λ = 0.5 and the sample
window size h = 12. By letting λ > 0, we can reduce
the number of outliers significantly.

We have also implemented the alternative approach
where we find only one transformation that jointly align
two series of conformations in the sample window. As
depicted in Figure 7-(7,8), we use decay rates and win-
dow sizes (λ = 0.5, h = 5) and (λ = 1, h = 5) respec-
tively. The clustering quality is also very close to the
groundtruth. Notice that the clustering results converge
faster in this case because the weights w` are squared
in the objective function (2).

We finally test the kinetically-aware conformational
distances using shortest paths (see Figure 7-(9-12)),
which use discount factors and radii (c = 0.9, r = 1.1),
(c = 0.8, r = 1.0), (c = 0.7, r = 1.0) and (c = 0.5, r =
0.9) respectively. We can see that as we decrease the
discount factor c, more kinetic information is incorpo-
rated into the distance function, and thus the conforma-
tions in states 1 and 2 become separated. For c = 0.7,
the clustering quality is closest to the groundtruth (Fig-
ure 7-(11)). When the discount factor c is too small,
conformations from the same trajectory are more likely
to be clustered together, while in this case we will
observe that the conformations in states 3 and 4 are
merged into a single cluster (Figure 7-(12)).

For validation, we examine the implied timescales as
a function of lag time (τ), as computed from the eigen-
values of the transition matrix [5]. Theoretically, if the
model is Markovian, then the implied timescales will be
independent of the lag time for large τ . Figure 8 shows
the estimated implied timescales (in picoseconds) as a
function of lag time for good decompotitions in Fig-
ure 7-(4), (6), (7), (8) and (11) respectively, indicating
that they can reproduce dynamics over long times.

4.3 Running time analysis

In this section, we investigate the running time of
our clustering algorithms. For k-center clustering,
the farthest-first traversal algorithm takes O(kn) time,
which is fairly efficient. For r-cover clustering, we set
the discount factor c = 0.8 and generate clusters of dif-
ferent sizes by varying the input radius r. The empirical
runtime of Algorithm 1 is shown in Table 1. Such an ex-
periment is performed on a computer cluster with AMD
Opteron(tm) Processor 250 and 16GB Memory. When
r →∞, the r-cover contains only one node, so the run-

Radius r 0 0.10 0.15 0.20 0.25
Size of r-cover 195,000 42,479 4,826 1,042 377
Runtime (hour) 24.9 63.3 142.3 81.7 109.4

Radius r 0.30 0.40 0.50 1.00 2.00
Size of r-cover 180 67 33 6 1
Runtime (hour) 88.1 65.6 67.9 53.3 24.5

Table 1: Running time of r-cover clustering algorithm.

CCCG 2011, Toronto ON, August 10–12, 2011

221

23rd Canadian Conference on Computational Geometry, 2011

(1) (2) (3) (4) (5) (6)

(7) (8) (9) (10) (11) (12)

Figure 7: Clustering results with kinetically-aware conformational distances.

0 2 4 6 8 10
0

5

10

15

20

lag time τ (ps)

τ k (
ps

)

Q=5.4516

0 2 4 6 8 10
0

5

10

15

20

lag time τ (ps)

τ k (
ps

)

Q=5.6073

0 2 4 6 8 10
0

5

10

15

20

lag time τ (ps)

τ k (
ps

)
Q=5.6411

0 2 4 6 8 10
0

5

10

15

20

lag time τ (ps)

τ k (
ps

)

Q=4.9655

0 2 4 6 8 10
0

5

10

15

20

lag time τ (ps)

τ k (
ps

)

Q=5.1636

(a) Fig 7-(4) (b) Fig 7-(6) (c) Fig 7-(7) (d) Fig 7-(8) (e) Fig 7-(11)

Figure 8: Implied timescales as a function of lag time. The metastability Q is the sum of the self-transition proba-
bilities of the Markov transition matrix.

ning time is Θ(n2) by running Dijkstra’s algorithm once
in a complete graph. As we decrease the radius r, the
size of r-cover increases, but we can save more running
time from Dijkstra’s algorithm because we will never
compute the real shortest path distances between nodes
that are greater than r. Finally, when r = 0, the r-
cover contains all nodes in the graph, so we only relax
one node (the source) in each Dijkstra’s computation,
and the total running time is also Θ(n2).

For 0 < r < ∞, the running time is Ω(n2) since all
nodes in the graph are covered, and it would be larger
than those two extreme cases because there exists over-
lap between different clusters. However, the experimen-
tal results in Table 1 show that Algorithm 1 usually runs
in O(n2) time in practice, which is significantly faster
than farthest-first traversal for large k.

5 Conclusions and future work

In this paper, we designed and tested algorithms that
use kinetically-aware distances to cluster biomolecular
conformations. The proposed approach outperforms the
existing methods that only use geometric information
within biomolecules to build distance functions. The
shortest path graph distance is of particular interest for
constructing metric spaces on a discrete point set: Once
we have a distance funciton, we need to check whether
it satisfes the triangle inequality. If not, we can always
form a new metric by using shortest path graph dis-
tances. Therefore, it would be interesting to derive a
theoretical upper bound on the expected running time
of Algorithm 1, or develop other efficient algorithms for
clustering using shortest path distances. This would be
a topic for our future research.

Acknowledgments

This research was supported by NSF grant IIS 0914833,

NSF/NIH grant 0900700, as well as ARO grant W911NF-10-

1-0037. The authors wish to thank Xuhui Huang and Lutz

Maibaum for their helpful comments and suggestions.

References

[1] P. Brion and E. Westhof. Hierarchy and dynamics
of RNA folding. Annual review of biophysics and
biomolecular structure, 26, 1997.

[2] J. Chodera, N. Singhal, V. Pande, K. Dill, and W.
Swope. Automatic discovery of metastable states for
the construction of Markov models of macromolecular
conformational dynamics. Journal of Chemical Physics,
126(15), 2007.

[3] S. Dasgupta. Lecture notes on unsupervised learning.
http://cseweb.ucsd.edu/∼dasgupta/291/, 2008.

[4] C. Dobson. Protein folding and misfolding. Nature,
426(6968), 2003.

[5] X. Huang, Y. Yao, G. Bowman, J. Sun, L. Guibas, G.
Carlsson, and V. Pande. Constructing multi-resolution
Markov state models to elucidate RNA hairpin fold-
ing mechanisms. Pacific Symposium on Biocomputing,
2010.

[6] L. Kavraki. Molecular distance measures. Connexions,
http://cnx.org/content/m11608/1.23/, 2007.

[7] R. Marshall, C. Aitken, M. Dorywalska, and J. Puglisi.
Translation at the single-molecule level. Annual Review
of Biochemistry, 77, 2008.

[8] S. Plotkin. Lecture notes on advanced algorithms.
http://cs361b.stanford.edu/, 2010.

[9] B. Steipe. A revised proof of the metric properties of op-
timally superimposed vector sets. Acta Crystallograph-
ica Section A, 58(5), 2002.

23rd Canadian Conference on Computational Geometry, 2011

222

CCCG 2011, Toronto ON, August 10–12, 2011

Collinearities in Kinetic Point Sets

Ben D. Lund∗ George B. Purdy† Justin W. Smith‡ Csaba D. Tóth§

Abstract

Let P be a set of n points in the plane, each point
moving along a given trajectory. A k-collinearity is a
pair (L, t) of a line L and a time t such that L contains
at least k points at time t, L is spanned by the points at
time t (i.e., the points along L are not all coincident),
and not all of the points are collinear at all times. We
show that, if the points move with constant velocity,
then the number of 3-collinearities is at most 2

(
n
3

)
, and

this bound is tight. There are n points having Ω(n3/k4+
n2/k2) distinct k-collinearities. Thus, the number of k-
collinearities among n points, for constant k, is O(n3),
and this bound is asymptotically tight. In addition,
there are n points, moving in pairwise distinct directions
with different speeds, such that no three points are ever
collinear.

1 Introduction

Geometric computation of moving objects is often sup-
ported by kinetic data structures (KDS), introduced by
Basch, Guibas and Hershberger [1, 5]. The combinato-
rial structure of a configuration is described by a set of
certificates, each of which is an algebraic relation over
a constant number of points. The data structure is up-
dated only if a certificates fails. A key parameter of a
KDS is the maximum total number of certificate fail-
ures over all possible simple motions of n objects. For
typical tessellations (e.g., triangulations [8] or pseudo-
triangulation [10]) or moving points in the plane, a basic
certificate is the orientation of a triplet of points, which
changes only if the three points are collinear.

We are interested in the maximum and minimum
number of collinearities among n kinetic points in the
plane, each of which moves with constant velocity. Ve-
locity is speed and direction combined. A k-collinearity
is a pair (L, t) of a line L and a time t such that L con-
tains at least k points at time t, the points along L do
not all coincide, and not all of them are collinear at all

∗lund.ben@gmail.com. Department of Computer Science, Uni-
versity of Cincinnati, Cincinnati, OH 45221, USA.
†george.purdy@uc.edu. Department of Computer Science,

University of Cincinnati, Cincinnati, OH 45221, USA.
‡smith5jw@mail.uc.edu. Department of Computer Science,

University of Cincinnati, Cincinnati, OH 45221, USA.
§cdtoth@ucalgary.ca. Department of Mathematics and Statis-

tics, University of Calgary, Calgary, AB, Canada.

times. The last two conditions help to discard a contin-
uum of trivial collinearities: we are not interested in k
points that coincide, or are always collinear (e.g. if they
move with the same velocity).

Results. The maximum number of 3-collinearities
among n kinetic points in the plane, each moving with
constant velocity, is 2

(
n
3

)
. In particular, if three points

are not always collinear, then they become collinear at
most twice. Moreover, the maximum is attained for
a kinetic point set where no three points are always
collinear. We also show that, for constant k, the number
of k-collinearities is O(n3), and this bound is asymptoti-
cally tight. In the lower bound construction, the number
of k-collinearities is Ω(n3/k4 +n2/k2) such that at each
k-collinearity at most dk/2e of the points are always
collinear.

The minimum number of collinearities among n ki-
netic points in the plane is obviously 0. Consider, for
example, n points in general position that have the same
velocity. We construct n kinetic points that move with
pairwise distinct speeds in different directions, and yet
they admit no 3-collinearities.

Preliminaries. We assume an infinite time frame
(−∞,∞). The motion of a point p in Rd can be repre-
sented by its trajectory in Rd+1, where the last (“ver-
tical”) dimension is time. If a point p moves with con-
stant velocity in Rd, its trajectory is a nonhorizontal
line Lp ⊂ Rd+1. Every algebraic condition on kinetic
points in Rd has an equivalent formulation in terms of
their trajectories in Rd+1. We use both representations
throughout this paper.

Related previous results. Previous research primar-
ily focused on collisions. Two kinetic points p, q ∈ Rd
collide if and only if their trajectories Lp, Lq ⊂ Rd+1

intersect. A k-collision is a pair (P, t) of a point P ∈ Rd
and a time t such that at least k kinetic points meet at P
at time t, but not all these points are always coincident.
It is easy to see that for n points in R1, each mov-
ing with constant velocity, the number of 2-collisions is
at most

(
n
2

)
, and this bound is tight. The number of

k-collisions in R1 is O(n2/k3 + n/k), and this bound
is also the best possible, due to the Szemerédi-Trotter
theorem [12].

Without additional constraints, the bounds for the
number of collisions remains the same in Rd for every
d ≥ 1, since the points may be collinear at all times.
Sharir and Feldman [11, 4] considered the number of

CCCG 2011, Toronto ON, August 10–12, 2011

223

23rd Canadian Conference on Computational Geometry, 2011

3-collisions in the plane among points that are not al-
ways collinear. The trajectories of such a 3-collision
form a so-called “joint” in 3-space. Formally, in an ar-
rangement of n lines in Rd+1, a joint is a point incident
to at least d + 1 lines, not all of which lie in a hyper-
plane. Recently, Guth and Katz [6] proved that n lines
in R3 determine O(n3/2) joints. Their proof was later
generalized and simplified [3, 9]: n lines in Rd+1 de-
termine O(n(d+1)/d) joints. These bounds are the best
possible, since Θ(n(d+1)/d) joints can be realized by n
axis-parallel lines arranged in a grid-like fashion in Rd.
However no nontrivial bound is known for the number
of joints under the additional constraint that no d lines
lie in a hyperplane.

A k-collinearity is the natural generalization of a k-
collision in dimensions d ≥ 2. It is easy to give a Θ(n3)
bound on the maximum number of 3-collinearities in
the plane, since three random points, with random ve-
locities, form Θ(1) collinearities in expectation. How-
ever, a 4-collinearity assumes an algebraic constraint
on the trajectories of the 4 kinetic points. Here we
present initial results about a new concept, including
tight bounds on the number of 3-collinearities in the
plane, and asymptotically tight bounds on the number
of k-collinearities in the plane, for constant k.

Organization. We present our results for the maxi-
mum number of 3- and k-collinearities in Section 2. We
construct a kinetic point set with no collinearities in Sec-
tion 3 and conclude with open problems in Section 4.

2 Upper bound for 3-collinearities

Given any two kinetic points a and b in the plane, denote
by Sa,b the set of point-time pairs in R3 that form a 3-
collinearity with a and b. This will be the set of all
horizontal lines that intersect both La and Lb. We can
find the times at which a third point, c, is collinear
with a and b by characterizing the set Lc ∩ Sa,b. In
particular, the cardinality of Lc ∩ Sa,b is the number of
3-collinearities formed by these three points.

The first issue is to characterize the set Sa,b. For this
purpose, we will use a classical geometric result.

Lemma 1 (14.4.6 from [2]) Let La and Lb be dis-
joint lines in a three-dimensional Euclidean affine space,
and let a and b be points moving along La and Lb with
constant speed. The affine line through a and b describes
a hyperbolic paraboloid as t ranges from −∞ to ∞.

This is a special case of a construction that produces
a hyperboloid of one sheet or a hyperbolic paraboloid
from three skew lines [7, p. 15]. Given three skew lines,
the union of all lines that intersect all three given lines
is a doubly ruled surface. If the three given lines are all
parallel to some plane, the surface will be a hyperbolic

paraboloid; otherwise, the surface will be a hyperboloid
of a single sheet.

Given two kinetic points a and b moving at constant
velocity, we can arbitrarily choose three horizontal lines
that intersect La and Lb to use with the above con-
struction. Since horizontal lines are parallel to a hori-
zontal plane, the resulting surface will be a hyperbolic
paraboloid.

This characterizes Sa,b in the case that La and Lb are
skew. It remains to extend the characterization to the
cases that a and b collide or have the same speed and
direction.

Lemma 2 Given two kinetic points, a and b, each mov-
ing with constant velocity, there are three possibilities for
Sa,b.

1. If a and b have the same direction and speed, then
Sa,b is a non-horizontal plane.

2. If a and b collide, then Sa,b is the union of a hori-
zontal and a non-horizontal plane.

3. Otherwise, Sa,b is a hyperbolic paraboloid.

Proof. If La and Lb intersect or are parallel, then there
is a unique plane Π that contains both La and Lb. Since
neither La nor Lb is horizontal, Π is not horizontal.
Every point in Π belongs to the union of all horizontal
lines containing a point from each of La and Lb.

Since two non-coincident points span a unique line
and the intersection of Π with a horizontal plane is a
line, if La and Lb are parallel, then Sa,b = Π. This
covers the case that a and b have the same direction
and speed.

If La and Lb intersect, then every point in the hori-
zontal plane Π′ containing the intersection point La∩Lb
is on a horizontal line containing a point from each of
La and Lb. In this case, Sa,b = Π ∪Π′. This covers the
case that a and b collide.

If La and Lb are skew, Lemma 1 implies that Sa,b is a
hyperbolic paraboloid. This covers the generic case. �

Lemma 3 Three points in the plane, each moving with
constant velocity, will either be always collinear or
collinear at no more than two distinct times.

Proof. Label the points a, b, and c. By lemma 2, Sa,b
is a plane, the union of two planes, or a hyperbolic
paraboloid. Every time Lc intersects Sa,b, the points
a, b, and c are collinear. Since a plane is a surface of
degree 1 and a hyperbolic paraboloid is a surface of de-
gree 2, Lc cannot intersect Sa,b more than twice without
being contained in Sa,b. �

Theorem 4 A set of n points in the plane, each moving
with constant speed and direction, determines no more
than 2

(
n
3

)
3-collinearities.

23rd Canadian Conference on Computational Geometry, 2011

224

CCCG 2011, Toronto ON, August 10–12, 2011

Proof. There are
(
n
3

)
subsets of 3 points, each of which

forms at most two 3-collinearities. �

Clearly, this bound applies directly to k-collinearities,
for any k ≥ 3. If no three points are always collinear,
this bound can easily be improved for k > 3.

Theorem 5 A set of n points in the plane, each moving
with constant speed and direction, and no three of which
are always collinear, determines no more than 2

(
n
3

)
/
(
k
3

)

k-collinearities.

Proof. By Theorem 4, there are at most 2
(
n
3

)
sets of

3 instantaneously collinear points. A k-collinearity ac-
counts for at least

(
k
3

)
distinct sets of 3 instantaneously

collinear points. �

2.1 The 2
(
n
3

)
bound is tight for 3-collinearities

Theorem 6 Theorem 4 is tight for the case k = 3.

Proof. We construct a set of n kinetic points, no three
always collinear, such that they admit exactly 2

(
n
3

)
3-

collinearities.
Let the points be {p1, p2, ..., pn}. Each point moves

with speed 1. The direction of motion of point pi forms
an angle of θi = 3π/2+π/(4i) with the positive x direc-
tion. At time t = 0, each point is on a circle of radius 1
centered at (−1, 1), and positioned so that its direction
of travel will cause it to cross the origin at some later
time. Since two locations on the circle might satisfy this
property, we choose the one closer to the origin (Fig. 1).

p1

p2 ·
· ·

Figure 1: A set of kinetic points forming 2
(
n
3

)
three

point lines over the time interval (−∞,∞), at time 0.

At time t = 0, no three points are collinear, so no
triplet of points is always collinear. Choose any three
elements from {p1, p2, ..., pn}, say pj , pk, and pl, such
that j > k > l, so θj < θk < θl. We will show that
these points are collinear at two distinct times.

Let HL and HR denote the left and right halfplanes,
respectively, determined by the directed line pjpl. Let
C be a closed curve passing through pj , pk, and pl such
that it crosses line pjpl at pj and pl only. We can de-
termine which half-plane contains pk from the cyclic or-
der of the three points on C. If the clockwise order
is (pj , pk, pl), then pk ∈ HL; if the clockwise order is
(pj , pl, pk), then pk ∈ HR.

At time 0, the points are distributed on the circle of
radius 1 with center (−1, 1), and the clockwise order
of the chosen points on this circle is (pj , pk, pl). Thus,
pk ∈ HL.

Let ci be the distance between pi and the origin at
time 0. Since all points are initially moving toward the
origin at a speed of 1, the distance between pi and the
origin is |ci − t| at time t.

We now establish that pk is in HR for |t| � 1. If
t � 1, all of the points {p1, p2, ..., pn} will lie approx-
imately on a circle of radius t centered at the origin.
The clockwise order of the points on a convex curve ap-
proximating this circle will be (pj , pl, pk), and pk ∈ HR.
Likewise, when t� −1 the points will be approximately
on a circle of radius |t| (but at points antipodal to those
when t � 1), and the order will be (pj , pl, pk) with
pk ∈ HR. Figure 2 depicts the configuration for t� 1.

p1

p2· · ·

Figure 2: A set of kinetic points forming 2
(
n
3

)
three

point lines over the time interval (−∞,∞), at time� 1.

Since pk alternates from HR to HL and back to HR

as t goes from negative to positive infinity, there must
exist times t′ and t′′ at which the three points are
collinear. �

The above construction is degenerate in the sense that
the paths of the points are all concurrent through the
origin. Note that our argument is not sensitive to a
small perturbation in the location or the direction of
the points. The direction of motion of each point may

CCCG 2011, Toronto ON, August 10–12, 2011

225

23rd Canadian Conference on Computational Geometry, 2011

be perturbed so that the trajectories are in general po-
sition.

Additionally, the construction may be altered so that
the points travel at different speeds. If the speeds of
{p1, p2, ..., pn} are not all the same, then the points
will not approach a circle as |t| approaches ∞. How-
ever, as long as no three points are always collinear and
the points approach some closed convex curve as |t| ap-
proaches infinity, the arguments used will remain valid.
For example, if the speed of point pi is 1/(1−cos(θi)/2),
then for |t| � 1, the points will be approximately dis-
tributed on an ellipse enclosing the origin. This en-
sures that any three points will be collinear at two dis-
tinct times, so the set of n points will have 2

(
n
3

)
3-

collinearities.

2.2 The O(n3) bound is tight for fixed k

By Theorem 4, n kinetic points moving with constant
velocities determine O(n3) k-collinearities. Here for all
integers n ≥ k ≥ 3, we construct a set of n kinetic points
that determines Ω(n3/k4 + n2/k2) k-collinearities.

First assume that n ≥ k2. We construct n kinetic
points with Ω(n3/k4) k-collinearities. The points will
move on two parallel lines L1 : x = 0 and L2 : x = 1
in varying speeds. A simultaneous bk/2c-collision on L1

and a dk/2e-collision on L2 will define a k-collinearity.
Without loss of generality we may assume that

n is a multiple of k. Let {A1, A2, ..., Abk/2c} and
{B1, B2, ..., Bdk/2e} be sets of n/k points each. At time
0, let

Ai = {ai,j = (0, j) : j = 1, ..., n/k} for 1 ≤ i ≤ bk/2c,
Bi = {bi,j = (1, j) : j = 1, ..., n/k} for 1 ≤ j ≤ dk/2e.

All points move in direction (0, 1). The points in A =⋃bk/2c
i=1 Ai are always in line x = 0, and the point in

B =
⋃dk/2e
i=1 Bi are always in line x = 1. Let the speed

of every point in Ai or Bi be i − 1. For example, each
point in set A1 has speed 0.

At each time t ∈ {0, 1, ..., n/(kbk/2c)}, there are
(n/k − (k − 1)t) bk/2c-way collisions among points in
A and (n/k − (k − 1)t) dk/2e-way collisions among
points in B. Each line connecting a bk/2c-collision
among points in A and a dk/2e-collision among points
in B is a k-collinearity. Thus, at each time t ∈
{0, 1, ..., n/(kbk/2c)}, there are (n/k − (k − 1)t)2 dis-
tinct k-collinearities. Taking the sum, the number of
k-collinearities over t = [0,∞) is

n/(kbk/2c)∑

t=0

(n/k − (k − 1)t)2 ≥
n/(kbk/2c)∑

t=0

(k − 1)2t2

≥ (k − 1)2
n/(kbk/2c)∑

t=0

t2

= Ω(n3/k4).

Now assume that k ≤ n < k2. We construct n kinetic
points with Ω(n2/k2) k-collinearities. The n points are
partitioned into subsets, A1, A2, . . . , Abn/kc, each of size
at least dk/2e. The points in each subset have a single
dk/2e-collision at time 0, at points in general position in
the plane. Any line between two dk/2e-collisions is a k-
collinearity. Hence there are k-collinearities is Ω(n2/k2).

3 Kinetic point sets with no collinearities

It is clearly possible to have no 3-collinearities among n
kinetic points if the points move with the same direc-
tion and speed—this is simply a set of relatively static
points, no three of which are collinear. Similarly, if we
are only interested in collinearities in the time interval
(0,∞), it is clearly possible to have no collinearities—
any set of kinetic points will have a final 3-collinearity.

Less obviously, we can construct n kinetic points, any
two of which have different direction and speed, that ad-
mit no 3-collinearities over the time interval (−∞,∞).

Theorem 7 For every integer n ≥ 1, there is a set of n
points in the plane, each moving with constant speed and
direction, no two of the points having the same speed or
direction, such that no three points are collinear over
the time interval (−∞,∞).

Proof. We will start by constructing a set of kinetic
points with no 3-collinearities, having different direc-
tions but the same speed. Then, we will modify the con-
struction so that the points move with different speeds.

For 1 ≤ i ≤ n, let θi = π/2 + π/2i. At time 0, place
point pi at a distance of 1 from the origin at an angle of
θi from the positive x direction. Each point moves with
speed 1 in the direction θi − π/2, tangent to the circle
containing the points (see Fig. 3).

p1

p2
· · ·

Figure 3: A set of points, each moving at speed 1, of
which no three are ever collinear.

By this construction, the lines L(pi) will be from one
ruling of a hyperboloid of a single sheet S [7]. The
intersection of any horizontal plane with S will be a

23rd Canadian Conference on Computational Geometry, 2011

226

CCCG 2011, Toronto ON, August 10–12, 2011

circle. Since no line intersects a circle in more than two
points, there will never be three points on any line.

In order to modify this construction so that no two
points have the same speed, we will stretch it in the
x-direction.

For 1 ≤ i ≤ n, if pi is at location (xi, yi) at time 0,
then place point p′i at location (2xi, yi). If the velocity
vector of pi is (v(x,i), v(y,i)), then the velocity vector of
p′i is (2v(x,i), v(y,i)) (see Fig. 4).

p1

p2 · · ·

Figure 4: A set of points, no two moving at the same
speed, of which no three are ever collinear.

Since no two points pi, pj ∈ {p1, p2, ..., pn} have the
same x component to the vector describing their mo-
tion, no two points p′i, p

′
j ∈ {p1, p2, ..., pn} have the same

speed.
The lines Lp′i are from one ruling of a hyperboloid of a

single sheet S′. The main difference between S and S′ is
that S′ is stretched in the x-direction, so the intersection
of any horizontal plane with S′ is an ellipse rather than
a circle. No line intersects an ellipse in more than two
points, so again there will never be three points on any
line. �

4 Conclusion

We derived tight bounds on the minimum and maximum
number of 3- and k-collinearities among n kinetic points,
each moving with constant velocity in the plane. Our
initial study poses more questions than it answers.

Open Problem 1 What is the maximum number of k-
collinearities among n kinetic points in the plane? Is
our lower bound Ω(n3/k4 + n2/k2) tight?

Open Problem 2 What is the maximum number of k-
collinearities among n kinetic points in the plane if no
three points are always collinear and no two points col-
lide?

Open Problem 3 What is the maximum number of 3-
collinearities among n kinetic points in the plane if the
trajectory of each point is an algebraic curve of degree
bounded by a constant b?

Open Problem 4 A d-collinearity in Rd is called full-
dimensional if not all points involved in the collinearity

are in a hyperplane at all times. What is the maximum
number of full-dimensional d-collinearities among n ki-
netic points in Rd?

The trajectories of n kinetic points in Rd is an ar-
rangement of n nonhorizontal lines in Rd+1. Recall that
a k-collinearity corresponds to a horizontal line that in-
tersects k trajectories. If we drop the restriction to hor-
izontal lines, we are led to the following problem.

Open Problem 5 For an arrangement A of n lines
in R3, what is the maximum number of lines L such
that L intersects at least 3 lines in A, which are not all
concurrent and not all from a single ruling of a doubly
ruled surface?

References

[1] J. Basch, L. J. Guibas, and J. Hershberger. Data struc-
tures for mobile data. Journal of Algorithms, 31:1–28,
1999.

[2] M. Berger. Geometry. II. Universitext. Springer-
Verlag, Berlin, 1987. Translated from the French by
M. Cole and S. Levy.

[3] G. Elekes, H. Kaplan, and M. Sharir. On lines, joints,
and incidences in three dimensions. J. Comb. Theory,
Ser. A, 118(3):962–977, 2011.

[4] S. Feldman and M. Sharir. An improved bound for
joints in arrangements of lines in space. Discrete &
Computational Geometry, 33(2):307–320, 2005.

[5] L. Guibas. Kinetic data structures. In D. Mehta and
S. Sahni, editors, Handbook of Data Structures and Ap-
plications, pages 23–1–23–18. Chapman and Hall/CRC,
2004.

[6] L. Guth and N. H. Katz. Algebraic methods in dis-
crete analogues of the kakeya problem. Adv. in Math.,
225:2828–2839, 2010.

[7] D. Hilbert and S. Cohn-Vossen. Geometry and the
imagination. Chelsea Publishing Company, New York,
NY, 1952. Translated by P. Neményi.

[8] H. Kaplan, N. Rubin, and M. Sharir. A kinetic triangu-
lation scheme for moving points in the plane. Comput.
Geom., 44(4):191–205, 2011.

[9] H. Kaplan, M. Sharir, and E. Shustin. On lines and
joints. Discrete & Computational Geometry, 44(4):838–
843, 2010.

[10] D. G. Kirkpatrick and B. Speckmann. Kinetic mainte-
nance of context-sensitive hierarchical representations
for disjoint simple polygons. In Sympos. on Comput.
Geom., pages 179–188. ACM Press, 2002.

[11] M. Sharir. On joints in arrangements of lines in
space and related problems. J. Comb. Theory, Ser. A,
67(1):89–99, 1994.

[12] E. Szemerédi and W. T. Trotter, Jr. Extremal problems
in discrete geometry. Combinatorica, 3(3-4):381–392,
1983.

CCCG 2011, Toronto ON, August 10–12, 2011

227

23rd Canadian Conference on Computational Geometry, 2011

228

CCCG 2011, Toronto ON, August 10–12, 2011

Convexifying Polygons Without Losing Visibilities

Oswin Aichholzer∗ Greg Aloupis† Erik D. Demaine‡ Martin L. Demaine‡ Vida Dujmović§

Ferran Hurtado¶ Anna Lubiw‖ Günter Rote∗∗ André Schulz†† Diane L. Souvaine‡‡

Andrew Winslow‡‡

Abstract

We show that any simple n-vertex polygon can be made
convex, without losing internal visibilities between ver-
tices, using n moves. Each move translates a vertex of
the current polygon along an edge to a neighbouring
vertex. In general, a vertex of the current polygon rep-
resents a set of vertices of the original polygon that have
become co-incident.

We also show how to modify the method so that ver-
tices become very close but not co-incident, in which
case we need O(n2) moves, where each move translates
a single vertex.

The proof involves a new visibility property of poly-
gons, namely that every simple polygon has a visibility-
increasing edge where, as a point travels from one end-
point of the edge to the other, the visibility region of
the point increases.

1 Introduction

There are many interesting problems about reconfigur-
ing geometric structures while maintaining some proper-
ties. Examples include: flips in triangulations [5], push-
ing and sliding block puzzles [17], morphing of poly-
gons and planar graphs [18, 21], and linkage reconfig-

∗Institute for Software Technology, University of Technology
Graz, Austria, oaich@ist.tugraz.at. Partially supported by the
FWF under grant S9205-N12 NRN Industrial Geoemtry.
†Département d’Informatique, Université Libre de Bruxelles,

aloupis.greg@gmail.com
‡MIT Computer Science and Artificial Intelligence Labora-

tory, 32 Vassar St., Cambridge, MA 02139, USA, {edemaine,

mdemaine}@mit.edu
§School of Computer Science, Carleton University,

vida@scs.carleton.ca
¶Departament de Matemàtica Aplicada II, Universitat

Politècnica de Catalunya, ferran.hurtado@upc.edu. Par-
tially supported by projects MICINN MTM2009-07242 and
Gen. Cat. DGR 2009SGR1040
‖School of Computer Science, University of Waterloo,

alubiw@uwaterloo.ca
∗∗Institut für Informatik, Freie Universität Berlin, Taku-

straße 9, 14195 Berlin, Germany. rote@inf.fu-berlin.de
††Institut für Mathematische Logik und Grundlagenforschung,

Universität Münster, Germany, andre.schulz@uni-muenster.de
‡‡Department of Computer Science, Tufts University, {dls,

awinslow}@cs.tufts.edu. Research supported in part by NSF
grants CCF-0830734 and CBET-0941538.

uration [7, 23]. Reconfiguration has also been studied
outside the geometric domain [19].

This paper is about convexifying a simple polygon,
i.e., continuously transforming the polygon to a con-
vex polygon while maintaining simplicity. If no other
structure must be maintained, this can be done in a
trivial way, moving only one vertex at a time. When
edge lengths must be maintained, this is a major re-
sult, namely the Carpenter’s Rule Theorem [7, 23], and
the reconfiguration process involves moving all vertices
simultaneously.

In the Open Problem session at CCCG 2008 [11],
Satyan Devadoss asked whether a polygon can be con-
vexified without losing internal visibility between any
pair of vertices, and in particular, whether this can be
done by moving only one vertex at a time [12]. We give a
positive answer. We first consider a version of the prob-
lem where vertices may become co-incident during the
transformation, so one vertex of the polygon in general
represents a set of vertices of the original polygon. We
show that any polygon can be convexified by a sequence
of n moves, where each move strictly increases the set
of pairs of vertices that are internally visible, and each
move translates one vertex along an edge of the polygon
to a neighbour. In terms of the original polygon, each
move translates a set of vertices along a straight line to
join another set of vertices.

In Section 3 we modify our method so that vertices
become very close but not coincident. In this case, we
need O(n2) moves, each moving one vertex. Internal
vertex visibilities are never lost, but a single move does
not necessarily add any internal vertex visibilities.

Our main tool, which may be of independent interest,
is to show that every polygon has a visibility-increasing
edge where, as a point travels from one endpoint of the
edge to the other, the visibility region of the point in-
creases.

Previous Work

In the original model where coincident vertices are not
allowed, Aichholzer et al. [2] showed that any monotone
polygon can be convexified without losing vertex vis-
ibilities. Their transformation moves one vertex at a
time, but the number of vertex moves is not polynomi-
ally bounded. If all vertices may move simultaneously,

CCCG 2011, Toronto ON, August 10–12, 2011

229

23rd Canadian Conference on Computational Geometry, 2011

they observe that a monotone polygon can be convexi-
fied in one move. They also show that, even for mono-
tone polygons, it is not always possible to move just
one vertex and strictly increase the set of vertex visibil-
ities. Note that such an example depends crucially on
prohibiting coincident vertices! If vertices are allowed
to be coincident, our result shows that for any simple
polygon, it is possible to move one vertex until it gains
a new neighbour in the visibility graph.

The issue of allowing/disallowing coincident vertices
has arisen before in problems of transforming (or “mor-
phing”) polygons and straight-line graph drawings.
Cairns [6] showed how to transform between any two
straight-line planar triangulations that are combinato-
rially the same, using a sequence of moves each of which
translates one vertex onto another (or the reverse). He
then comments that it is possible to avoid coincident
vertices by keeping them a small distance apart. A
somewhat similar issue comes up in the result of Guibas
and Hershberger [16] who show that for any two simple
polygons on vertices 1, 2, . . . , n such that edge (i, i+ 1)
has the same direction vector in both polygons, there is
a morph between the polygons that preserves simplicity
and the direction vectors of edges. Their method moves
vertices infinitesimally close together and operates on
the infinitesimal structures.

The question of moving only one vertex at a time has
recently been settled in independent work by Ábrego et
al. [1], who show that if a there is a transformation that
convexifies a polygon without losing vertex visibilities,
then the transformation can be accomplished by moving
only one vertex at a time.

Although not directly relevant to this paper, we note
that there is a considerable body of work on making
polygons convex by means of “pivot” operations, such
as flips [13, 8, 15, 25] and flipturns [3, 4].

For background on visibility graphs of polygons, see
the books by Ghosh [14] and O’Rourke [22].

Definitions
Two points inside a polygon P are visible if the line

segment between them is contained in the closed poly-
gon. Given this definition, we will now use “visibility”
rather than “internal visibility”. We will assume that
the input polygon does not have three or more collinear
vertices. It is possible to perturb a polygon to achieve
this without losing internal vertex visibilities. Note the
consequence that if two vertices are visible, then the line
segment between them does not go through another ver-
tex. For point p in P , the visibility region of p, denoted
V (p), is the set of points in P visible from p.

Let a be a reflex vertex with neighbours b and b′ on
the polygon boundary. Extend a line segment from b to
a and beyond, until it first hits the polygon boundary
at p. Define Pocket(b, a) to be the region bounded by
the chain along the polygon boundary from a to p go-

ing through b′, together with the line segment pa. We
consider points along the line segment pa to be outside
the pocket (i.e., the pocket is open along its “mouth”).
In particular, a is outside Pocket(b, a). See the shaded
region in Figure 1(a).

2 Convexifying polygons

Theorem 1 An n-vertex polygon can be convexified in
n moves, where each move strictly increases the set of
pairs of visible vertices, and each move translates one
vertex of the current polygon along an incident edge to
a neighbour on the polygon boundary.

The main tool in proving the theorem is the following.
We prove that if a polygon is not convex then it has an
edge along which visibility increases. More precisely,
define an edge (u, v) to be a visibility-increasing edge if
for every point p along the edge (u, v) we have V (u) ⊆
V (p) ⊆ V (v), and there is a vertex in V (v)− V (u).

We will use a stronger induction hypothesis to
prove that every non-convex polygon has a visibility-
increasing edge (u, v) where v is a reflex vertex. Note
that the fact that v is reflex implies that there is a vertex
in V (v)− V (u).

Lemma 2 Let P be a simple polygon with reflex vertex
a and edge (b, a). Then there is a visibility-increasing
edge (u, v) with v reflex and u, v exterior to Pocket(b, a)
such that u does not see into Pocket(b, a).

Proof. We prove the result by induction on the number
of reflex vertices of the polygon exterior to the pocket.
If (b, a) is a visibility-increasing edge, then it satisfies
the lemma, since b does not see into Pocket(b, a). See
Figure 1(a). This takes care of the base case where every
vertex v 6= a exterior to the pocket is convex.

a a

b

b

c

(a) (b)

b'

p

Figure 1: Visibility-increasing edges: (a) the edge (b, a)
is a visibility-increasing edge; (b) vertex b is reflex, so
we apply induction on (c, b).

If b is a reflex vertex then let c be the other neigh-
bour of b (i.e., the neighbour not equal to a). See Fig-
ure 1(b). Then Pocket(c, b) ⊇ Pocket(b, a). Also, note
that the reflex vertex a is exterior to Pocket(b, a) and

23rd Canadian Conference on Computational Geometry, 2011

230

CCCG 2011, Toronto ON, August 10–12, 2011

not exterior to Pocket(c, b). Therefore we can apply in-
duction to conclude that there is a visibility-increasing
edge (u, v) exterior to Pocket(c, b) such that v is reflex
and u does not see into Pocket(c, b). Then u cannot see
into Pocket(b, a), so (u, v) satisfies the lemma.

a

b

t

p
q

x

y

Figure 2: Visibility-increasing edges in the general case,
where we apply induction on (y, x).

We are left with the case where b is a convex vertex
but (b, a) is not a visibility-increasing edge. Note that
because a is a reflex vertex, V (a) contains a vertex not
in V (b). Therefore, the only way that (b, a) can fail to
be visibility-increasing is that there is a point p on (b, a)
and a point t on the boundary of P such that t sees p,
but t does not see a. See Figure 2. Now we rotate
the line through t and p about t until it hits the poly-
gon boundary. More precisely, consider the first point
q along the line segment pa such that the line segment
qt does not lie in the interior of P . Then some vertex x
lies on the line segment qt. Note that x must be a reflex
vertex. There are two paths on the polygon boundary
from x to t. Take the path that does not contain a, and
let y be the neighbour of x on this path. (It may happen
that y = t.) We will apply induction on the edge (y, x).
Observe that Pocket(y, x) ⊇ Pocket(b, a). Also, note
that the reflex vertex a is exterior to Pocket(b, a) and
not exterior to Pocket(y, x). Therefore we can apply in-
duction to conclude that there is a visibility-increasing
edge (u, v) exterior to Pocket(y, x) such that v is reflex
and u does not see into Pocket(y, x). Then u cannot see
into Pocket(b, a), so (u, v) satisfies the lemma. �

Proof. [of Theorem 1] The proof is by induction on
the number of vertices. If the polygon has three ver-
tices then it is already convex. For the general case, if
the polygon is convex then there is nothing to prove,
so suppose there is a reflex vertex. Then by Lemma 2,
there is a visibility-increasing edge (u, v). The plan is to
move vertex u to vertex v, resulting in a simple polygon
with fewer vertices on which we apply induction. See
Figure 5. Let w be the other neighbour of u on the poly-
gon boundary. We have V (u) ⊆ V (v) and w ∈ V (u),
so w must be visible to v. In particular, u is a con-

vex vertex and the line segment wv does not intersect
the polygon boundary except at its endpoints. There-
fore moving u to v results in a simple polygon. Observe
that no vertex visibilities are affected by the move, ex-
cept that u gains visibilities once it reaches v (if not
before). Note that u may become collinear with two
other vertices of the polygon at an intermediate point
of the move, but this causes no problems. �

3 Avoiding coincident vertices

In the previous section we showed how to convexify
any polygon without losing internal visibilities, provided
that vertices are allowed to become coincident. In this
section we show how to avoid coincident vertices. Each
set of coincident vertices from the previous method is
replaced by a cluster of vertices that are close together
but not coincident. One move of the previous method
becomes O(n) moves, each moving a single vertex. The
total number of moves is therefore O(n2). Vertex visibil-
ities are never lost, but a single move might not increase
vertex visibilities.

Figure 3: Cluster vertices along a single edge (top); a
reflex cluster (left); and a convex cluster (right). Shaded
areas indicate the interior of the polygon.

The basic idea is to replace an edge uv by a slightly
outward-bent convex chain, with some points on a shal-
low convex curve close to u, and other points on a shal-
low convex curve close to v, see Figure 3 (top). In gen-
eral, a cluster will consist of a representative vertex v,
together with the vertices that have been moved to join
v, and now lie on two convex curves incident to v. The
representative vertex v will be at the same point in the
plane as it was in the original polygon. If C is a clus-
ter with representative vertex v, we will say that C is
the cluster of v. Figure 3 depicts a reflex and a con-
vex cluster. In a convex cluster all vertices see each
other; in a reflex cluster only vertices in the same arc
see each other, and the representative vertex sees the
whole cluster.

All vertices of a cluster lie in the ε-neighbourhood of

CCCG 2011, Toronto ON, August 10–12, 2011

231

23rd Canadian Conference on Computational Geometry, 2011

the representative vertex for some sufficiently small ε.
In addition, all vertices of a cluster lie within some angle
α of the original edge. See Figure 4(a).

We define values for ε and α that will work through-
out the algorithm. As the convexification proceeds,
edges between representative vertices of the intermedi-
ate polygons are always chords of the original polygon.
We will take all the chords into account when we define
ε and α. We choose ε small enough that visibility be-
tween two points in the ε-neighbourhoods of two vertices
x and y behaves like visibility between x and y. Thus
ε should be smaller than the distance between any ver-
tex and a (non-coincident) chord or edge extension—see
Figure 4(b). We choose α small enough that a represen-
tative vertex x does not block visibilities of vertices in
its cluster, and that a convex vertex remains convex—
see Figure 4(c). Apart from the constraints imposed
by ε and α we are free to place the cluster vertices on
any convex chain, and we will have occasion to alter the
chain.

α

ε

x

(a)

x y

z

x

y

(b)

x

y

(c)
x

Figure 4: (a) Cluster vertices are located in the shaded
region determined by ε and α; (b) Constraints on ε,
which must be small enough that visibility from a point
within an ε-neighbourhood of a vertex acts like visibility
from the vertex; (c) Constraints on α, which must be
small enough that a vertex x does not block visibility
to its cluster.

We now consider the move operation from the previ-
ous section as it operates on clusters. The move oper-
ation always moves a convex vertex u to join a reflex
vertex v. See Figure 5. The only other vertex affected
by the move is w, the other neighbour of u, which forms
a triangle with u and v. Suppose without loss of gen-
erality that v, u, w are in clockwise order around the

polygon. When vertices are replaced by clusters, the
vertices affected by the move are: all of u’s cluster; the
left part of v’s cluster; and the right part of w’s clus-
ter. See Figure 6. Note that, although the original
move always increased the set of vertices visible from u,
the modified move will not necessarily increase visibility
from u or any of its cluster, since we do not move any
vertex all the way to v.

ww

vvu u

Figure 5: Moving vertex u along the visibility-increasing
edge (u, v) affects vertices u, v, and w, which form a
triangle. Vertex v may remain reflex (left) or become
convex (right).

u

v

w

v

w

(a) (b)

Figure 6: The operation from Figure 5 in the presence
of cluster vertices: (a) the initial configuration, the final
configuration shown with dashed lines, and the vertex
correspondence shown with thin lines; (b) the interme-
diate configuration after moving u and its cluster close
to v.

We show that the transformation of clusters as shown
in Figure 6 can be accomplished by moving one vertex
at a time. The first phase is to move u and its cluster
close to v, in a configuration congruent to their final
configuration. Move the vertices one by one starting
with the vertex closest to v along the chain. Note that
u loses its status as a representative vertex. The re-
sult of the first phase is shown in Figure 6(b). Note
that the union of the initial and final positions of all
the vertices that are moved in the first phase is in con-
vex position. Therefore, convexity of the cluster and
visibility within the cluster are maintained. Globally,
as each cluster vertex moves from the neighbourhood of
u’s initial position to v’s neighbourhood, its visibility
changes exactly as u’s visibility changed in the original
non-cluster move (stopping just before reaching v).

In the second phase (from Figure 6(b) to the final

23rd Canadian Conference on Computational Geometry, 2011

232

CCCG 2011, Toronto ON, August 10–12, 2011

configuration) the transformation we wish to realize is
a counterclockwise rotation of w’s right cluster and a
clockwise rotation of v’s left cluster to their final posi-
tions. We describe how to do this for v’s left cluster. In
the first step, move the vertices of v’s left cluster (one
by one) close enough to v that their new positions and
their final positions are in convex position, as shown in
Figure 7. In the second step, move the vertices one by
one to their final positions, starting with the vertex far-
thest from v along the chain. Convexity of the cluster
(and hence visibility within the cluster) is maintained
during the second step because the union of the initial
and final positions of all moved vertices is in convex po-
sition. Global visibilities may be gained but are never
lost.

v

Figure 7: Adjusting the position of v’s left cluster
vertices. All movement takes place within the ε-
neighbourhood of v. The first vertex move is shown
with a thin directed line. Note that this figure is not to
scale since the angle α should be much smaller.

From the above ideas, we obtain the following result.

Theorem 3 An n-vertex polygon can be convexified in
O(n2) moves, so that visibilities between vertices are
never lost, and vertices never become coincident. Each
move is a translation of a single vertex.

4 Discussion and Open Problems

We have shown that any simple n-vertex polygon can be
convexified in O(n2) single-vertex moves without ever
decreasing the visibility graph, answering a question
posed by Devadoss et al. [12]. If coincident vertices are
allowed, then n moves suffice, and each move strictly
increases the visibility graph.

In the same paper, Devados et al. ask about trans-
forming a polygon to decrease the visibility graph: can
any simple polygon be transformed to a polygon whose
visibility graph is a triangulation without ever increas-
ing the visibility graph? This question remains open.

For orthogonal polygons, it would be desirable to
maintain orthogonality. We conjecture than every sim-
ple orthogonal polygon can be convexified (i.e., trans-
formed to a rectangle) without losing visibilities, while
maintaining orthogonality. A minimal motion that
maintains orthogonality is to move one edge orthogo-
nal to itself (i.e., a horizontal edge moves vertically, and
vice versa). However, Figure 8 shows an example where
no edge can be moved orthogonally to gain visibilities.

It is possible that the current result can be generalized
to straight line drawings of planar graphs: Given a pla-
nar graph embedded in the plane as a straight-line draw-
ing, is it possible to transform the drawing so that every
internal face becomes convex, while remaining straight-
line planar, and without losing internal visibilities? Our
result is the special case where the drawing has only
one internal face. The fact that such a transformation
is possible, ignoring visibility constraints, is not at all
obvious, but follows from the result by Thomassen [24],
who showed (based on a result of Cairns [6]) that there is
a transformation between any two straight-line planar
drawings of the same embedded graph that preserves
straight-line planarity. Vertices become coincident dur-
ing this transformation, although that can be avoided by
keeping them close but distinct. The number of vertex
movements is not polynomially bounded. For further
discussion on morphing of graph drawings, see [20, 21].

Finally, we make two remarks about our result on
the existence of a visibility-increasing edge in any sim-
ple polygon. Since good things (like ears of polygons)
come in pairs, it is natural to ask whether every simple
polygon has two visibility-increasing edges.

Visibility-increasing edges may have other uses in the
study of visibility graphs. A major open question is
whether visibility graphs of polygons can be recognized
in polynomial time (with or without the information
about which edges form the polygon boundary). This
is Problem 17 in the Open Problems Project [9].

Figure 8: An orthogonal polygon where no single edge
can be moved orthogonally to gain visibilities.

CCCG 2011, Toronto ON, August 10–12, 2011

233

23rd Canadian Conference on Computational Geometry, 2011

5 Acknowledgments

This work was begun at the 26th Bellairs Workshop
on Computational Geometry, co-organized by Erik De-
maine and Godfried Toussaint. We thank the other par-
ticipants of the workshop for stimulating discussions.

References

[1] B. M. Ábrego, M. Cetina, J. Leaños, and G. Salazar.
Visibility-preserving convexifications using single-
vertex moves. http://arxiv.org/pdf/1105.3435v1.

[2] O. Aichholzer, M. Cetina, R. Fabila-Monroy, J. Leanos,
G. Salazar, and J. Urrutia. Convexifying monotone
polygons maintaining internal visibility. Extended ab-
stract, XIV Spanish Meeting on Computational Geom-
etry, Alcalá de Henares, Spain, pages 35–38, 2011.

[3] O. Aichholzer, C. Cortés, E. D. Demaine, V. Dujmovic,
J. Erickson, H. Meijer, M. Overmars, B. Palop, S. Ra-
maswami, and G. Toussaint. Flipturning polygons. Dis-
crete & Computational Geometry, 28:231–253, 2002.

[4] T. Biedl. Polygons Needing Many Flipturns. Discrete
& Computational Geometry, 35:131–141, 2006.

[5] P. Bose and F. Hurtado. Flips in planar graphs. Com-
putational Geometry, 42:60–80, 2009.

[6] S. S. Cairns. Deformations of plane rectilinear com-
plexes. Amer. Math. Monthly, 51(5):247–252, 1944.

[7] R. Connelly, E. D. Demaine, and G. Rote. Straighten-
ing polygonal arcs and convexifying polygonal cycles.
Discrete & Computational Geometry, 30:205–239, 2003.

[8] B. de Sz.-Nagy. Solution of problem 3763. Amer. Math.
Monthly, 49:176–177, 1939.

[9] E. D. Demaine, J. Mitchell, and J. O’Rourke. The open
problems project. http://maven.smith.edu/~/TOPP/,
May 2010.

[10] E. D. Demaine and J. O’Rourke. Geometric Folding
Algorithms: Linkages, Origami, Polyhedra. Cambridge
University Press, 2007.

[11] E. D. Demaine and J. O’Rourke. Open problems from
CCCG 2008. In Proceedings of the 21st Canadian Con-
ference on Computational Geometry (CCCG), pages
75–78, 2009.

[12] S. L. Devadoss, R. Shah, X. Shao, and E. Winston. Vis-
ibility graphs and deformations of associahedra. http:

//arxiv.org/abs/0903.2848.

[13] P. Erdős. Problem 3763. Amer. Math. Monthly, 42:42,
1935.

[14] S. Ghosh. Visibility Algorithms in the Plane. Cam-
bridge University Press, 2007.

[15] B. Grünbaum. How to convexify a polygon. Geocombi-
natorics, 5:24–30, 1995.

[16] L. Guibas and J. Hershberger. Morphing simple poly-
gons. In Proceedings of the 10th Annual Symposium
on Computational Geometry, SCG ’94, pages 267–276,
New York, NY, USA, 1994. ACM.

[17] R. A. Hearn and E. D. Demaine Games, puzzles, and
computation. A. K. Peters, Ltd., 2009.

[18] H. N. Iben, J. F. O’Brien and E. D. Demaine. Refolding
Planar Polygons. In Proceedings of the 22nd Annual
Symposium on Computational Geometry, pages 71–79,
2006. ACM.

[19] T. Ito, E. D. Demaine, N. J. A. Harvey, C. H. Pa-
padimitriou, M. Sideri, R. Uehara and Y. Uno On the
Complexity of Reconfiguration Problems. Theoretical
Computer Science, in press.

[20] A. Lubiw and M. Petrick. Morphing planar graph
drawings with bent edges. Electronic Notes in Discrete
Mathematics, 31:45 – 48, 2008. The International Con-
ference on Topological and Geometric Graph Theory.

[21] A. Lubiw, M. Petrick, and M. Spriggs. Morphing or-
thogonal planar graph drawings. In Proceedings of the
17th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA ’06, pages 222–230, 2006. ACM.

[22] J. O’Rourke. Art gallery theorems and algorithms. Ox-
ford University Press, Inc., 1987.

[23] I. Streinu. Pseudo-triangulations, rigidity and motion
planning. Discrete & Computational Geometry, 34:587–
635, 2005.

[24] C. Thomassen. Deformations of plane graphs. Jour-
nal of Combinatorial Theory, Series B, 34(3):244 – 257,
1983.

[25] G. Toussaint. The Erdös–Nagy theorem and its rami-
fications. In Proceedings of the 11th Canadian Confer-
ence on Computational Geometry (CCCG), pages 219–
236, 1999.

23rd Canadian Conference on Computational Geometry, 2011

234

CCCG 2011, Toronto ON, August 10–12, 2011

Expansive Motions for d-Dimensional Open Chains

Erik D. Demaine∗ Sarah Eisenstat∗

Abstract

We consider the problem of straightening chains in d ≥ 3
dimensions, possibly embedded into higher dimensions,
using expansive motions. For any d ≥ 3, we show
that there is an open chain in d dimensions that is not
straight and not self-touching yet has no expansive mo-
tion. Furthermore, for any ∆ > 0 and d ≥ 3, we show
that there is an open chain in d dimensions that cannot
be straightened using expansive motions when embed-
ded into Rd×[−∆,∆] (a bounded extra dimension). On
the positive side, we prove that any open chain in d ≥ 2
dimensions can be straightened using an expansive mo-
tion when embedded into Rd+1 (a full extra dimension).

1 Introduction

Expansive motions have proved to be a powerful tech-
nique for reconfiguring planar linkages. The purpose of
this paper is to determine how useful they can be in
higher dimensions.

Expansive motions first proved useful by providing
the key to solving the Carpenter’s Rule Problem [7,10],
whether every planar chain linkage (forming a path or
a cycle) could be universally reconfigured by motions
that preserve edge lengths and avoid self-crossings. A
positive answer was established by proving that every
planar open chain that is not straight, and every planar
closed chain that is not convex, has an expansive motion
in the sense that no two vertices ever get closer together.
While it is difficult to avoid self-crossings directly, ex-
pansiveness implies such avoidance, and expansive mo-
tions are easier to argue about because of their relation
to tensegrities (explained below).

Expansive motions have since proved useful in estab-
lishing universal reconfigurability of other types of pla-
nar linkages. Streinu and Whiteley [11] extended the
result to sufficiently short chains on a sphere, which
has applications to rigid folding of single-vertex origami
crease patterns. Connelly et al. [5] proved that chains
of “slender adornments” can be universally configured,
using expansive motions of an underlying chain link-
age. This result was in turn useful for avoiding self-
intersection in universal hinged dissections [1]. Expan-

∗MIT Computer Science and Artificial Intelligence Labora-
tory, 32 Vassar St., Cambridge, MA 02139, USA. {edemaine,

seisenst}@mit.edu. Research supported in part by NSF CA-
REER award CCF-0347776.

sive motions also led to the extensive study of “pointed
pseudotriangulations”, because pointed pseudotriangu-
lations are the extreme rays in the cone of expansive
motions [8, 10].

Beyond two dimensions, linkages have been studied,
but not in the context of expansive motions. Chain link-
ages cannot be universally reconfigured in three dimen-
sions [2], implying that some nonstraight open chain has
no expansive motion. One might hope that the subset
of 3D open chains that can be straightened can do so
via expansive motions. In 4D and higher, the situation
is more promising: chain linkages can be universally
reconfigured [3], via fairly simple algorithms. A natu-
ral question, therefore, is whether all 4D and higher-
dimensional chains have expansive motions.

Our results. Alas, we prove the existence of open
chains in d dimensions, for all d ≥ 3, that are not
straight yet have no expansive motion. Furthermore,
we can (for d = 3) guarantee that the chain can be
straightened (by nonexpansive motions), shooting down
the hope that such chains have expansive motions. We
start by constructing a self-touching chain with this
property, and then prove that there exist sufficiently
small perturbations of the chain that still have the prop-
erty and are non-self-touching.

Next we consider how many extra dimensions we
have to add to d-dimensional space to guarantee ex-
pansive motions of a chain that lives in a d-dimensional
(sub)space. On the one hand, we show that adding a
bounded dimension [−∆,∆] does not suffice: for any
∆ > 0, there is a d-dimensional open chain that has
no expansive motion in Rd × [−∆,∆]. On the other
hand, we show that a full extra dimension suffices: any
d-dimensional open chain has an expansive motion all
the way to straight in d+ 1 dimensions.

2 Preliminaries

We begin by defining tensegrity frameworks, using a
modified version of the notation in [4, 9].

An abstract tensegrity is an undirected graph G, with
vertices V (G) and edges E(G) = B(G) ∪ C(G) ∪ S(G),
where B(G), C(G), and S(G) are pairwise disjoint. The
edges e ∈ B(G) are bars whose lengths are fixed. The
edges e ∈ C(G) are cables whose lengths cannot in-
crease. The edges e ∈ S(G) are struts whose lengths

CCCG 2011, Toronto ON, August 10–12, 2011

235

23d Canadian Conference on Computational Geometry, 2011

cannot decrease. A tensegrity framework G(p) in d di-
mensions consists of an abstract tensegrity G and a
mapping p : V (G) → Rd assigning a location to each
vertex in the abstract tensegrity. Equivalently, we may
consider p to be a point in Rnd, where n = |V (G)|.
For convenience, we say that for each k ∈ {1, 2, . . . , d},
the function pk gives the kth coordinate of p, so that
p(vi) = (p1(vi), p2(vi), . . . , pd(vi)) for each vi.

A linkage framework G(p) is a tensegrity frame-
work such that C(G) = S(G) = ∅. An open
chain of length n is a linkage framework G(p)
such that V (G) = {v1, v2, . . . , vn} and B(G) =
{(v1, v2); (v2, v3); . . . ; (vn−1, vn)}. In this paper, we use
the terms chain and open chain interchangeably.

We say that G(q) is another embedding of a tensegrity
framework G(p) if q(v1) = p(v1) and all of the following
conditions hold:

∀(vi, vj) ∈ B(G) : ‖q(vi)− q(vj)‖ = ‖p(vi)− p(vj)‖,
∀(vi, vj) ∈ C(G) : ‖q(vi)− q(vj)‖ ≤ ‖p(vi)− p(vj)‖,
∀(vi, vj) ∈ S(G) : ‖q(vi)− q(vj)‖ ≥ ‖p(vi)− p(vj)‖.

Note that this relation is transitive, but not generally
symmetric. Note also the non-standard requirement
that q(v1) = p(v1). This is used to ensure that any
framework G(p) where (V (G), B(G) ∪ C(G)) is a con-
nected graph has a bounded configuration space.

A tensegrity framework G(p) is self-touching if there
exist four distinct vertices vi, vj , vk, and v` such that the
edges (vi, vj), (vk, v`) ∈ E(G), and the segment between
p(vi) and p(vj) intersects with the segment between
p(vk) and p(v`). If a tensegrity framework G(p) with
B(G) ∪ S(G) = V (G)× V (G) is not self-touching, then
any other embedding of G(p) is also not self-touching.

A motion of a framework G(p) is a continuous map-
ping from a time t ∈ [0, 1] to a configuration pt such that
p0 = p and each G(pt) is another embedding of G(p).
A rigid transformation T is a distance-preserving trans-
formation of Rd. We use the notation T (p) to denote
the result of applying T to every vertex location p(vi).
A motion is rigid if at every time t, there exists a rigid
transformation T such that pt = T (p). A framework
G(p) is rigid if all motions of G(p) are rigid motions.

An expansive motion is a motion where the distance
between any pair of vertices is always non-decreasing.
More formally, an expansive motion is a motion pt such
that for all pairs of vertices vi, vj , and for all times t < t′,
‖pt(vi) − pt(vj)‖ ≤ ‖pt

′
(vi) − pt

′
(vj)‖. We say that

a tensegrity framework G(p) is rigid under expansive
motion if any expansive motion pt is rigid.

An alternate embedding G(q) is reachable from G(p)
if there is some motion pt of G(p) such that p0 = p
and p1 = q. A framework G(p) is locked if there exists
an alternate embedding of G(p) that is not reachable
from G(p). A chain G(p) is straight if it is not self-

touching and all vertices lie along a line. Note that all
straight chains are rigid under expansive motions.

An infinitesimal motion of a framework G(p) assigns
a velocity vector u(vi) to every vertex vi which satisfies
the following constraints:

∀(vi, vj) ∈ B(G) : (u(vi)− u(vj)) · (p(vi)− p(vj)) = 0,

∀(vi, vj) ∈ C(G) : (u(vi)− u(vj)) · (p(vi)− p(vj)) ≤ 0,

∀(vi, vj) ∈ S(G) : (u(vi)− u(vj)) · (p(vi)− p(vj)) ≥ 0.

These equations can be derived by taking the first
derivative of the equations used to test whether some pt

is a motion for the framework G(p), and setting t = 0.
An infinitesimal motion of G(p) is a rigid infinitesimal
motion if it is equal to the derivative of some rigid mo-
tion at time t = 0. We say that G(p) is infinitesimally
rigid if all infinitesimal motions of G(p) are rigid.

For a fixed choice of p, each of the infinitesimal motion
equations is a linear inequality over u. Hence, if G(p) is
a linkage framework, then the constraints for infinites-
imal motions can be written as a matrix with |E(G)|
rows and dn columns. The rank of this matrix can be
used to calculate the number of degrees of freedom for
infinitesimal motions. Hence, a linkage framework is in-
finitesimally rigid if and only if the rank of the matrix
is equal to dn− d(d+ 1)/2. This gives a simple way to
test for infinitesimal rigidity, but only for linkages.

One way to test whether a tensegrity framework is
infinitesimally rigid involves a concept called stress. A
stress on a tensegrity framework G(p) assigns a scalar
value s(vi, vj) to each edge (vi, vj) ∈ E(G). Intuitively,
the stress on some edge (vi, vj) applies a force propor-
tional to s(vi, vj) to both vi and vj . A stress s(vi, vj) is
known as an equilibrium stress if it satisfies the following
constraint:

∀vi ∈ V (G), k ∈ {1, . . . , d} :
∑

vj :(vi,vj)∈E(G)

s(vi, vj) · (pk(vi)− pk(vj)) = 0.

Roth and Whiteley [9] showed the following:

Theorem 1 [9] Let G(p) be a tensegrity framework.
Let G be an abstract tensegrity framework such that
V (G) = V (G), B(G) = E(G), and C(G) = S(G) = ∅.
Then G(p) is infinitesimally rigid if and only if G(p)
is infinitesimally rigid and there exists an equilibrium
stress on G(p) such that s(vi, vj) > 0 for all cables
(vi, vj) and s(vi, vj) < 0 for all struts (vi, vj).

This theorem makes it easier to show the infinitesimal
rigidity of a tensegrity.

One key theorem that we use several times in this
paper is a result by Connelly [4] which has come to
be known as sloppy rigidity [6]. Intuitively, if a frame-
work G(p) is rigid, then even if the edge lengths vary by

23rd Canadian Conference on Computational Geometry, 2011

236

CCCG 2011, Toronto ON, August 10–12, 2011

Figure 1: The three-dimensional version of the self-
touching chain used in Lemma 3.

some small δ, any motion can only perturb the vertices
of G(p) by some small amount. Hence, G(p) remains
locked even with weaker constraints on the edge lengths.
The theorem uses the idea of a rigidity neighborhood. A
rigidity neighborhood Up of some rigid framework G(p)
is any set that contains p and all of its rigid transforma-
tions, but does not contain any other q such that G(q)
is an alternate embedding of G(p).

Theorem 2 [4] Let G(p) be rigid in Rn, and let Up
be a rigidity neighborhood of p for G(p). Let ε > 0 be
given. Then there is some δ > 0 such that, if q ∈ Up
and the following conditions hold

∀(vi, vj) ∈ C(G) ∪B(G) :

‖q(vi)− q(vj)‖2 < ‖p(vi)− p(vj)‖2 + δ,

∀(vi, vj) ∈ S(G) ∪B(G) :

‖q(vi)− q(vj)‖2 > ‖p(vi)− p(vj)‖2 − δ,

then there is a rigid transformation T of Rd such that
‖T (q)− p‖ < ε.

3 Chains Rigid Under Expansive Motions

In this section, we show that for any d ≥ 3, there exists
a non-straight chain in d dimensions that is rigid under
expansive motions. To do so, we begin by giving a self-
touching chain that is rigid under expansive motions,
which we later modify to make non-self-touching.

3.1 Self-Touching

Lemma 3 For any d ≥ 3, there exists a self-touching
configuration of a chain in d dimensions that is rigid
under expansive motions but is not straight.

Proof. Consider the chain G(p) of length 2d with

pk(vi) =

1 if i = 2k − 1,
−1 if i = 2k,
0 otherwise,

where 1 ≤ k ≤ d and 1 ≤ i ≤ 2d. Intuitively, this chain
is the result of connecting d bars, each of length 2, and
each of which lies along one of the axes of Rd and is
centered on the origin. The three-dimensional version
of this chain is depicted in Figure 1.

Consider the tensegrity framework G′(p) obtained by
adding a strut between every pair of unconnected ver-
tices. Proving that G′(p) is rigid is equivalent to prov-
ing that G(p) is rigid under expansive motions. To show
this, we must first provide an equilibrium stress for the
tensegrity that is negative on every strut. We define the
stress s(vi, vj) between two vertices vi 6= vj as follows:

s(vi, vj) =

{
d− 1 if ∃k s.t. {i, j} = {2k − 1, 2k},
−1 otherwise.

It is easy to verify that this is an equilibrium stress of
G′(p), and that it is negative on all of the struts of G′(p).

To show that G′(p) is infinitesimally rigid, we must
also show that replacing every strut in the tensegrity
with a bar results in a linkage that is infinitesimally
rigid. Consider the linkage framework G(p) that results
from this process. There is a bar between every pair of
vertices, so the linkage is clearly rigid. To see that it is
infinitesimally rigid, we use an inductive argument on
the number of dimensions for the chain.

We claim that, for any d ≥ 3, there exists a set of
d(d + 1)/2 linear equations that, when combined with
the constraints on the velocities for an infinitesimal mo-
tion, yield only the zero solution. This claim shows that
the framework has d(d + 1)/2 degrees of freedom, and
is therefore infinitesimally rigid.

We show this claim by induction on d. The claim can
be verified for d = 3. Assume by induction that there
exist d(d + 1)/2 linear equations that, when combined
with the 2d2 − d constraints for the d-dimensional ver-
sion of this chain, restrict the space of solutions so that
no infinitesimal motions are allowed. Now consider the
(d+ 1)-dimensional version of this chain. Any infinites-
imal motion must satisfy 2(d+ 1)2 − (d+ 1) linear con-
straints, one for each edge. The first 2d vertices of the
chain have the same coordinates as the vertices of the
d-dimensional version of the chain. Hence, the 2d2 − d
constraints corresponding to each edge among those ver-
tices are the same for the two chains. By adding the
d(d + 1)/2 linear equations guaranteed to exist by the
inductive assumption, we ensure that, for any k 6= d+ 1
and any i /∈ {2d+ 1, 2d+ 2}, uk(vi) = 0.

We now add (d + 1) more linear equations setting
uk(v2d+1) = 0 for all k ∈ {1, . . . , d + 1}, for a total of
(d+1)(d+2)/2 extra equations, which is precisely what
we wanted. Consider the possible values for ud+1(vi),
for some i /∈ {2d + 1, 2d + 2}. The edge between v2k−1
and v2d+1 results in the following equation:

(u(v2k−1)− u(v2d+1)) · (p(v2k−1)− p(v2d+1)) = 0.

CCCG 2011, Toronto ON, August 10–12, 2011

237

23d Canadian Conference on Computational Geometry, 2011

The vector (p(v2k−1)− p(v2d+1)) is non-zero in two co-
ordinates: k and d+ 1. In addition, the d+ 1 equations
we added ensure that u(v2d+1) = (0, 0, . . . , 0). Hence,
the above equation becomes

1 · uk(v2k−1) +−1 · ud+1(v2k−1) = 0.

The d(d+1)/2 equations from the inductive step ensure
that uk(v2k−1) = 0. Hence, ud+1(v2k−1) = 0. A similar
argument shows that ud+1(v2k) = 0 for any k 6= d + 1.
This means that the equations we have selected ensure
that the velocity of every vertex vi 6= v2d+2 is zero.

Now consider the velocity of v2d+2. The edge between
v2d+1 and v2d+2 gives us the equation:

2 · ud+1(v2d+1)− 2 · ud+1(v2d+2) = 0.

Hence, we know that ud+1(v2d+2) = 0. Now consider
the edge between v2d+2 and v2k−1, which results in the
following equation:

(u(v2k−1)− u(v2d+2)) · (p(v2k−1)− p(v2d+2)) = 0.

The velocity u(v2k−1) is zero in all coordinates, and
(p(v2k−1) − p(v2d+2)) is nonzero only in coordinates k
and d+ 1. Therefore, the equation becomes:

1 · −uk(v2d+2) + 1 · −ud+1(v2d+2) = 0.

We have shown that ud+1(v2d+2) = 0, and so it must be
that uk(v2d+2) = 0. �

3.2 Non-Self-Touching

Now that we have shown the existence of a self-touching
chain that is rigid under expansive motions, we use the
sloppy rigidity results from Theorem 2 to show that
there is also a non-self-touching chain that is rigid under
expansive motions.

Theorem 4 For any d ≥ 3, there exists a non-self-
touching configuration of a chain in d dimensions that
is rigid under expansive motions but is not straight.

Proof. Consider the chain G(p) specified in Lemma 3.
Add a strut between every pair of vertices that is not
already connected by a bar to obtain a rigid tensegrity
framework G′(p). Because G′(p) is rigid, there must
exist some c such that any other embedding G′(q) that
is not a rigid transformation of p has ‖p− q‖ > c.

Now let Up be a neighborhood of p such that ∀r ∈ Up,
there exists a rigid transformation T such that ‖T (r)−
p‖ < c. By definition, Up is a rigidity neighborhood of
p. Let ε = c/2, be the value we use for Theorem 2, and
let δ > 0 be the resulting sloppiness.

If δ > ε/n, set δ = ε/n. Randomly perturb each
vertex in p by a distance less than δ/2 to get a frame-
work G′(p∗). Then any alternate embedding of G′(p∗)

has the property that its edge lengths violate the length
constraints for an alternate embedding of G′(p) by a
distance of at most δ. By Theorem 2, if there is any
q ∈ Up such that G′(q) is another embedding of G′(p∗),
then there must exist a rigid transformation T such that
‖T (q)− p‖ < ε, and therefore

‖T (q)− p∗‖ < ‖T (q)− p‖+ ‖p− p∗‖ < ε+ nδ/2 ≤ 3c

4
.

Hence, any motion of G′(p∗) cannot result in any frame-
work G′(q) such that q /∈ Up. As a result, G′(p∗)
is locked, and all reachable alternative embeddings of
G′(p∗) are not straight.

Define the function f(q) to be the sum of all pairwise
distances between the points in G′(q). The set of alter-
nate embeddings reachable from G′(p∗) is both closed
and bounded, so we can pick an embedding G′(q∗) from
that set that maximizes f(·).

Consider any alternate embedding G(r) reachable
from G(q∗). Because G′(r) is an alternate embedding
of G′(q∗), we know that for each edge (vi, vj) ∈ E(G′),
‖r(vi)− r(vj)‖ ≥ ‖q∗(vi)− q∗(vj)‖. Hence, we have

∑

i,j

‖r(vi)− r(vj)‖ ≥
∑

i,j

‖q∗(vi)− q∗(vj)‖,

f(r) ≥ f(q∗).

By transitivity, G′(r) is also a reachable alternate em-
bedding of G′(p∗). By definition of q∗, this means that
f(r) ≤ f(q∗), and therefore that f(r) = f(q∗). As a re-
sult, it must be that ‖r(vi)− r(vj)‖ = ‖q∗(vi)− q∗(vj)‖
for all edges (vi, vj). Then r is a rigid transformation
of q∗. So G(q∗) is rigid under expansive motions.

Because of the random perturbations used to con-
struct p∗, and because d ≥ 3, no four vertices can lie
in the same plane. Hence, G′(p∗) must be non-self-
touching. Because any alternate embedding of G′(p∗)
cannot decrease the distance between any two vertices,
all alternate embeddings are also non-self-intersecting.
This means that G(q∗) is also not self-touching. �

In Theorem 4, we give a non-constructive proof of
the existence of a non-self-touching chain that is rigid
under expansive motions in d ≥ 3 dimensions. The
following conjecture would provide a way to construct
such a chain, but has only been verified for 3 ≤ d ≤ 8.

Conjecture 1 In d ≥ 3 dimensions, the non-self-
touching chain given by the coordinates

pk(vi) =

1 if i = 2k − 1,
−1 if i = 2k,
0.01 if di/2e+ 1 ≡ k (mod d),

0 otherwise,

where 1 ≤ k ≤ d and 1 ≤ n ≤ 2d, is rigid under expan-
sive motions.

23rd Canadian Conference on Computational Geometry, 2011

238

CCCG 2011, Toronto ON, August 10–12, 2011

For d = 3, we can additionally prove that the con-
structed chain can be straightened: either end link can
be folded by itself to extend the next link, thus effec-
tively reducing the number of links to 4, which implies
that the chain can be straightened [2].

3.3 Bounded Extra Dimension

We have shown that for any d ≥ 3, there exists a d-
dimensional chain that is rigid under expansive motions,
but not straight. This naturally raises the question of
how much space is required to expansively straighten a
d-dimensional chain. In this section, we show that for
any ∆, there exists a d-dimensional chain that cannot be
straightened using an expansive motion in Rd×[−∆,∆].
We begin by proving the following lemma.

Lemma 5 For any non-straight chain G(p) in d dimen-
sions that is rigid under expansive motions, there exists
a constant ∆ > 0 such that G(p) cannot be straightened
using an expansive motion in Rd × [−∆,∆].

Proof. Let G(p) be a non-straight chain in d dimen-
sions that is rigid under expansive motions. Add a strut
between every pair of vertices that are not connected by
a bar, and call the resulting framework G′(p). Then our
goal is to show that G′(p) is locked in Rd × [−∆,∆].

Let G′(q) be any alternate embedding of G′(p) in
Rd × [−∆,∆]. Consider projecting G′(q) into d dimen-
sions by omitting the last coordinate to get a framework
G′(r). For any vi and vj ,

‖q(vi)− q(vj)‖2 =

‖r(vi)− r(vj)‖2 + (qd+1(vi)− qd+1(vj))
2.

Because G′(q) is embedded in Rd × [−∆,∆], we know
that 0 ≤ (qd+1(vi)− qd+1(vj))

2 ≤ 4∆2. Hence we have

‖r(vi)− r(vj)‖2 ≥ ‖q(vi)− q(vj)‖2 − 4∆2, and

‖r(vi)− r(vj)‖2 ≤ ‖q(vi)− q(vj)‖2.

This means that any alternate embedding of G′(p) in
Rd× [−∆,∆] corresponds to an alternate embedding of
G′(p) in Rd where the edge lengths are allowed to vary
by at most 4∆2. Hence, if G′(p) is locked in Rd, even
when the edge lengths are allowed to vary by up to 4∆2,
then G′(p) is locked in Rd × [−∆,∆].

Because G′(p) is rigid, we know that there is some
constant c such that any other embedding G′(q) that is
not a rigid transformation of p has ‖p − q‖ > c. Let
Up be a neighborhood of p such that ∀r ∈ Up, there
is a rigid transformation T such that ‖T (r) − p‖ < c.
Then Up is a rigidity neighborhood of p. Let ε < c be
the value we use for Theorem 2, and let δ > 0 be the
resulting sloppiness.

Consider any r ∈ Up satisfying these constraints:

∀(vi, vi) ∈ B(G′) ∪ S(G′) :

‖r(vi)− r(vj)‖2 ≥ ‖p(vi)− p(vj)‖2 − 4∆2,

∀(vi, vi) ∈ B(G′) ∪ C(G′) :

‖r(vi)− r(vj)‖2 ≤ ‖p(vi)− p(vj)‖2.

Then if 4∆2 ≤ δ, there is a rigid transformation T such
that ‖T (r)− p‖ < ε. This means that if 4∆2 ≤ δ, then
G′(p) is locked in Rd × [−∆,∆]. �

Theorem 6 For any d ≥ 3 and any ∆ > 0, there is a
non-self-touching chain in d dimensions that cannot be
straightened using an expansive motion in Rd×[−∆,∆].

Proof. By Theorem 4, there is a non-self-touching
chain G(p∗) in d dimensions that is rigid under ex-
pansive motions. By Lemma 5, there exists some ∆∗

such that G(p∗) cannot be expansively straightened in
Rd×[−∆∗,∆∗]. Multiply the coordinates of p∗ by ∆/∆∗

to get a new framework G(p). For the sake of contradic-
tion, say that G(p) can be straightened in Rd× [−∆,∆]
using some expansive motion qt. Multiply all coordi-
nates of qt by a factor of ∆∗/∆ to get a motion rt in
Rd × [−∆∗,∆∗]. Because qt is a motion of p, the scaled
rt is a motion of p∗. Hence, if G(p) can be straight-
ened in Rd × [−∆,∆], then G(p∗) can be straightened
in Rd× [−∆∗,∆∗], which results in a contradiction. �

4 Expansive Motions in Higher Dimensions

We have shown that for any ∆, there is a d-dimensional
chain that cannot be expansively straightened in Rd ×
[−∆,∆]. In this section, we show that any d-
dimensional chain can be expansively straightened in
Rd+1, thus resolving the question of how much space is
required to straighten expansively.

Theorem 7 Any chain G(p) in d dimensions can be
straightened using an expansive motion when embedded
in (d+ 1)-dimensional space.

Proof. For each vi, we define zi to be the length along
the chain between v1 and vi. More formally, we let

zi =
i−1∑

j=1

‖p(vj)− p(vj+1)‖.

Note that for any i and j, |zi − zj | ≥ ‖p(vi) − p(vj)‖.
The motion q used to straighten the chain will be:

qtk(vi) =

{
zi · sin

(
πt
2

)
if k = d+ 1,

pk(vi) · cos
(
πt
2

)
otherwise.

At time t = 0, the location of vertex vi will be
(p1(vi), . . . , pd(vi), 0). At time t = 1, the location of

CCCG 2011, Toronto ON, August 10–12, 2011

239

23d Canadian Conference on Computational Geometry, 2011

vertex vi will be (0, 0, . . . , 0, zi). So our motion will
cause all of the points to form a line. Consider how the
square of the distance between vi and vj will change
over time. A short derivation shows that

‖qt(vi)− qt(vj)‖2
‖p(vi)− p(vj)‖2

=

(
(zi − zj)2

‖p(vi)− p(vj)‖2
−1

)
sin2

(
πt
2

)
+1.

For adjacent vi, vj , we know that ‖p(vi)− p(vj)‖ = zi−
zj , and therefore the length of the edge is preserved. But
is the motion expansive over t ∈ [0, 1]? We know that
sin2

(
πt
2

)
is a non-decreasing function over the interval

[0, 1]. We also know that (zi − zj)2 ≥ ‖p(vi)− p(vj)‖2.
Hence, the distance between vi and vj is non-decreasing,
meaning that the motion is expansive. �

Lemma 8 For any ∆ > 0, any three-dimensional open
chain can be straightened in R3 × [−∆,∆].

Proof. Let G(p) be a three-dimensional open chain
that is not straight. To straighten G(p), we first use
a modified version of the motion from Theorem 7. De-
fine zi as we did in Theorem 7. Let θ = arcsin(∆/zn).
The motion we use is

qtk(vi) =

{
zi · sin (θt) if k = 4,

pk(vi) · cos (θt) otherwise.

A similar analysis to Theorem 7 shows that this motion
preserves the lengths of all bars, and does not cause the
chain to become self-intersecting. In addition, we have
selected the motion function so that 0 ≤ pd+1(vi) ≤ ∆.

The result of this motion is an alternate embedding
G(q) with the following coordinates:

qk(vi) =

{
(zi ·∆)/zn if k = 4,

pk(vi) ·
√

1− (∆/zn)2 otherwise.

To straighten this new chain, we hold v2, . . . , vn fixed in
place, and swing v1 around so that it is collinear with
v2 and v3. More specifically, consider the set of possible
locations for v1 that preserve the fourth coordinate of v1
and the length of the rigid bar between v1 and v2. This
corresponds to a sphere. The initial location of v1 is one
point on the sphere; the location that will straighten the
bars (v1, v2) and (v2, v3) is another point on the sphere.
We can use a motion along the shortest path to get from
one to the other. Once the two bars (v1, v2) and (v2, v3)
have been straightened, we can treat them as a single
bar and repeat until the whole chain is straightened. �

5 Open Problem

The main question left open by this work is whether
every closed chain initially in d dimensions has an ex-
pansive motion in d+1 dimensions to a (planar) convex
configuration. Such a result would be a natural exten-
sion to our positive result for open chains. (Our negative
results extend to closed chains, simply by doubling our
open chains into an Euler tour.)

Acknowledgments

These problems were originally invented in collabora-
tion with Robert Brasseur and Stefan Langerman in
2009. This research was initiated during the open-
problem sessions organized around MIT class 6.849: Ge-
ometric Folding Algorithms in Fall 2010. We thank the
other participants of these sessions — Zachary Abel,
Martin Demaine, Isaac Ellowitz, Jason Ku, Jayson
Lynch, and TB Schardl — for their helpful ideas and
for providing a conducive research environment.

References

[1] T. G. Abbott, Z. Abel, D. Charlton, E. D. Demaine,
M. L. Demaine, and S. D. Kominers. Hinged dissections
exist. Discrete & Computational Geometry. To appear.

[2] J. Cantarella and H. Johnston. Nontrivial embeddings
of polygonal intervals and unknots in 3-space. Journal
of Knot Theory and Its Ramifications, 7(8):1027–1039,
1998.

[3] R. Cocan and J. O’Rourke. Polygonal chains can-
not lock in 4D. Discrete & Computational Geometry,
20(3):105–129, November 2001.

[4] R. Connelly. Rigidity and energy. Inventiones Mathe-
maticae, 66:11–33, 1982. 10.1007/BF01404753.

[5] R. Connelly, E. D. Demaine, M. L. Demaine, S. Fekete,
S. Langerman, J. S. B. Mitchell, A. Ribó, and G. Rote.
Locked and unlocked chains of planar shapes. Discrete
& Computational Geometry, 44(2):439–462, 2010.

[6] R. Connelly, E. D. Demaine, and G. Rote. Infinitesi-
mally locked self-touching linkages with applications to
locked trees. In J. Calvo, K. Millett, and E. Rawdon,
editors, Physical Knots: Knotting, Linking, and Folding
of Geometric Objects in 3-space, pages 287–311. Amer-
ican Mathematical Society, 2002.

[7] R. Connelly, E. D. Demaine, and G. Rote. Straight-
ening polygonal arcs and convexifying polygonal cy-
cles. Discrete & Computational Geometry, 30(2):205–
239, September 2003.

[8] G. Rote, F. Santos, and I. Streinu. Expansive motions
and the polytope of pointed pseudo-triangulations. In
Discrete and Computational Geometry: The Goodman-
Pollack Festschrift, pages 699–736. Springer-Verlag,
2003.

[9] B. Roth and W. Whiteley. Tensegrity frameworks.
Transactions of the American Mathematical Society,
265(2):pp. 419–446, 1981.

[10] I. Streinu. Pseudo-triangulations, rigidity and mo-
tion planning. Discrete & Computational Geometry,
34(4):587–635, November 2005.

[11] I. Streinu and W. Whiteley. Single-vertex origami and
spherical expansive motions. In Revised Selected Pa-
pers from the Japan Conference on Discrete and Com-
putational Geometry, volume 3742 of Lecture Notes in
Computer Science, pages 161–173, Tokyo, Japan, Oc-
tober 2004.

23rd Canadian Conference on Computational Geometry, 2011

240

CCCG 2011, Toronto ON, August 10–12, 2011

Making triangulations 4-connected using flips

Prosenjit Bose∗ Dana Jansens∗ André van Renssen∗ Maria Saumell§ Sander Verdonschot∗

Abstract

We show that any triangulation on n vertices can
be transformed into a 4-connected one using at most
b(3n − 6)/5c edge flips. We also give an example of a
triangulation that requires d(3n−10)/5e flips to be made
4-connected, showing that our bound is tight. Our re-
sult implies a new upper bound on the diameter of the
flip graph of 5.2n − 24.4, improving on the bound of
6n− 30 by Mori et al. [4].

1 Introduction

Given a triangulation (a maximal planar simple graph)
on a set of n vertices, we define an edge flip as removing
an edge (a, b) from the graph and replacing it with the
edge (c, d), where c and d are the other vertices of the
triangles that had (a, b) as an edge. Figure 1 shows an
example of an edge flip.

Flips have been studied mostly in two different set-
tings: the geometric setting, where we are given a fixed
set of points in the plane and edges are straight line seg-
ments, and the combinatorial setting, where we are only
given the clockwise order of edges around each vertex
(a combinatorial embedding). In this paper, we concern
ourselves with the number of flips required to transform
one triangulation into another in the combinatorial set-
ting. We give a brief overview of previous work on this
problem. A more detailed overview, including applica-
tions and related work, can be found in a survey by Bose
and Hurtado [2].

c

d

a

b
c

d

a

b

Figure 1: An example triangulation before and after
flipping edge (a, b).

∗School of Computer Science, Carleton University. This re-
search was partially supported by NSERC.
§Departament de Matemàtica Aplicada II, Universitat

Politècnica de Catalunya. Partially supported by projects
MTM2009-07242 and Gen. Cat. DGR 2009SGR1040.

Given a set of n vertices, we can define its flip graph
as the graph with a vertex for each distinct triangulation
and an edge between two vertices if their corresponding
triangulations differ by a single flip. Two triangula-
tions are considered distinct if they are not isomorphic.
In his seminal paper, Wagner [7] showed that there al-
ways exists a sequence of O(n2) flips that transforms a
given triangulation into any other triangulation on the
same set of vertices. In terms of the flip graph, Wagner
showed that it is connected and has diameter O(n2).
Komuro [3] was the first to show that the diameter is
linear and Mori et al. [4] currently have the strongest
upper bound of 6n− 30.

The above results all show how to transform any tri-
angulation into a fixed canonical triangulation. Trans-
formation of one triangulation into another is then
straightforward by transforming the first into the canon-
ical triangulation and transforming the canonical trian-
gulation into the second by reversing the sequence of
flips for the second. Mori et al.’s algorithm to trans-
form a triangulation into the canonical one consists of
two steps. They first make the given triangulation 4-
connected using at most n−4 flips. Since a 4-connected
triangulation is always Hamiltonian [6], they then show
how to transform this into the canonical triangulation
by at most 2n−11 flips, using a decomposition into two
outerplanar graphs that share a Hamiltonian cycle as
their outer faces.

The problem of making triangulations 4-connected
has also been studied in the setting where many edges
may be flipped simultaneously [1]. Bose et al. showed
that any triangulation can be made 4-connected by one
simultaneous flip and that O(log n) simultaneous flips
are sufficient and sometimes necessary to transform be-
tween two given triangulations.

In Section 2, we show that any triangulation can
be made 4-connected using at most (3n − 6)/5 flips.
This improves the first step of the construction by
Mori et al. and results in a new upper bound on the
diameter of the flip graph of 5.2n−24.4. Then we show
in Section 3 that there are triangulations that require
(3n − 10)/5 flips to be made 4-connected. Since the
difference with the upper bound is less than one flip,
this bound is tight. Section 4 contains proofs for var-
ious technical lemmas that are necessary for the main
result. Section 5 contains conclusions and future work.

CCCG 2011, Toronto ON, August 10–12, 2011

241

23rd Canadian Conference on Computational Geometry, 2011

2 Upper Bound

In this section we prove an upper bound on the num-
ber of flips required to make any given triangulation
4-connected. Specifically, we show that (3n− 6)/5 flips
always suffice. The proof references several technical
lemmas whose proofs can be found in Section 4.

We are given a triangulation T , along with a com-
binatorial embedding specifying the clockwise order of
edges around each vertex of T . In addition, one of the
faces of T is marked as the outer face. A separating
triangle D is a cycle in T of length three whose removal
splits T into two non-empty connected components. We
call the component that contains vertices of the outer
face the exterior of D, and the other component the
interior of D. A vertex in the interior of D is said to
be inside D and likewise, a vertex in the exterior of D
is outside D. An edge is inside a separating triangle if
one of its endpoints is inside. A separating triangle A
contains another separating triangle B if and only if the
interior of B is a subgraph of the interior of A with a
strictly smaller vertex set. If A contains B, A is called
the containing triangle. A separating triangle that is
contained by the largest number of separating triangles
in T is called deepest. Since containment is transitive, a
deepest separating triangle cannot contain any separat-
ing triangles, as these would have a higher number of
containing triangles. Finally, we call an edge that does
not belong to any separating triangle a free edge.

We will remove all separating triangles from T by
repeatedly flipping an edge of a deepest separating tri-
angle. This makes T 4-connected, as a triangulation is
4-connected if and only if it has no separating triangles.
This technique was also used by Mori et al. [4], who
proved the following lemma.

Lemma 1 In a triangulation with n ≥ 6 vertices, flip-
ping any edge of a separating triangle D will remove that
separating triangle. This never introduces a new sepa-
rating triangle, provided that the selected edge belongs to
multiple separating triangles or none of the edges of D
belong to multiple separating triangles.

Before we can prove our new upper bound, we need
to prove another property of separating triangles.

Lemma 2 In a triangulation T , every vertex v of a
separating triangle D is incident to at least one free edge
inside D.

Proof. Consider one of the edges of D incident to v.
Since D is separating, its interior cannot be empty and
since D is part of T , there is a triangular face inside D
that uses this edge. Now consider the other edge e of
this face that is incident to v.

The remainder of the proof is by induction on the
number of separating triangles contained in D. For the

base case, assume that D does not contain any other
separating triangles. Then e must be a free edge and
we are done.

For the induction step, there are two further cases. If
e does not belong to a separating triangle, we are again
done, so assume that e belongs to a separating triangle
D′. Since D′ is itself a separating triangle contained in
D and containment is transitive, the number of separat-
ing triangles contained by D′ must be strictly smaller
than that of D. Since v is also a vertex of D′, our induc-
tion hypothesis tells us that there is a free edge incident
to v inside D′. Since D′ is contained in D, this edge is
also inside D. �

Theorem 3 A triangulation on n ≥ 6 vertices can be
made 4-connected using at most b(3n− 6)/5c flips.

Proof. We prove this using a charging scheme. We be-
gin by placing a coin on every edge of the triangulation.
Then we flip an edge of a deepest separating triangle
(preferring edges that belong to multiple separating tri-
angles) until no separating triangles are left. We pay 5
coins for every flip. During this process, we maintain
two invariants:

• Every edge of a separating triangle has a coin.

• Every vertex of a separating triangle has an inci-
dent free edge that is inside the triangle and has a
coin.

These invariants have several nice properties. First, an
edge can either be a free edge or belong to a separat-
ing triangle, but not both. So at any given time, only
one invariant applies to an edge. Second, an edge only
needs one coin to satisfy the invariants, even if it is on
multiple separating triangles or is a free edge for mul-
tiple separating triangles. These two properties imply
that the invariants hold initially, since by Lemma 2, ev-
ery vertex of a separating triangle has an incident free
edge. Third, flipping an edge that satisfies the crite-
ria of Lemma 1 cannot upset the invariants, since its
separating triangle is removed and no new separating
triangles are introduced. Finally, since we pay 5 coins
per flip and there are 3n− 6 edges, by placing a coin on
each edge, we can flip at most b(3n− 6)/5c edges.

Now let us take a closer look at the kind of edges we
can use to pay for flipping an edge of a deepest separat-
ing triangle D. We identify four types of edges here:

Type 1 (). The flipped edge e. By Lemma 1, e cannot
belong to any separating triangle after the flip, so the
first invariant still holds if we remove e’s coin. Before
the flip, e was not a free edge, so the second invariant
was satisfied even without e’s coin. Since the flip did
not introduce any new separating triangles, this is still
the case.

23rd Canadian Conference on Computational Geometry, 2011

242

CCCG 2011, Toronto ON, August 10–12, 2011

Type 2 (). A non-flipped edge e ofD that is not shared
with any other separating triangle. By Lemma 1, the
flip removed D and did not introduce any new separat-
ing triangles. Therefore e cannot belong to any separat-
ing triangle, so the first invariant still holds if we remove
e’s coin. By the same argument as for the previous type,
e is also not required to have a coin to satisfy the second
invariant.

Type 3 (). A free edge e of a vertex of D that is not
shared with any containing separating triangle. Since e
did not belong to any separating triangle and the flip
did not introduce any new ones, e is not required to have
a coin to satisfy the first invariant. Further, since the
flip removed D and e is not incident to a vertex of an-
other separating triangle that contains it, it is no longer
required to have a coin to satisfy the second invariant.
Therefore we can remove its coin without violating ei-
ther invariant.

Type 4 (). A free edge e incident to a vertex v of D,
where v is an endpoint of an edge e′ of D that is shared
with a non-containing separating triangle B, provided
that we flip e′. Any separating triangle that contains D
but not B must share e′ (Lemma 10) and is therefore re-
moved by the flip. So every separating triangle after the
flip that contains D also contains B. In particular, this
also holds for containing triangles that share v. Since
the second invariant requires only one free edge with a
coin for each vertex, we can safely charge the one inside
D, as long as we do not charge the free edge in B.

To decide which edges we flip and how we pay for
each flip, we distinguish five cases, based on the num-
ber of edges shared with other separating triangles and
whether any of these triangles contain D. These cases
are illustrated in Figures 2, 3, and 4.

Figure 2: The edges that are charged if the deepest
separating triangle does not share any edges with other
separating triangles. The flipped edge is dashed and
the charged edges are marked with red boxes (Type 1),
white boxes (Type 2), white disks (Type 3) or red disks
(Type 4).

Case 1. D does not share any edges with other separat-
ing triangles (Figure 2). In this case, we flip any of D’s
edges. By the first invariant, each edge of D has a coin.
These edges all fall into Types 1 and 2 above, so we use
their coins to pay for the flip. Further, D can share at
most one vertex with a containing triangle (Lemma 8),

so we charge two free edges, each incident to one of the
other two vertices (Type 3).

D

B

e

Figure 3: The edges that are charged if the deepest sep-
arating triangle only shares edges with non-containing
separating triangles.

Case 2. D does not share any edge with a containing tri-
angle, but shares one or more edges with non-containing
separating triangles (Figure 3). In this case, we flip one
of the shared edges e. We charge e (Type 1) and two
free edges inside D that are incident to the vertices of
e (Type 4). This leaves us with two more coins that we
need to charge.

Let B be the non-containing separating triangle that
shares e with D. We first show that B must be deep-
est. There can be no separating triangles that contain
D but not B, as any such triangle would have to share
e (Lemma 10) and D does not share any edge with a
containing triangle. Therefore any triangle that con-
tains D must contain B as well. Since D is contained in
the maximal number of separating triangles, this holds
for B as well. This means that B cannot contain any
separating triangles and to satisfy the second invariant
we only need to concern ourselves with triangles that
contain both B and D.

Now consider the number of vertices of the quadri-
lateral formed by B and D that can be shared with
containing triangles. Since D does not share an edge
with a containing triangle, it can share at most one ver-
tex with a containing triangle (Lemma 8). Now sup-
pose that B shares an edge with a containing triangle.
Then one of the vertices of this edge is part of D as
well. Since the other two vertices are both part of D,
they cannot be shared with containing triangles. If B
does not share an edge with a containing triangle, it too
can share at most one vertex with containing triangles.
Thus, in both cases, at most two vertices of the quadri-
lateral can be shared with containing triangles and we
charge two free edges, each incident to one of the other
two vertices, for the last two coins (Type 3).

Case 3. D shares an edge with a containing triangle A
and does not share the other edges with any separating
triangle (Figure 4a). In this case, we flip the shared
edge and charge all of D’s edges, since one is the flipped
edge (Type 1) and the others are not shared (Type 2).

CCCG 2011, Toronto ON, August 10–12, 2011

243

23rd Canadian Conference on Computational Geometry, 2011

A

B

D

v

B

v

e

D

AA

D

a) b) c)

Figure 4: The edges that are charged if the deepest separating triangle shares an edge with a containing triangle.

The vertex of D that is not shared with A cannot be
shared with any containing triangle (Lemma 9), so we
charge a free edge incident to this vertex (Type 3).

Further, if A shares an edge with a containing tri-
angle, it either shares the flipped edge, which means
that the containing triangle is removed by the flip, or
it shares another edge, in which case the vertex that is
not an endpoint of this edge cannot be shared with any
containing triangle. If A does not share an edge with a
containing triangle, it can share at most one vertex with
a containing triangle (Lemma 8). In both cases, one of
the vertices of the flipped edge is not shared with any
containing triangle (Type 3), so we charge a free edge
incident to it.

Case 4. D shares an edge with a containing triangle
A and one other edge with a non-containing separating
triangle B (Figure 4b). In this case, we flip the edge that
is shared with B. Let v be the vertex of D that is not
shared with A. We charge the flipped edge (Type 1), the
unshared edge of D (Type 2) and two free edges inside
D that are incident to the vertices of the flipped edge
(Type 4). We charge the last coin from a free edge in B
that is incident to v. We can charge it, since v cannot
be shared with a triangle that contains D (Lemma 9)
and every separating triangle that contains B but not
D must share the flipped edge as well (Lemma 10) and
is therefore removed by the flip.

All that is left is to argue that there can be no sepa-
rating triangle contained in B that requires the charge
to satisfy the second invariant. Every separating trian-
gle that contains D but not B must share the flipped
edge (Lemma 10). Since D already shares another edge
with a containing triangle and it cannot share two edges
with containing triangles (Lemma 7), all separating tri-
angles that contain D must also contain B. Since D is
deepest, B must be deepest as well and therefore cannot
contain any separating triangles.

Case 5. D shares one edge with a containing triangle A
and the other two with non-containing separating tri-
angles (Figure 4c). In this case we also flip the edge

shared with one of the non-containing triangles. The
charged edges are identical to the previous case, except
that there is no unshared edge any more. Instead, we
charge the last free edge in D.

Before we argue why we are allowed to charge it, we
need to give some names. Let e be the edge of D that is
not shared with A and is not flipped. Let B be the non-
containing triangle that shares e and let v be the vertex
that is shared by A, B and D. Now, any separating
triangle that shares v and contains D must contain B
as well. If it did not, it would have to share e with D,
but D already shares an edge with a containing triangle
and cannot share more (Lemma 7). Since the second
invariant requires only a single charged free edge for
each vertex of a separating triangle, it is enough that v
still has an incident free edge in B.

This shows that we can charge 5 coins for every flip,
while maintaining the invariants. Now all that we need
to show is that after performing these flips we have in-
deed removed all separating triangles. As long as our
triangulation has a separating triangle, we can always
find a deepest separating triangle D. Since D shares at
most one edge with separating triangles (Lemma 7), one
of the cases above must apply to D. This gives us an
edge of D to flip and five edges to charge, each of which
is guaranteed by the invariants to have a coin. There-
fore the process stops only after all separating triangles
have been removed. �

Corollary 4 The diameter of the flip graph of all tri-
angulations on n vertices is at most 5.2n− 24.4.

Proof. Mori et al. [4] showed that any two 4-connected
triangulations can be transformed into each other by
at most 4n − 22 flips. By Theorem 3, we can make a
triangulation 4-connected using at most b(3n − 6)/5c
flips. Hence, we can transform any triangulation into
any other using at most 2 · (3n − 6)/5 + 4n − 22 ≤
5.2n− 24.4 flips. �

23rd Canadian Conference on Computational Geometry, 2011

244

CCCG 2011, Toronto ON, August 10–12, 2011

3 Lower Bound

In this section we present a lower bound on the number
of flips that are required to remove all separating trian-
gles from a triangulation. Specifically, we present a tri-
angulation that has (3n−10)/5 edge-disjoint separating
triangles, thereby showing that there are triangulations
that require this many flips to make them 4-connected.

The triangulation that gives rise to the lower bound is
constructed recursively and is similar to the Sierpiński
triangle [5]. The construction starts with an empty tri-
angle. The recursive step consists of adding an inverted
triangle in the interior and connecting each vertex of the
new triangle to the two vertices of the opposing edge of
the original triangle. This is recursively applied to the
three new triangles that share an edge with the inserted
triangle, but not to the inserted triangle itself. After k
iterations, instead of applying the recursive step again,
we add a single vertex in the interior of each triangle
we are recursing on and connect this vertex to each ver-
tex of the triangle. We also add a single vertex in the
exterior face so that the original triangle becomes sepa-
rating. The resulting triangulation is called Tk. Figure 5
illustrates this process for T1 and T2.

a)

b)

Figure 5: Triangulations T1 (a) and T2 (b), before and
after the final step of the construction.

Theorem 5 There are triangulations that require
d(3n− 10)/5e flips to make them 4-connected.

Proof. In the construction scheme presented above,
each of the triangles we recurse on becomes a separating

triangle that does not share any edges with the original
triangle or the other triangles that we recurse on. Thus
all these separating triangles are edge-disjoint. But how
many of these triangles do we get? Let Li be the num-
ber of triangles that we recurse on after i iterations of
the construction, so L0 = 1, L1 = 3, etc. Now let Vi be
the number of vertices of Ti. We can see that V1 = 10
and if we transform T1 into T2, we have to remove each
of the interior vertices added in the final step and re-
place them with a configuration of 6 vertices. So to get
T2, we add 5 vertices in each of the L1 triangles. This
is true in general, giving

Vi = Vi−1 + 5Li−1 = 10 + 5
i∑

j=2

Lj−1 (1)

Let Si be the number of separating triangles of Ti. We
can see that S1 = 4 and each recursive refinement of a
separating triangle leaves it intact, while adding 3 new
ones. Therefore

Si = Si−1 + 3Li−1 = 4 + 3
i∑

j=2

Lj−1 (2)

From Equation (1), we get that

i∑

j=2

Lj−1 =
Vi − 10

5

Substituting this into Equation (2) gives

Si = 4 + 3
Vi − 10

5
=

3Vi − 10

5

Since each flip removes only the separating triangle that
the edge belongs to, we need (3n− 10)/5 flips to make
this triangulation 4-connected. �

4 Lemmas and proofs

This section contains proofs for the technical lemmas
used in the proof of Theorem 3. The proofs use the
following result, which is proven in Lemmas 11 and 12
in the appendix.

Lemma 6 A separating triangle A contains a separat-
ing triangle B if and only if there is a vertex of B inside
A.

Lemma 7 A separating triangle can share at most one
edge with containing triangles.

Proof. Suppose we have a separating triangle D that
shares two of its edges with separating triangles that
contain it. First of all, these triangles cannot be the
same, since then they would be forced to share the third

CCCG 2011, Toronto ON, August 10–12, 2011

245

23rd Canadian Conference on Computational Geometry, 2011

edge as well, which means that they are D. Since a tri-
angle does not contain itself, this is a contradiction. So
call one of these triangles A and call one of the trian-
gles that shares the other edge B. Let x, y and z be the
vertices of D, such that x is shared with A and B, y is
shared only with A and z is shared only with B. Let v
be the vertex of B that is not shared with D.

By Lemma 6, z must be inside A, while y must be
inside B, since in both cases the other two vertices of
D are shared and therefore not in the interior. But this
means that A contains B and B contains A. This is a
contradiction, since by transitivity it would imply that
the interior of A is a subgraph of itself with a strictly
smaller vertex set. �

Lemma 8 A separating triangle D that shares no edge
with containing triangles can share at most one vertex
with containing triangles.

Proof. Suppose that D shares two of its vertices with
containing triangles. First, both vertices cannot be
shared with the same containing triangle, since then the
edge between these two vertices would also be shared.
Now let A be one of the containing triangles and let B
be one of the containing triangles sharing the other ver-
tex. By Lemma 6, there must be a vertex of D inside
A. So then both vertices of D that are not shared with
A must be inside A, otherwise there would be an edge
between the interior and the exterior of A. In particu-
lar, the vertex shared by B and D lies inside A, which
means that A contains B. But the reverse is also true,
so B contains A as well, which is a contradiction. �

Lemma 9 A separating triangle that shares an edge
with a containing triangle cannot share the unshared
vertex with another containing triangle.

Proof. Suppose we have a separating triangle D =
(x, y, z) that shares an edge (x, y) with a containing tri-
angle A and the other vertex z with another containing
triangle B. By Lemma 6, x and y have to be inside
B, since they cannot be outside B and they cannot be
shared with B by Lemma 7. Since x and y are vertices
of A, this means that B contains A. Similarly, z has to
be inside A and since it is a vertex of B, A contains B.
This is a contradiction. �

Lemma 10 Given two separating triangles A and B
that share an edge e, any separating triangle that con-
tains A but not B must use e.

Proof. Suppose that we have a separating triangle D
that contains A, but not B and that does not use one
of the vertices v of e. By Lemma 6, v must be inside D.
But then D would also contain B, as v is a vertex of B
as well. Therefore D must share both vertices of e and
hence e itself. �

5 Conclusions and future work

We showed that any triangulation can be made 4-
connected using at most b(3n− 6)/5c flips, while there
are triangulations that require d(3n−10)/5e flips. Since
the difference is less than a single flip, these bounds are
tight. An obvious question is how to compute the nec-
essary flips efficiently. If we only guarantee that we use
at most n − 4 flips, it is possible to compute the set of
edges to be flipped in O(n) time. If we want to stay
below the upper bound however, we only have an algo-
rithm that computes the set of edges used in the proof
in O(n2) time.

Another interesting problem is to minimize the num-
ber of flips to make a triangulation 4-connected. We
showed that our technique is worst-case optimal, but
there are cases where far fewer flips would suffice. There
is a natural formulation of the problem as an instance of
3-hitting set, where the subsets correspond to separating
triangles and we need to pick a minimal set of edges such
that we include at least one edge from every separating
triangle. This gives a simple 3-approximation algorithm
that picks an arbitrary separating triangle and flips all
shared edges or an arbitrary edge if there are no shared
edges. However, it is not clear whether the problem is
NP-hard, so it might even be possible to compute the
optimal sequence in polynomial time.

Our result implies a new bound of 5.2n − 24.4 on
the diameter of the flip graph. It is likely that this
can be reduced further. For example, all of the current
algorithms use the same, single, canonical form. This
leaves several interesting questions open. Is there an-
other canonical form that gives a better upper bound?
Can we gain something from using multiple canonical
forms and picking the closest? And can we find or ap-
proximate the actual shortest flip path?

References

[1] P. Bose, J. Czyzowicz, Z. Gao, P. Morin, and D. R.
Wood. Simultaneous diagonal flips in plane triangula-
tions. J. Graph Theory, 54(4):307–330, 2007.

[2] P. Bose and F. Hurtado. Flips in planar graphs. Comput.
Geom., 42(1):60–80, 2009.

[3] H. Komuro. The diagonal flips of triangulations on the
sphere. Yokohama Math. J., 44(2):115–122, 1997.

[4] R. Mori, A. Nakamoto, and K. Ota. Diagonal flips in
Hamiltonian triangulations on the sphere. Graphs Com-
bin., 19(3):413–418, 2003.

[5] W. Sierpiński. Sur une courbe dont tout point est un
point de ramification. CR Acad. Sci. Paris, 160:302–305,
1915.

[6] W. T. Tutte. A theorem on planar graphs. Trans. Amer.
Math. Soc., 82:99–116, 1956.

[7] K. Wagner. Bemerkungen zum vierfarbenproblem.
Jahresber. Dtsch. Math.-Ver., 46:26–32, 1936.

23rd Canadian Conference on Computational Geometry, 2011

246

CCCG 2011, Toronto ON, August 10–12, 2011

Appendix

Lemma 11 If a separating triangle A contains a separating
triangle B, then there is a vertex of B inside A and no vertex
of B can lie outside A.

Proof. Let z be a vertex in the interior of B and let y be a
vertex of A that is not shared with B. Since the interior of
B is a subgraph of the interior of A and y is not inside A, y
must be outside B. Since every triangulation is 3-connected,
there is a path from z to y that stays inside A. This path
connects the interior of B to the exterior, so there must be
a vertex of B on the path and hence inside A.

Now suppose that there is another vertex of B outside
A. Since all vertices of a triangle are connected by an edge,
there is an edge between this vertex and the vertex of B
inside A. This contradicts the fact that A is a separating
triangle, so no such vertex can exist. �

Lemma 12 If a vertex x of a separating triangle B is inside
a separating triangle A, then A contains B.

Proof. Let y be a vertex of A that is not shared with B.
There is a path from y to the outer face that stays in the
exterior of A. There can be no vertex of B on this path, since
this would create an edge between the interior and exterior
of A. Therefore y is outside B.

Now suppose that A does not contain B. Then there is a
vertex z inside B that is not inside A. There must be a path
from z to x that stays inside B. Since x is inside A, there
must be a vertex of A on this path. But since y is outside B,
this would create an edge between the interior and exterior
of B. Therefore A must contain B. �

CCCG 2011, Toronto ON, August 10–12, 2011

247

23rd Canadian Conference on Computational Geometry, 2011

248

CCCG 2011, Toronto ON, August 10–12, 2011

Approximating the Medial Axis by Shooting Rays: 3D Case

Svetlana Stolpner∗ Kaleem Siddiqi† Sue Whitesides‡

Abstract

We consider an algorithm, first presented in [13], that
outputs regions intersected by the medial axis of a 3D
solid. In practice, this algorithm is used to approxi-
mate the medial axis with a collection of points having
a desired density. The quality of the medial axis ap-
proximation is supported by experimental results. De-
spite promising 2D results, the algorithm’s theoretical
guarantees are not understood in 3D. The contribution
of this article is to initiate the 3D theoretical analysis
by presenting properties of medial points that are not
detected by the algorithm for a finite sampling rate.

1 Introduction

Consider an orientable 3D solid Ω with boundary B.

Definition 1 The medial axis MA of Ω is the set of
centres of maximal (for the inclusion order) inscribed
balls in Ω.

For example, Figure 1 shows the medial axis of a box.
Figure 3 shows subsets of medial axes of more complex
inputs. The medial axis, introduced in [3], is a valuable
shape descriptor with applications to computer vision,
computer graphics, GIS and robotics [11], as it captures
local width information and part structure. Computing
an accurate, robust, and useful shape descriptor based
on the medial axis for complex 3D inputs remains a sub-
ject of ongoing research. In this article, we study the
theoretical properties of an algorithm for medial axis ap-
proximation, which is shown to be successful at generat-
ing qualitatively meaningful approximations in practice
in [14]. The following definition will be central:

Definition 2 The Euclidean distance transform of Ω
is given by D(p) = − infq∈B d(p, q), where p ∈ Ω and
d(p, q) denotes Euclidean distance.

The gradient of D, ∇D : R3 → R3 is a vector field
that assigns each point p the direction to its nearest
point on B, whenever this direction is uniquely defined.

∗School of Computer Science and Centre for Intelligent Ma-
chines, McGill University, sveta@cim.mcgill.ca
†School of Computer Science and Centre for Intelligent Ma-

chines, McGill University, siddiqi@cim.mcgill.ca
‡Department of Computer Science, University of Victoria,

sue@uvic.ca.

The vector field ∇D is uniquely defined for all points
inside Ω except for those on the medial axis. As me-
dial points have two or more nearest boundary loca-
tions, ∇D is multi-valued on the medial axis. This
property is the basis for Algorithms 1 and 2 that lo-
cate medial points: we will look for regions where ∇D
is multi-valued.

Figure 1: The medial
axis of a box.

Given a medial point
m ∈ MA, equidistant
from exactly two bound-
ary points, the directions
to its nearest boundary
points are called the spoke
vectors. The angle be-
tween the two spoke vec-
tors is twice the object an-
gle of m. The object angle
θ in Figure 1 is π/4. The
distance from m to B is the
radius of m. Object angle
and radius are popular measures used to guide pruning
of “insignificant” medial points [6, 8, 2, 12].

Previous Work When Ω is a polyhedron, [5] com-
putes the edges of the medial axis of a polyhedron with
a small number of faces using exact arithmetic. For ob-
jects whose boundary is given as a set of points, [1, 6] ap-
proximate the medial axis using a subset of the Voronoi
vertices of the set of boundary points, and show con-
vergence for a sufficient sampling density. However,
these methods are very sensitive to noise in the bound-
ary samples, and numerous techniques have been pro-
posed to prune undesirable portions of the computed
medial axes [15, 9]. Methods [7, 16, 4] recursively subdi-
vide space and consider the nearest boundary elements
to the spatial regions. Accuracy is guaranteed when
approximating the generalized Voronoi diagram, where
the diagram is localized by for a sufficiently small spa-
tial resolution. The average outward flux of ∇D in a
region shrinking to zero is used to decide the presence
of medial points in [10]; this concept is generalized to
non-zero regions for polyhedral inputs in [12]. Several
methods consider angles between ∇D vectors for pairs
of points p, q and conclude that a medial point exists on
the midpoint of (p, q) if the two vectors’ tails are closer
than their tips [17, 8].

Organization and Main Results Section 2 reviews
algorithms that analyze ∇D vectors for points sampled

CCCG 2011, Toronto ON, August 10–12, 2011

249

23d Canadian Conference on Computational Geometry, 2011

on the boundary of a sphere to determine if the sphere
contains a medial point, and if so, its approximate lo-
cation. We include experimental results that show col-
lections of medial points computed using this method,
where the density of medial points is user-prescribed.
Our main results are found in Section 3, which discusses
the positions of points to be sampled on the sphere,
and Section 4, which establishes the locations of nearest
boundary points to medial points that are not detected
by our algorithm for a finite sampling rate. Section 5
presents avenues for future work.

2 Shooting Rays Algorithm

Our algorithm for medial axis approximation is based
on the following property of ∇D:

Lemma 1 ([13]) Let p be a point in Ω that is not a
medial point. Let q = p + γ · ∇D(p), such that γ is
a scalar, q is not a medial point, and (p, q) lies inside
Ω. A medial point of Ω lies on (p, q) if and only if
∇D(p) 6= ∇D(q).

Consider a point p on a sphere S. Let l be a line
through p with direction ∇D(p). Define the opposite
of p, opp(p), to be the other point of intersection of l
with the surface of S. In case ∇D(p) is tangent to S
at p, opp(p) = p. Algorithm 1 uses a technique we call
shooting rays to conclude that a sphere is intersected
by the medial axis, when evidence of this is found. If
a medial point lies in S, Algorithm 1 will necessarily
return ‘True’ for a sufficiently dense set of points Φ.
However, for a finite Φ, a medial point may lie in S,
while Algorithm 1 returns ‘Undecided’.

Algorithm 1 DecideMA(B, S,Φ)

Require: Boundary B, sphere S, not intersecting B,
set of points Φ distributed on S.

Ensure: ‘True’ if S contains a medial point, ‘Undeter-
mined’ if no such conclusion can be drawn.

1: for all φi ∈ Φ do
2: if φi or opp(φi) is a medial point then
3: Return ‘True’
4: end if
5: if ∇D(φi) 6= ∇D(opp(φi)) then
6: Return ‘True’
7: end if
8: end for
9: Return ‘Undetermined’

Algorithm 2 performs binary search to estimate the
intersection of the medial axis with a line segment to
a desired accuracy ε. As discussed in [14], we have
successfully used Algorithm 2 to detect medial points
for polyhedral inputs. In our implementation, the in-
terior of a polyhedron is partitioned into regular sized

Algorithm 2 Retract(p, q,B, ε)
Require: Non-medial points p, q interior to B s.t. q =

p+ γ · ∇D(p) and ∇D(p) 6= ∇D(q), tolerance ε.
Ensure: A point within ε of the medial axis of B.
1: while d(p, q) > ε do
2: m = 1

2 (p+ q)
3: if m is a medial point then
4: Return m.
5: end if
6: if ∇D(m) 6= ∇D(p) then
7: q = m
8: else
9: p = m

10: end if
11: end while
12: Return p.

cubes (voxels) and a sphere is circumscribed about each
voxel. For those spheres deemed intersected by the me-
dial axis, we compute the approximate locations of a me-
dial point inside this sphere using Algorithm 2. Among
the approximate medial points found in a sphere cir-
cumscribed about voxel v, we store a single point that
lies inside v and has a sufficiently high object angle. The
voxel size determines the density of the computed set of
medial points. Figure 3 presents examples of the medial
points computed by our method for several polyhedra
of significant geometric complexity. Figure 2 shows the
effect of varying the voxel size on the density of medial
points computed.

Figure 3: Points on the medial axis of three solids with
triangle mesh boundaries computed with our method,
described in [14]. The object angle threshold used is 0.6
radians.

23rd Canadian Conference on Computational Geometry, 2011

250

CCCG 2011, Toronto ON, August 10–12, 2011

Figure 2: Medial points computed for the same solid with decreasing voxel size.

Ideally, if Algorithm 1 returns ‘Undetermined’ and a
medial point m lies in S, m should not be a signifi-
cant medial point, such as one of high object angle and
radius. In [13], we described an algorithm based on
an analysis of ∇D vectors in 2D and showed that the
medial points missed by the algorithm become less sig-
nificant as the density of samples on a circle increases.
However, designing effective tools for detecting medial
points in the 3D case is challenging. The next section
describes a situation in which a significant medial point
lies in S, while Algorithm 1 returns ‘Undetermined’.

3 Deep Samples

Suppose that DecideMA(B, S,Φ) returns ’Undeter-
mined’. It may happen that none of the line segments
(φ, opp(φ)) is long enough to penetrate deeply into S
and none intersects the medial axis. As a result, it is
possible to fail to detect medial points in S, as shown in
Figure 4. The medial points missed in this example are
of the highest object angle possible (π/2 for the medial
point at the sphere centre). Further, as the radius of S
can be chosen to be arbitrarily large, the medial points
missed have arbitrarily large radius.

Figure 4: When B
consists of two points
outside the sphere,
the medial axis is
shown as a dashed
line. Points Φ are big
dots on the sphere.

In order to improve the
ability of Algorithm 1 to
detect significant medial
points, we propose to con-
sider two additional query
points cin and cout, defined
as follows. Let the centre
of S be c. Let the nearest
point on the boundary B to
c be C, which is outside S
by the assumption that S
does not intersect B. De-
fine cin, cout ∈ S, where cout
is the intersection of S and
the ray at c with direction−−−→
(c, C) and cin is the inter-
section of S and the ray at

c with direction
−−−→
(C, c). Line

segment (cin, cout) is the longest line segment possible
connecting a pair of points on S. In the example in Fig-
ure 4, ∇D(cin) 6= ∇D(cout). Therefore, in this example,
by including cin and cout among the sampled points on
S, we are guaranteed to detect a medial axis point in S.
If we still do not detect a medial point in S, Lemma 2
characterizes where the set of nearest boundary points
to points sampled on S must lie.

In the proof of the following lemma, we use B(a,A)
to denote a closed ball centred at point a and having
point A on its boundary. Let Θ = Φ

⋃{opp(φi)|φi ∈ Φ}
be the set of all sampled points considered on S.

Lemma 2 If ∇D(cin) = ∇D(cout) and DecideMA
(B, S,Φ) returns ‘Undetermined’, then all the nearest
points on B to points in Θ lie above the plane π through

cin with normal
−−−→
(c, C).

Proof. Consider point p ∈ Θ whose nearest boundary
point is P . Consider the quantity (P −p) ·NS(p), where
NS(p) is the outer normal to S at p. If (P −p) ·NS(p) >
0, let p be opp(p). Then (P − p) ·NS(p) ≤ 0.

The nearest point on B to p, P , is inside or on
the ball Bp = B(p, C) and outside or on the ball
Bcin = B(cin, C). Refer to Figure 5. Consider the
plane of intersection of Bcin and Bp, π1. Consider also
the tangent plane to S at p, π2. Consider the plane ρ
passing through the points p, cin, cout. Plane ρ is or-
thogonal to planes π, π1 and π2.

Consider the orthogonal projection of P into ρ. Let
(cin, cout) be vertical in ρ. Then P ’s orthogonal pro-
jection lies in the half-plane left of π1 ∩ ρ and in the
half-plane bounded by π2∩ρ containing c. Let p′ be the
intersection of planes ρ, π1 and π2. We will show that
p′ lies above π, and hence, P lies above π. Consider the
line l through p and cin. Note that ∠coutpcin = π/2
and ∠Cpcin > π/2, since C is outside S. Let p′′ be the
intersection of the line l with π1. Since ∠Cpcin > π/2
and l is orthogonal to π1, p′′ is left of p on l. Hence,
p′′, just like p, is above π. Since π2 is tangent to S at p
and since p′′ is left of p on l, p′ is above l on π2 ∩ ρ and
hence, above π. �

Lemma 2 explains how using the sample points cin

CCCG 2011, Toronto ON, August 10–12, 2011

251

23d Canadian Conference on Computational Geometry, 2011

Figure 5: Side view at the objects of interest in the
proof of Lemma 2.

and cout restricts the situations where Algorithm 1 re-
turns ‘Undetermined’. The next section explains how
the set of all possible locations of the two nearest bound-
ary points to a medial point missed by Algorithm 1 can
be computed.

4 Nearest Boundary Points to Missed Medial Points

Suppose that Algorithm 1, DecideMA(B, S,Φ), re-
turns ‘Undetermined’. Consider the convex hull of the
points Θ = Φ

⋃{opp(φi)|φi ∈ Φ}, CH(Θ). Suppose that
there is a medial point m inside CH(Θ). We would like
to know the locations of m’s nearest points on B.

Recall that Ba = (a,A) is a closed ball with centre
a having point A on its boundary and let d(a, b) be
the Euclidean distance between points a and b. The
following tool will prove helpful in locating the nearest
boundary points to m:

Lemma 3 Consider two closed balls Ba = B(a, Y) and
Bb = B(b, Y). Then for any ball Bc = B(c, Y), c ∈
(a, b), Bc ⊆ Ba ∪Bb.

Proof. 1 Let x be the intersection of line segment (a, b)
with Ba∩Bb (a disk). Let I be the boundary of Ba∩Bb
(a circle). We want to show that the distance from c
to I is less than or equal to d(c, Y). Let X ∈ I. Then
d(c,X)2 = d(c, x)2+d(x,X)2. Also d(c, Y)2 = d(c, x)2+
d(x, Y)2. However, note that d(x,X)2 = d(x, Y)2, since
X and Y both lie on the circle I with centre x. It follows
that d(c, Y)2 = d(c,X)2 and d(c,X) = d(c, Y). Thus,
Bc is contained in the union of Ba and Bb. �

Let B be the set of closest points on B to Θ. Let
N = |Φ|. We will assume that there are exactly N

1We thank Nina Amenta for the idea behind this proof.

distinct points in B (this holds when the boundary B is
C1). We now explain how to construct a region of R3

that contains all the possible nearest boundary points
to a medial point m inside CH(Θ). This region will be
found by subtracting the “empty foam” from the “full
foam”, which we define and explain how to compute in
the following discussion.

Empty Foam For each point p ∈ Θ, if P ∈ B is the
nearest boundary point to p, then ball Bp = (p, P) has
an empty interior and the only point on its boundary is
P . Let Fe =

⋃
Bp \ B be the union of balls hereafter

called the empty foam.
Full Foam Consider the Voronoi diagram of B,

VD(B). Since m is a medial point, it is not one of the
points in Θ. Suppose that m is in A′s Voronoi region,
V (A), A ∈ B. Then m’s nearest point on B is no fur-
ther than d(m,A), i.e. its nearest boundary point is on
or inside the ball Bm = (m,A). Using the information
about A’s Voronoi neighbours, we will find the region
of space that contains Bm. This region of space will be
a union of balls, which we call the full foam of A, FAf .

The set Ff = {⋃FPf |P ∈ B} is called the full foam.
We now explain how the full foam of A can be com-

puted.
Let {a, opp(a)} ⊂ Θ be the points in Θ that have A

as their nearest boundary point. Let a′ be the nearest
point on the line segment (a, opp(a)) to m. It can be
easily shown that the nearest boundary point to a′ is

A. Consider the ray at a′ with direction
−−−−→
(a′,m). Let m′

be the intersection of this ray with either the bound-
ary of V (A), or CH(Θ), whichever occurs first. Let
Bm′ = B(m′, A). Let Ba′ = B(a′, A). By Lemma 3,
Bm ⊂ Ba′ ∪ Bm′ . Let Ba = B(a,A) and Bopp(a) =
B(opp(a), A). By Lemma 3, Ba′ ⊂ Ba ∪ Bopp(a). We
add Ba and Bopp(a) to FAf and now proceed to find
spheres that contain Bm′ .

There are several cases: (1) m′ is on a Voronoi face,
(2) m′ is on a Voronoi edge, (3) m′ is on a Voronoi
vertex, or (4) m′ is on CH(Θ). We consider each case
in turn.

Case 1. Suppose that the Voronoi face is a bisector
of points A and B in B. Let bis(A,B) denote the bisec-
tor of points A and B. It is a plane. Consider a plane at
m′ with normal direction (a,A). This plane necessarily

intersects bis(A,B) as
−−−−→
(a′,m) is necessarily not paral-

lel to
−−−→
(a,A) and the intersection is a line on bis(A,B)

passing through m′. By following this line, we will find
two points m∗1 and m∗2, where each point either lies on
an edge of V (A) (Case 2), a vertex of V (A) (Case 3),
or on the CH(Θ) (Case 4). Define Bm∗1 = B(m∗1, A)
and Bm∗2 = B(m∗2, A). Then Bm′ ⊂ Bm∗1 ∪ Bm∗2 by
Lemma 3. We now proceed to the respective cases to
find balls containing Bm∗1 and Bm∗2 .

Case 2. Suppose that the Voronoi edge of V (A) is
a trisector of points A, B and C in B. Starting from a

23rd Canadian Conference on Computational Geometry, 2011

252

CCCG 2011, Toronto ON, August 10–12, 2011

Figure 6: If a medial point m is in the convex hull of
the 6 sampled points on the boundary of the dark disk
with nearest boundary points A, B, and C, then the
nearest boundary points to m are inside the green disk
and outside the grey disks. The dashed lines are the
bisectors of A, B and C.

point m∗ on the edge, we will move up and down this
edge until either we hit a Voronoi vertex of V (A) (Case
3), or we hit the convex hull of Θ (Case 4) at points v1
and v2. Then m∗ ∈ (v1, v2). Let Bv1 = B(v1, A) and
Bv2 = B(v2, A). Then Bm∗ = B(m∗, A) is contained in
Bv1 ∪Bv2 by Lemma 3. We add Bv1 and Bv2 to the full
foam of A FAf .

Case 3. Any Voronoi vertex v of V (A) inside CH(Θ)
defines a ball Bv = B(v,A) which we add to the full
foam of A FAf .

Case 4. In this case, m′ ∈ CH(Θ). Suppose, for
a contradiction, that m′ is a vertex of CH(Θ). This
vertex cannot be a or opp(a) because we reached it by

following the direction
−−−−→
(a′,m) from a′. Any other point

in Θ is outside of V (A), and so is this vertex. But
then we would have hit the boundary of V (A) before

hitting this vertex when following the ray
−−−−→
(a′,m) from

a′. Therefore, m′ lies on an edge of CH(Θ) (Case 5) or
on the interior of some triangle of CH(Θ) (Case 6).

Case 5. In this case, point m′ ∈ V (A) lies on an
edge e of CH(Θ). In case e is (a, opp(a)), then Bm′ =
B(m′, A) is contained in Ba = B(a,A) and Bopp(a) =
B(opp(a), A) and these balls have already been added
to FAf . Suppose edge e is (a, b) or (opp(a), b) for some
point b ∈ Θ outside V (A). Then V (A) intersects (a, b)
at some point x. By Lemma 3, either Bm′ ⊂ Ba ∪ Bx
or Bm′ ⊂ Bopp(a) ∪ Bx, where Bx = B(x,A). In this
case, we add Bx and either Ba or Bopp(a) to FAf . Now
suppose edge e is (b, c), which is intersected by V (A),
for some pair of points b, c ∈ Θ outside of V (A). In

this case there are two points v1 and v2 on (b, c) that
are the intersections of V (A) with (b, c), such that m′ ∈
(v1, v2). If Bv1 = B(v1, A) and Bv2 = B(v2, A), then
Bm′ ⊂ Bv1 ∪Bv2 . We add Bv1 and Bv2 to FAf .

Case 6. In this case, point m′ ∈ V (A) lies on the
interior of a triangle t of CH(Θ). At least one vertex
of triangle t is a or opp(a). Suppose it is a. Then by

following direction
−−−−→
(a,m′), we will hit either (6-1) an

edge of t at point m′′, or (6-2) the boundary of V (A)
at point m′′. Ball Bm′ = B(m′, A) is contained in Ba =
B(a,A) and Bm′′ = B(m′′, A). In case 6-1, we proceed
to Case 5 for point m′′ (recalling that Ba is already in
FAf). In case 6-2, if m′′ is on an edge or vertex of V (A)

and we add Bm′′ to FAf (recalling that Ba is already in

FAf). Otherwise, if m′′ is on a face of V (A), then the
intersection of this face and t is a line segment (v1, v2),
where v1 and v2 are either on a Voronoi edge or vertex,
or on an edge of t. If we define Bv1 = B(v1, A) and
Bv2 = B(v2, A), then Bm′ ⊂ Bv1 ∪Bv2 . In this case, we
add Bv1 and Bv2 to FAf (recalling that Ba is already in

FAf).
In this argument, for a medial point m in

CH(Θ)|V (A), we have added balls to FAf passing
through A centred at the following types of points q:

• Type 1: q ∈ (a, opp(a))

• Type 2: q is a vertex of V (A) inside or on CH(Θ)

• Type 3: q is an intersection of an edge of V (A)
with CH(Θ)

• Type 4: q is an intersection of a face of V (A) with
edges of CH(Θ).

By the argument above, which uses multiple invo-
cations of Lemma 3 to create a set of spheres that
contain Bm = B(m,A) for an arbitrarily positioned
m ∈ CH(Θ)|V (A), it follows that Bm ⊂ FAf . Starting
with an arbitrary point m ∈ V (A), we can construct
the full foam of A by taking the union of the four types
of balls described above.

The union of the full foams of each boundary point
P ∈ B gives the full foam: Ff = {⋃FPf |P ∈ B}. Recall
that the empty foam is Fe = {⋃Bp|p ∈ Θ \ B}, where
Bp = B(p, P), and P ∈ B is the nearest boundary point
to p. The region Fe does not contain any points in B.

We have shown the following lemma:

Lemma 4 Suppose that DecideMA(B, S,Θ) returned
‘Undetermined’. Let B be the set of nearest boundary
points to Φ and let Θ = Φ

⋃{opp(φi)|φi ∈ Φ}. If there
are exactly |Φ| distinct points in B, then for any medial
point m ∈ CH(Θ), its nearest boundary points lie in
Ff\Fe.

Observe that when computing the full foam, we need
only consider the vertices of VD(B) inside or on CH(Θ),

CCCG 2011, Toronto ON, August 10–12, 2011

253

23d Canadian Conference on Computational Geometry, 2011

the intersections of edges of VD(B) with CH(Θ), and the
intersection of faces of VD(B) with edges of CH(Θ).

We can easily compute all the potential nearest
boundary points to a medial point m in CH(Θ) by find-
ing the intersection of the boundary B with all the balls
of the full foam of type 1-4. The quality of the approx-
imation can be measured as the maximum distance be-
tween pairs of boundary points to missed medial points
in CH(Θ), which is the maximum of the maximum dis-
tance between pairs of points in FAf for all A ∈ B.

5 Conclusions and Future Work

We have considered algorithms, based on the analysis
of the gradient of the Euclidean distance transform on
a sphere, that compute points within a user-chosen dis-
tance from the medial axis of an arbitrary 3D solid.
Our experimental results on complex polyhedral inputs
demonstrate that such an analysis of the∇D vector field
has a clear practical utility for the approximation of the
medial axis. The contribution of this article has been
to initiate the study of the quality of the approximation
offered by such algorithms by establishing properties of
the nearest boundary points to those medial points that
are not detected. Much remains to be done in order to
understand what theoretical guarantees can be offered
by a method that studies a finite set of ∇D vectors in
a fixed-radius spherical region in order to decide if this
region is intersected by the medial axis in 3D and higher
dimensions. Below we list several open problems. Me-
dial point quality may be measured using either object
angle, radius, or distance from the medial point to the
query region.

1. Show that if DecideMA(B, S,Φ) returns ‘Unde-
termined’, the quality of medial points present in
sphere S decreases as the density of Φ increases.

2. Suppose that DecideMA(B, S,Φ) returns ‘Unde-
termined’. For each sphere in Ff , we add its centre
to the set of query points Φ to create a set of query
points Φ′. Next, execute DecideMA(B, S,Φ′). By
carrying out this operation repeatedly, what can be
said about the quality of the missed medial points
as more iterations are considered?

3. Design other rules based on the analysis of a fi-
nite number of nearest boundary points to query
points on a sphere that enable detection of medial
points inside the sphere, such that the quality of
the missed medial points can be shown to decrease
by increasing the density of query points used, for
a fixed-size query region S.

References

[1] N. Amenta, S. Choi, and R. Kolluri. The power crust,
unions of balls, and the medial axis transform. Com-
putational Geometry: Theory and Applications, 19(2-
3):127–153, 2001.

[2] D. Attali and J.-O. Lachaud. Delaunay conforming iso-
surface, skeleton extraction and noise removal. Com-
putational Geometry Theory and Applications, 19(2-
3):175–189, 2001.

[3] H. Blum. Biological shape and visual science. Journal
of Theoretical Biology, 38:205–287, 1973.

[4] I. Boada, N. Coll, N. Madern, and J. A. Sellarès. Ap-
proximations of 2D and 3D generalized Voronoi dia-
grams. Computer Mathematics, 85(7):1003–1022, 2008.

[5] T. Culver, J. Keyser, and D. Manocha. Exact compu-
tation of the medial axis of a polyhedron. Computer
Aided Geometric Design, 21(1):65–98, 2004.

[6] T. K. Dey and W. Zhao. Approximating the medial axis
from the Voronoi diagram with a convergence guaran-
tee. Algorithmica, 38:387–398, 2004.

[7] M. Etzion and A. Rappoport. Computing Voronoi
skeletons of a 3-d polyhedron by space subdivision.
Computational Geometry: Theory and Applications,
21:87–120, 2002.

[8] M. Foskey, M. C. Lin, and D. Manocha. Efficient com-
putation of a simplified medial axis. In Solid Modeling
and Applications, pages 96–107, 2003.

[9] B. Miklos, J. Giesen, and M. Pauly. Discrete scale axis
representations for 3D geometry. In SIGGRAPH, 2010.

[10] K. Siddiqi, S. Bouix, A. R. Tannenbaum, and S. W.
Zucker. Hamilton-Jacobi skeletons. IJCV, 48(3):215–
231, 2002.

[11] K. Siddiqi and S. Pizer, editors. Medial representations:
mathematics, algorithms and applications. Springer,
2008.

[12] S. Stolpner and K. Siddiqi. Revealing significant medial
structure in polyhedral meshes. In 3DPVT, pages 365–
372, 2006.

[13] S. Stolpner and S. Whitesides. Medial axis approxima-
tion with bounded error. In International Symposium
on Voronoi Diagrams, pages 171–180, 2009.

[14] S. Stolpner, S. Whitesides, and K. Siddiqi. Sampled me-
dial loci for 3D shape representation. CVIU, 115:695–
706, 2011.

[15] R. Tam and W. Heidrich. Shape simplification based
on the medial axis transform. In Visualization, page 63,
2003.

[16] J. M. Vleugels and M. H. Overmars. Approximating
generalized Voronoi diagrams in any dimension. Tech-
nical Report UU-CS-1995-14, Utrecht University, 1995.

[17] Y. Yang, O. Brock, and R. N. Moll. Efficient and robust
computation of an approximated medial axis. In Solid
Modeling and Applications, pages 15–24, 2004.

23rd Canadian Conference on Computational Geometry, 2011

254

CCCG 2011, Toronto ON, August 10–12, 2011

An Incremental Algorithm for High Order Maximum Voronoi Diagram
Construction

Khuong Vu ∗ Rong Zheng∗

Abstract

We propose an incremental approach to compute the
order-k maximum Voronoi diagram of disks in the plane.
In our approach, we start with an order-k Voronoi di-
agram of disk centers and iteratively expand disks and
update the changes of the diagram until all disks reach
their targeted size. When disks expand continuously,
the structure of the diagram changes discretely. The

algorithm takes O
(⌈

rmax−rmin

dmin

⌉
k2N logN

)
time com-

plexity, where N , rmax and rmin are respectively the
number of disks, the maximum and minimum radii of
disks, and dmin is the minimum distance between two
disk centers. Our algorithm is amiable to distributed
implementation.

1 Introduction

Consider a set of N disks S = {D1(o1, r1),D2(o2, r2),
. . . ,Dn(oN , rN)}, where oi and ri are respectively the
center and radius of disk Di (1 ≤ i ≤ N). We define the
distance from a point p to disk Di as dmax(p,Di) = d(p,
oi) + ri, where d(·, ·) is the Euclidean distance between
two points. The locus of points closer to Di than to Dj ,
h(Di,Dj), is one of the half-planes determined by the
bisector b(Di,Dj) = {p|dmax(p,Di) = dmax(p,Dj)}, or
b(Di,Dj) = {p|d(p, oi) − d(p, oj) = rj − ri}. In gen-
eral, b(Di,Dj) is a hyperbolic curve. Let V(Di) de-
note the locus of points closer to Di than to any other
disk in S. Thus, V(Di) =

⋂
i 6=j h(Di,Dj). It has been

shown in [4] that if Di does not contain any other disks,
then V(Di) 6= ∅. In addition, V(Di)’s boundary consists
of edges, which are hyperbolic segments, and vertices,
which are intersections of adjacent edges. V(Di) is re-
ferred to as the Voronoi face associated with disk Di,
and the set {V(Di), 1 ≤ i ≤ n} is referred to as the
maximum Voronoi diagram, or max VD for short, of S.
In [4], the authors proposed an algorithm to construct
the max VD of n disks in O(T (N) + N logN), where
T (N) is the time of the nearest neighbor query under
dmax metric. An example of max VD is shown in Fig-
ure 1. As seen in the figure, V(D8) = ∅ since it contains
D6.

∗Department of Computer Science, University of Houston,
{khuong.vu, rzheng}@cs.uh.edu

Figure 1: The max Voronoi diagram of 8 disks.

Similar to the high order Voronoi diagram of points
first studied by Lee [8], we generalize the concept of
max VD such that a Voronoi face is associated with a
set of disks, H ⊂ S for |H| > 1. Denote Vk(H,S),
where |H| = k,H ⊂ S, the locus of points closer to all
disks of H than to any disk in S \ H. We define the
order-k max VD of S, V k(S), as a collection of Voronoi
faces corresponding to all subsets H of S (|H| = k),
i.e., V k(S) =

⋃
H⊂S Vk(H,S), |H| = k. We adopt the

definition in [3] to formally define the order-k max VD
as follows:

Definition 1 For i, j ∈ S, let D(Di,Dj) = {p|dmax(p,
Di) < dmax(p,Dj)}. Let H ⊂ S, |H| = k. We define

Vk(H,S) =
⋂

h∈H,i6∈H
D(Dh,Di)

the order-k maximum-Voronoi face of a set of disks H
with respect to S. The order-k maximum-Voronoi dia-
gram of S is defined as

V k(S) =
⋃

H,H′⊂S;H 6=H′;|H|=|H′|=k
Vk(H,S)

⋂
Vk(H ′, S)

In [10], Lee’s incremental algorithm is applied to con-
struct order-k max VD under the assumption that no
disk contains any other disk. Accordingly, each Voronoi
face of order-(k − 1), Vk−1(H,S), is tessellated by the
order-1 Voronoi diagram of some disks to create the next
order Voronoi faces. It has been shown that only disks
associated with edges of Vk(H,S) need to be consid-
ered for tessellation. In general placement of disks, the

CCCG 2011, Toronto ON, August 10–12, 2011

255

23rd Canadian Conference on Computational Geometry, 2011

(a) order-1 max VD. The
curve is the bisector of disks
D1 and D2. V(D3) = ∅.

(b) order-2 max VD. The
curve is the bisector of disks
D1 and D3. V(D1,D2) 6= ∅,
V(D2,D3) 6= ∅.

Figure 2: Incremental construction does not apply as
disks are contained inside other ones.

assumption does not always hold. As illustrated in Fig-
ure 2, although D3 is associated with no edge in the
order-1 max VD of S = {D1,D2,D3}, we have V2({D2,
D3}, S) 6= ∅.

In the paper, we propose an incremental algorithm
to construct order-k max VD of disks. The intuition is
as follows. Consider a Voronoi region, Vk(H,S), in an
order-k max VD whose edge set is E. The generation
of a new edge in E or the disappearance of an exist-
ing edge in E is referred to as an event of E. We ob-
serve that changing a disk’s radius continuously makes
some Voronoi vertices move along an identifiable trajec-
tory while the others do not change. More importantly,
disks’ expansion does not necessarily induce an event of
E. A disk may expand continuously but events happen
discretely. This is illustrated in Figure 3. There are two
kinds of vertices, i.e., new and old , denoted by circles
and solid squares, respectively. As D3 expands, vertices
of both kinds move along particular edges (arrows in
the figures). We observe that solid squares move away
their corresponding opposite vertex, while circles move
toward their corresponding opposite vertex. Vertices
may meet while moving. In this case, they may “de-
stroy” an edge and create another one simultaneously.
Additionally, a face may degenerate due to the meeting
of moving vertices. Another face may be born simulta-
neously. In the following sections, we provide details of
events that happen when a disk expands.

We discuss the changes of the diagram as disks ex-
pand in Section 3. Then, we propose an incremental
algorithm to construct the order-k maximum Voronoi
diagrams in Section 4. We conclude the paper in Sec-
tion 5. We next introduce the concepts of order-k max
VD in Section 2.

2 Preliminary

In the following discussion, we assume that no more
than 2 disks’ centers are co-linear, and no point in the
plane is equal-distant to more than 3 disks under the
dmax metric. We summarize the notations used through-
out the paper as follows:

Dk(ok, rk): The disk centered at ok with radius rk. We
use the notion Dk for simplicity.

S: The set of N disks {D1, D2, . . . , DN}.

Sεi : The modified S, in which the radius of Di expands
by a positive amount ε. Sεi = (S \ {Di})

⋃{Di′(oi,
ri + ε)}.

H: A subset of S.

Hε
i : The updatedH. Hε

i = (H\{Di})
⋃{Di′(oi, ri+ε)}.

dmax(p,Di): The maximum distance from p to Di.
dmax(p,Di) = d(p, oi) + ri, where d(·, ·) is the Eu-
clidean distance between two 2D points.

Vk(S): The max Voronoi face corresponding to disk Dk
in the max VD of S. We simply refer to this as Vk,
when no confusion occurs.

V (S): The max VD of the disk set S.

Vk(H,S): An order-k max Voronoi face associated with
H, where |H| = k.

V k(S): The order-k max VD of S, or “diagram” for
short. When k = 1, V k(S) ≡ V (S).

vi,j,h: The max VD vertex corresponding to disks Di,
Dj , and Dh.

ei,j: The edge of the max VD corresponding to disks Di
and Dj . ei,j is a hyperbola segment or an infinite
hyperbola.

bi,j: The locus of points p such that dmax(p,Di) =
dmax(p,Dj). bi,j is a hyperbola with foci being oi
and oj , or a straight line when ri = rj . We refer to
bi,j as the bisector of oi and oj .

Two circles D1(o1, r1) and D2(o2, r2) are internally tan-
gent if d(o1, o2) = |r1 − r2|. In the rest of the paper,
by stating that a circle D1 is internally tangent to D2,
we mean D2 lies interior to D1 unless stated otherwise.
In addition, we say a circle D1 contains D2 if D2 lies
interior to D1 but D1 is NOT internally tangent to D2.

We review two kinds of vertices described in [8]. As-
sume p is equal-distant to 3 disks under the dmax metric,
i.e., Di,Dj , and Dq. Let C be the circle centered at p
and internally tangent to the three disks. Assume that
C contains k−1 other disks. By Definition 1, p belongs
to 3 Voronoi faces of order k, namely, Vk(H

⋃{Di}, S),
Vk(H

⋃{Dj}, S), and Vk(H
⋃{Dq}, S). In this case, p

is referred to as a vertex of V k(S). Furthermore, p is
also at the intersection of 3 Voronoi faces of order k+1,
namely, Vk+1(H

⋃{Di,Dj}, S), Vk+1(H
⋃{Dj ,Dq}, S),

and Vk+1(H
⋃{Dq,Di}, S). We say that, p is a new ver-

tex of V k(S) and is an old vertex of V k+1(S). A new

23rd Canadian Conference on Computational Geometry, 2011

256

CCCG 2011, Toronto ON, August 10–12, 2011

vertex of order-k Voronoi diagram becomes an old ver-
tex in the order-(k+ 1) Voronoi diagram; an old vertex
of order-k Voronoi diagram does not exist in the next
order Voronoi diagram.

To facilitate our discussion on disk expansion later,
we introduce the notion of pseudo disk. A pseudo disk,
denoted by D∞, is a disk centered at the infinity with
unit radius. Consider the infinite endpoint p of an infi-
nite edge ei,j in an order-1 max VD. We have dmax(p,
Dj) = dmax(p,Di) = ∞. Therefore, we can associate
p with a pseudo disk, that is, p is a vertex correspond-
ing to 3 disks, namely, Dj , Di, and D∞. This way,
we enclose the open end of each order-1 Voronoi face
V({Di}, S) with 2 edges, both associated with a pseudo
disk. Therefore, all faces in any order-1 max VD are
considered “closed”. By similar arguments, the open
end of the infinite edge ei,j is bounded by a new vertex
corresponding to disks Di, Dj , and D∞.

We study the evolution of the order-k max VD as a
disk expands. More specifically, we investigate 2 cases,
namely, i) the expanding disk shares edges with at least
one disk, and ii) the expanding disk does not share edges
with any disk. We refer the disks of the first case as type-
I , and the latter as type-II. Expanding a type-II disk
eventually makes it a type-I, while expanding a type-I
disk possibly makes some type-I disks type-II. In the
following sections, we establish fundamental properties
as a disk in an order-k max VD expands. We study
type-I disks in section 3.1 and discuss in section 3.2 the
expansion of a type-II disk.

Before proceeding, we introduce the notation of max-
imum circumference. Consider an edge ei,j of 2 faces
Vk(H1, S), Vk(H2, S). There exists a circle that is in-
ternally tangent to Di and Dj , and contains H1

⋃
H2.

We refer to the circle as the maximum circumference
of H1 and H2 associated with ei,j , or simply maximum
circumference. Similarly, a maximum circumference as-
sociated with a vertex is defined as the circle centered
at the vertex and internally tangent to the disks con-
structing the vertex. If ei,j is an infinite edge, there
exists a maximum circumference centered at infinity.

3 Geometrical analysis of order-k max VD

In this section, we study the changes of the order-k max
VD as disks of type-I and type-II expand. The proofs
are omitted due to space limit.

3.1 Expansion of a type-I disk

Expanding a disk Di, where Di ∈ H, makes some faces
Vk(H,S) shrink.

Lemma 1 Let Vk(H,S) and Vk(Hε
i , S

ε
i) be the max

Voronoi face of H and Hε
i in S and Sεi , respectively.

Then, Vk(Hε
i , S

ε
i) ⊂ Vk(H,S).

Figure 3: The change of order-2 max VD of four disks
as disk D3 expands. Circles are old vertices, solid dots
are new vertices. Dash curves are the diagram corre-
sponding to the expanded D3. Vertices move as shown
in arrows.

Roughly speaking, expanding a disk leads to changes
in vertices, edges and faces of V k(S). Vertices move
along edges and meet other ones. Formally,

Lemma 2 Consider a vertex vi,j,q of Vk(H,S). As Di
expands, vi,j,q moves along bj,q. If vi,j,q is new, it moves
away from the other end of ej,q elongating ej,q. Other-
wise, it moves towards the other end of ej,q to shorten
ej,q.

This is illustrated in Figure 3. As D3 expands, the
next vertex v1 moves to elongate edge e1, and old ver-
tices v2 and v3 move to shorten edges e2 and e3, re-
spectively. As a high order max VD evolves, different
sequences of events occur as different types of vertices
and edges are involved. The meeting of 2 new vertices
or 2 old vertices results in an edge-death/birth, while
the meeting of an old vertex and a new one additionally
leads to face-death/birth.

Lemma 3 Let ei,j be an edge of Vk(H,S) with 2 new
vertices, e.g., vi,j−1,j and vi,j,j+1 in counter-clockwise
order in Vk(H,S). ei,j−1 and ei,j+1 are the edges of
Vk(H,S) incident to vi,j−1,j and vi,j,j+1, respectively.
Let p be the intersection of bj,j−1 and bj,j+1. Assume
that the next event as Di expands is the meeting of
vi,j−1,j and vi,j,j+1 at p. If Dj−1 6= Dj+1, then with
further expansion of Di, ei,j = ∅ and ej−1,j+1 6= ∅. In
addition, both vertices of ej−1,j+1 are new.

Lemma 4 Consider an edge ei,j of 2 faces Vk(H1, S)
and Vk(H2, S) with 2 old vertices vi,j,n and vi,j,m, where
{Di,Dn,Dm} ⊂ H1 and {Dj ,Dn,Dm} ⊂ H2, respec-
tively. Let Vk(H3, S) and Vk(H4, S) be the other faces,
incident to vi,j,n and vi,j,m, respectively. If Dm 6= Dn,
and Dn expands such that the next event is the meeting
of vi,j,n and vi,j,m, further expansion of Dn results in i)
ei,j = ∅, and ii) “new” edge en,m 6= ∅ of Vk(H3, S) and
Vk(H4, S).

Lemmas 3 and 4 establish the changes in the diagram
as vertices of the same kind meet. In general, the meet-
ing of the 2 ends of an edge makes the edge disappear.

CCCG 2011, Toronto ON, August 10–12, 2011

257

23rd Canadian Conference on Computational Geometry, 2011

(a) (b)

Figure 4: The evolution of edges ei,j and en,m as new
vertices move due to the expansion of Dn.

(a) (b)

Figure 5: The evolution of edges ei,j and en,m as old
vertices move due to the expansion of Dn.

We refer to this as an edge-death. If the two vertices dif-
fer by one associated disk, another edge is born simul-
taneously. We refer to this as an edge-birth. Vertices of
the newly born edge are new or old depending on the
types of the meeting vertices. As two vertices are con-
structed by the same set of disks, the edge-death makes
some face disappear. We refer to this as a face-death
event. We skip the discussion on this kind of vertex
meeting due to the space limit.

Figures 4 and 5 illustrate the results of Lemmas 3 and
4, respectively. Figures 4 shows the evolution of edge
en,m connecting 2 new vertices. Initially, en,m 6= ∅, and
ei,j = ∅ (Figure 4a). As Dn expands, 2 vertices of en,m
moves along the corresponding edges toward Vk(H1, S)
(arrow). If they meet, en,m disappears and ei,j is born
(Figure 4b). Both vertices are new. Figure 5 shows the
evolution of edge ei,j connecting 2 old vertices. Initially,
ei,j 6= ∅ and en,m = ∅ (Figure 5a). As Dn expands, a
vertex of ei,j moves toward the opposite end (arrow),
which makes ei,j shrink. Eventually, ei,j degenerates as
2 vertices of ei,j meet, and en,m is born (Figure 5b).
Both vertices are old. Next, we present the change of
the diagram as vertices of different kinds meet.

Lemma 5 Assume that the new vertex vi,j,n meets the
old one vi,j,m as Dn expands to Dn′(on, rn′), which re-
sults in the degeneration of edge ei,j. The following
holds: i) Either face incident to ei,j, e.g., Vk(H1, S),
where H1 = H

⋃{Dn,Di} disappears; ii) Prior to the
degeneration, Vk(H1, S) shares edges ej,n, em,n, em,i,

(a) The structure of the diagram prior to the
disappearance of face Vk(H

⋃{Di,Dn}).

(b) The structure of the diagram posterior to
the disappearance of face Vk(H

⋃{Di,Dn}).

Figure 6: The evolution of faces Vk(H
⋃{Di,

Dj}), Vk(H
⋃{Di,Dm}, S), Vk(H

⋃{Dn,Dm}, S),
Vk(H

⋃{Dj ,Dn}, S), Vk(H
⋃{Di,Dn}, S), and

Vk(H
⋃{Dj ,Dm}, S) (|H| = k − 1). Squares de-

notes new vertices. Circles denotes old vertices.

and ej,i with only four neighbor faces Vk(H2, S), Vk(H3,
S),Vk(H4, S), and Vk(H5, S), respectively, where H2 =
H
⋃{Di,Dj}, H3 = H

⋃{Di,Dm}, H4 = H
⋃{Dn,

Dm}, H5 = H
⋃{Dj ,Dn}; and iii) Posterior to the

degeneration of Vk(H1, S), Vk(H
⋃{Dj ,Dm}, S) 6= ∅,

and ej,n, em,n, em,i, and ej,i of faces Vk(H2, S), Vk(H3,
S), Vk(H4, S), Vk(H5, S) are replaced by ei,m, ei,j, en,j,
en,m, respectively. Thus, Vk(H

⋃{Dj ,Dm}, S) consists
of 4 edges, namely, ei,m, ei,j, en,j, and en,m, and 4 ver-
tices, including 2 new vertices, namely, vi,n,m and vi,j,n,
and 2 old vertices, namely, vi,j,m, and vj,n,m.

Figure 6 illustrates the changes in the diagram as old
vertices meet new vertices. Initially, Vk(H

⋃{Di,Dn},
S) 6= ∅ and Vk(H

⋃{Dj ,Dm}, S) = ∅. As Dn expands,
old vertices vi,j,n and vi,n,m move along edges ei,j and
ei,m (arrows), respectively, and meet new vertex vi,j,m
making face Vk(H

⋃{Di,Dn}, S) disappear. Prior to
its death, face Vk(H

⋃{Di,Dn}, S) shares 4 edges,
i.e., ei,j , en,j , en,m, and ei,m with faces Vk(H

⋃{Dj ,
Dn}, S),Vk(H

⋃{Di,Dj}, S),Vk(H
⋃{Di,Dm}, S),

and Vk(H
⋃{Dn,Dm}, S), respectively (Figure 6a).

Posterior to the degeneration of face Vk(H
⋃{Di,

Dn}, S), face Vk(H
⋃{Dj ,Dm}, S) is born, which

respectively shares 4 edges, i.e., em,n, em,i, ej,i, and
ej,n with faces Vk(H

⋃{Dj ,Dn}, S),Vk(H
⋃{Di,Dj},

S),Vk(H
⋃{Di,Dm}, S), and Vk(H

⋃{Dn,Dm}, S)

23rd Canadian Conference on Computational Geometry, 2011

258

CCCG 2011, Toronto ON, August 10–12, 2011

Figure 7: Illustration of a type-II disk’s expansion.
Dashed lines are the order-4 diagram of 5 points. Solid
lines are maximum circumferences centered at infinite
vertices. Light solid circles are the maximum circum-
ferences centered at 2 finite vertices (v1 and v2).

(Figure 6b).

3.2 Expansion of a type-II disk

A disk Di is a type-II disk if it does not shares any edge
with other disks, i.e., ei,j = ∅, ∀Dj ∈ S, j 6= i. We can
show that a disk Di is type-II in Vk(S) when Di contains
k other disks, or Di corresponds to all faces in Vk(S),
i.e., Di ∈ H for all Vk(H,S)’s in Vk(S). In this section,
we only discuss the latter case. It will be shown later
that limiting our consideration to this case is sufficient
to construct the order-k Voronoi diagrams. The basic
idea is, we expand type-II disks to make them type-I,
and then apply the techniques developed for type-I disks
as discussed earlier. We can show that when a type-II
disk expands, it only touches a maximum circumference
centered at an infinite vertex. We illustrate the claim
in Figure 7, which shows the order-4 Voronoi diagram
of 5 disks of zero radius, S = {D1,D2, . . . ,D5}. The
Voronoi regions are V4({D1,D2,D4,D3}, S), V4({D1,
D2,D5,D3}, S), V4({D1,D5,D4,D3}, S), and V4({D2,
D4,D5,D3}, S), which make D3 a type-II disk. The
diagram (dashed) consists of 2 finite vertices, v1 and v2,
whose corresponding maximum circumferences are C6,
and C7 shown by light solid circles. The maximum cir-
cumferences centered at the infinite end of edges ei are
shown by straight lines Ci, i ∈ {1, 2, 3, 4}. As shown in
the figure, as D3 expands (dashed circle), it first touches
C5, the maximum circumference centered at the infinite
end of edge e5 at a point in segment D2D5. In fact, we
can show that:

Lemma 6 It takes O(k2N) to process an order-k max
VD of N disks so that it contains only type-I disks.

We are now in the position to sketch an algorithm
for constructing order-k maximum Voronoi diagrams of
disks.

4 The incremental algorithm for order-k max VD
construction

In constructing the order-k max VD of disks S, we start
with an order-k Voronoi diagram (VD) of disk centers
and iteratively expand each disk in S by a fixed amount

dmin, where dmin
∆
= mini,j∈S d(oi, oj)− ε. We stop when

all disks reach their targeted size. The resulted diagram
is the order-k max VD of S. Let rmax = maxi∈S ri and
rmin = mini∈S ri. Clearly, the total number of rounds a
disk needs to expand is bounded by d rmax−rmin

dmin
e. This

implies that the algorithm terminates. Since disks ex-
pand by dmin, they are not contained in other disks un-
til they reach their targeted sizes. Furthermore, when a
disk contains k other disks in its expansion, it becomes
type-II since the k disks have reached their targeted
sizes. Thus, its further expansion does not change the
diagram. Therefore, the algorithm proceeds in such a
way that all expanding disks are always type-I. As dis-
cussed in the previous sections, expanding disks do not
make any new type-II disk. Thus, it is always possi-
ble to evaluate the expansion such that the next vertex
meeting happens. The procedure of order-k max VD
construction is summarized in Algorithm 1.

We first derive the number of edges and vertices in
the order-k max VD by extending the results in [8].

Lemma 7 The number of vertices and edges in an
order-k max VD of N disks is O(kN).

Algorithm 1 takes the set S of N disks as inputs. It
starts by constructing the order-k VD of disk centers
(line 2), which in fact is the order-k max VD of disks
whose radii are all equal to the minimum radius of N
disks, denoted as S′. The process takes O(k2N logN)
in running time ([8]). Since the order-k VD may con-
tain type-II disks, we first make them type-I. This takes
O(k2N). Then, we iteratively scan all disks in S and
expand those whose radii are smaller than their respec-
tive sizes an amount dmin (lines 6 - 19). dmin can be
computed in O(N) using the order-1 VD of S′, which is
a byproduct in the incremental construction of V k(S′).
As each disk increases by dmin, a disk Di cannot contain
disk Dj unless Dj has reached it targeted size. There-
fore, it validates the earlier claim that we only need to
consider type-II disks that do not contain other disks.

Theorem 1 The order-k max VD of N disks can be

constructed in O
(⌈

rmax−rmin

dmin

⌉
k2N logN

)
, where rmax

and rmin are respectively the maximum and minimum
radii of N disks, and dmin is the minimum distance be-
tween 2 disk centers.

Proof. (Sketch) We analyze the expansion phase
(lines 6-end). Let Dn be the disk that expands first,
and en,m be the edge that first disappears due to the

CCCG 2011, Toronto ON, August 10–12, 2011

259

23rd Canadian Conference on Computational Geometry, 2011

expansion of Dn resulting in the birth of edge ei,j (Fig-
ure 4). When edge ej,i is born, the number of edges
affected by the expansion of disks Di and Dj increases
by 2, while that of Dm decreases by 1. In general, when
an edge of a face disappears, the total number of edges
needed to be processed as other disks expand increases
by 1. This observation also applies to two old vertices,
as well as the case when an old vertex and a new ver-
tex meet. In the order-k max VD, a face corresponds
to k disks, thus each edge in a face may be processed
k times. Since the number of edges in an order-k max
VD is O(kN), the total number of edges processed as N
disks, each expands once, is O(k2N). Line 13 in Algo-
rithm 1 requires a sorted list. Since the total number of
edges processed is O(k2N), line 13 takes O(k2N logN).
Since a disk expands dmin in each round, it needs at most
d rmax−rmin

dmin
e expansions. Therefore, the time complexity

of Algorithm 1 is O
(⌈

rmax−rmin

dmin

⌉
k2N logN

)
. �

Algorithm 1: Order-k Maximum Voronoi diagram
of disks
input : A set of N disks

S = {D1(o1, r1),D1(o2, r2), . . . ,DN (oN , rN)}
output: The order-k max VD of S, V k(S)

rmin ← mini ri;1

S′ ← {D1(o1, r
′
1 = rmin), . . . ,DN (oN , r

′
N = rmin)};2

Construct V k(S′);3

process V k(S′) to transform type-II disks to type-I;4

dmin ← mini,j∈S d(oi, oj)− ε ;5

repeat6

foreach Di such that r′i < ri do7

if (r′i + dmin) > ri then8

max inc← r′i − ri;9

else10

max inc← dmin;11

while r′i < max inc do12

find the smallest expansion e such that an13

event happens ;
if r′i + e < max inc then14

r′i ← r′i + e;15

update V k(S′) due to the event’s16

consequences;
else17

r′i ← max inc;18

re-calculate edges/vertices19

corresponding to Di;

until until all disks reach their targeted size ;20

5 Conclusion

We have proposed an incremental algorithm to con-
struct order-k maximum Voronoi diagram of disks in
the plane. In our approach, disks iteratively expand

from zero radius until they reach the targeted size, and
the diagram is updated at certain sizes of disks. The al-

gorithm runs in O
(⌈

rmax−rmin

dmin

⌉
k2N logN

)
time, where

rmax and rmin are respectively the maximum and mini-
mum radii of N disks, and dmin is the minimum distance
between 2 disk centers. Our contribution is two-fold.
First, our algorithm provides a mechanism to quickly
update the diagram of an order-k max VD as disk radii
change (but disk centers are fixed). Second, our ap-
proach is amiable to distributed implementation. When
a disk expands, it needs only information of the neigh-
bors to update the diagram structure.

6 Acknowledgment

We thank the referees for providing constructive com-
ments.

References

[1] F. Aurenhammer. Power diagrams: properties, algo-
rithms and applications. SIAM J. Comput., 16(1):78–
96, 1987.

[2] F. Aurenhammer. Improved algorithms for disc and
balls using power diagrams. J. Algorithms, 9(2):151–
161, 1988.

[3] F. Aurenhammer, T. U. Graz, R. Klein, F. Hagen, and
P. I. Vi. Voronoi diagrams. In Handbook of Computa-
tional Geometry, pages 201–290. Elsevier Science Pub-
lishers B.V. North-Holland.

[4] M. I. Karavelas and M. Yvinec. Dynamic additively
weighted voronoi diagrams in 2d. pages 586–598, 2002.

[5] D.-S. Kim, D. Kim, and K. Sugihara. Voronoi dia-
gram of a circle set from voronoi diagram of a point
set: I. topology. Computer Aided Geometric Design,
18(6):541–562, 2001.

[6] D.-S. Kim, D. Kim, and K. Sugihara. Voronoi diagram
of a circle set from voronoi diagram of a point set: Ii. ge-
ometry. Computer Aided Geometric Design, 18(6):563–
585, 2001.

[7] D.-S. Kim, B. Lee, C.-H. Cho, and K. Sugihara. Plane-
sweep algorithm of o(nlogn) for the inclusion hierarchy
among circles. In ICCSA (3), pages 53–61, 2004.

[8] D.-T. Lee. On k-nearest neighbor voronoi diagrams in
the plane. IEEE Trans. Comput., 31(6):478–487, 1982.

[9] M. I. Shamos. Computational geometry. PhD thesis,
New Haven, CT, USA, 1978.

[10] K. Vu and R. Zheng. Robust coverage under uncer-
tainty in wireless sensor networks. In 2011 Proceedings
IEEE INFOCOM (INFOCOM 2011), pages 2015–2023,
Shanghai, P.R. China, 4 2011.

23rd Canadian Conference on Computational Geometry, 2011

260

CCCG 2011, Toronto ON, August 10–12, 2011

Approximating a Motorcycle Graph by a Straight Skeleton

Stefan Huber∗ Martin Held†

Abstract

We investigate how a straight skeleton can be used to
approximate a motorcycle graph. We explain how to
construct a planar straight-line graph G such that the
straight skeleton of G reveals the motorcycle graph of
M , for every given finite set M of motorcycles. An
application of our construction is a proof of the P-
completeness of the construction problem of straight
skeletons of planar straight-line graphs and simple poly-
gons with holes.

1 Introduction

1.1 Motivation

The straight skeleton S(G) of an n-vertex planar
straight-line graph G is a skeleton structure similar to
Voronoi diagrams, but consists of straight-line segments
only. It was introduced by Aichholzer et al. [1] for poly-
gons, and was generalized to planar straight-line graphs
by Aichholzer and Aurenhammer [2]. The motorcycle
graph problem was introduced by Eppstein and Erick-
son [5] in an attempt to extract the essential subprob-
lem of constructing straight skeletons. Indeed, the algo-
rithms by Cheng and Vigneron [4] and Huber and Held
[6] use motorcycle graphs as a tool for the construction
of straight skeletons.

In this work we reverse the question and ask how
the motorcycle graph can be computed by employing
straight skeletons: We show that for a given set of mo-
torcycles we can construct a planar straight-line graph
G such that certain parts of S(G) approximate the mo-
torcycle graph up to a given tolerance. Since Epp-
stein and Erickson [5] proved that the motorcycle graph
construction problem is P-complete, we can provide a
proof that constructing the straight skeleton for pla-
nar straight-line graphs and polygons with holes is P-
complete as well. As a consequence, there is no hope to
find an efficient parallel algorithm for straight skeletons,
unless P = NC.

We note that Eppstein and Erickson were the first
to mention the P-completeness of straight skeletons: In
[5] they claim that arguments similar to those used for

∗Universität Salzburg, FB Computerwissenschaften, Salzburg,
Austria, shuber@cosy.sbg.ac.at
†Universität Salzburg, FB Computerwissenschaften, Salzburg,

Austria, held@cosy.sbg.ac.at

proving the P-completeness of motorcycle graphs would
apply to straight skeletons as well. Further, they sug-
gest that a motorcycle graph can be approximated by
the straight skeleton of a set of sharp isosceles triangles,
with one triangle per motorcycle. No details and no
proof are given, though. In this paper we pick up their
suggestion and prove that the straight skeleton of a set
of meticulously chosen triangles does indeed approxi-
mate the motorcycle graph of the motorcycles given.

1.2 Preliminaries and Definitions

Consider a planar straight-line graph G with n vertices,
none of them being isolated. Vertices of degree one are
called terminals. According to [2], the definition of the
straight skeleton S(G) of G is based on a wavefront-
propagation process: Each edge e of G sends out two
wavefronts, which are parallel to e and have unit speed.
At terminals of G an additional wavefront orthogonal
to the single incident edge is emitted. The wavefront
W(G, t) of G at some time t can be interpreted as a 2-
regular kinetic straight-line graph. Except for the ver-
tices originating from the terminals of G, all vertices
of W(G, t) move along bisectors of straight-line edges
of G, see Fig. 1. During the propagation of W(G, t)
topological changes occur: a wavefront edge may col-
lapse (“edge event”) or a wavefront edge may be split
by a wavefront vertex (“split event”). The straight-line
segments traced out by the vertices of W(G, t) form
S(G). The edges of S(G) are called “arcs” and bound
the “faces” of S(G). Wavefront vertices are called reflex
(resp. convex) if they have a reflex (resp. convex) angle
at the side where the propagate to. The arcs of S(G)
which are traced out by reflex (resp. convex) vertices of
W(G, t) are called reflex (resp. convex) arcs.

Consider a set of moving points in the plane, called

Figure 1: Left: The straight skeleton (dotted) is defined
by propagating wavefronts (gray) of the input G (bold).
Right: The motorcycle graph (red) induced by G.

CCCG 2011, Toronto ON, August 10–12, 2011

261

23rd Canadian Conference on Computational Geometry, 2011

e e

feasible area feasible area

m1 m1 m2

face
face

Figure 2: The feasible area of a face. Left: only m1 has
e as an arm. Right: m1 and m2 have e as an arm.

“motorcycles”, that drive along straight-line rays ac-
cording to given speed vectors. Each motorcycle leaves
a trace behind it and stops driving — it “crashes” —
when reaching the trace of another motorcycle. The
arrangement of these traces is called motorcycle graph,
cf. [5]. We denote by M(m1, . . . ,mn) the motorcycle
graph of the motorcycles m1, . . . ,mn where each motor-
cycle mk is given by a start point pk and speed vector
vk. We adopt the assumption by Cheng and Vigneron
[4] that no two motorcycles may crash simultaneously.

In [6] we defined a motorcycle graph on a planar
straight-line graph G, by generalizing Cheng and Vi-
gneron’s concept [4]. The idea is that a motorcycle m
is defined for each reflex wavefront vertex v in W(G, 0)
that starts from v and has the same speed vector as v.
We call the wavefront edges incident to v the arms of
m; the arm left (resp. right) of the speed ray of m is
called left (resp. right) arm. Additionally, we assume
that motorcycles crash if they hit an edge of G. We
denote the resulting motorcycle graph by M(G), see
Fig. 1. The following two theorems were proved in [4]
for non-degenerate1 polygons with holes and in [6] for
general planar straight-line graphs G. (The concept of
the feasible area of an edge e ofG is illustrated in Fig. 2.)

Theorem 1 M(G) covers the reflex arcs of S(G).

Theorem 2 Consider a face f(e) of S(G) correspond-
ing to the wavefront edge e. Then f(e) is contained in
a “feasible area” which is bounded by (i) e at time zero,
(ii) by traces of motorcycles m that have e as an arm
and (iii) by rays perpendicular to e starting the end of
those motorcycle traces, if existing, and at the end of e
otherwise.

2 Approximating a motorcycle graph by a straight
skeleton

Let us consider n motorcycles m1, . . . ,mn, where each
motorcycle mi has a start point pi and a speed vector
vi. We assume that no two motorcycles crash simultane-
ously into each other. Can we find an appropriate planar
straight-line graph G such that (a subset of the reflex
arcs of) S(G) and M(m1, . . . ,mn) cover each other up
to some given tolerance?

1A polygon is called non-degenerate if no two of the resulting
motorcycles crash simultaneously into each other.

∆i

pi

si1
αi

pi + λ · vivi

Figure 3: At each point pi we set an isosceles triangle
∆i with an angle of 2αi, such that λ|vi| = 1/sinαi and
the motorcycle trace si bisects the angle of ∆i at pi.

Theorem 1 tells us that the reflex arc of S(G) that
corresponds to a motorcycle mi approximates the trace
of mi up to some gap. One observes that the faster m
moves the better its trace tends to be approximated by
the corresponding reflex arc in S(G). It is easy to see
thatM(m1, . . . ,mn) remains unchanged if we multiply
each speed vector vi by a positive constant λ. In or-
der to obtain reflex arcs of S(G) that overlap with the
traces in M(m1, . . . ,mn) we put at each start point pi
an isosceles triangle ∆i with an angle of 2αi at pi, where

αi := arcsin
1

λ|vi|
, (1)

and λ large enough such that λ|vi| ≥ 1 for all 1 ≤ i ≤ n,
see Fig. 3. The lengths of the arms of ∆i will be specified
later.

By definition of S(G), a reflex wavefront vertex ui is
emanated from each pi and its speed vector equals λ-
times the speed vector of the motorcycle mi. However,
note that further motorcycles are introduced at the ad-
ditional corners of each triangle. We can now rephrase
our initial question: can we always find λ large enough
such that those reflex arcs that are traced out by ui ap-
proximateM(m1, . . . ,mn) up to some given tolerance?

Let us denote by si the trace of mi and by si+Dr the
Minkowski sum of si and the disk with radius r centered
at the origin. The motorcycle traces ofM(m1, . . . ,mn)
are closed sets and two traces si, sj intersect if and only
if mi crashed into mj or vice versa. Hence there is an
µ > 0 such that for all 1 ≤ i < j ≤ n it holds that
mi crashes into mj or vice versa if and only if si + Dµ

intersects sj +Dµ. For example, let µ be a third of the
minimum of the pairwise infimum distances of disjoint
traces si, sj . We further assume that µ is small enough
such that pi +Dµ does not intersect any sj +Dµ for all
1 ≤ i, j ≤ n, except if pi ∈ sj . (This will be needed for
Lemma 4.)

We define the planar straight-line graph G by the set
of triangles ∆i at each start point pi, where the length
of the arms incident to pi are set to µ/2 and the angle
of ∆i at pi is given by Eqn. (1).

Lemma 3 For any 1 ≤ i ≤ n the wavefronts of ∆i stay
within si +Dµ until time µ/4 for λ ≥ 2

|vi| .

Proof. Consider a triangle ∆i at some start point pi.
Note that λ is large enough such that 2αi is at most

23rd Canadian Conference on Computational Geometry, 2011

262

CCCG 2011, Toronto ON, August 10–12, 2011

si + Dµpi + Dµ

sipi∆i

pi + Dµ/4

si + Dµpi + Dµ

sipi
∆i

pi + Dµ/4

µ/4

µ/4

within
feasible areas

within
feasible areas

Figure 4: The wavefronts of ∆i are bounded to si +Dµ

until time µ/4. Top: the motorcycle mi did not crash
until that time. Bottom: the motorcycle mi did crash
into another trace (dotted line segment) until that time.

60o. Hence, the other two angles of ∆i are at least
60o and, therefore, the two additional motorcycles at
∆i have a speed of at most 2. Since the start points of
those motorcycles are µ/2 away from pi and they drive
at most a distance of µ/2 in time µ/4, they stay within
pi +Dµ.

According to Thm. 2, we consider the feasible areas of
the edges of ∆i restricted to an orthogonal distance of
at most µ/4 to the edges of ∆i, see Fig. 4. We distinguish
two cases: the motorcycle mi (i) did crash or (ii) did not
crash until time µ/4. However, in both cases the corner
points of these restricted feasible areas are contained
within si +Dµ, the restricted feasible areas are convex
and si+Dµ is convex. Hence, the wavefronts of ∆i until
time µ/4 are contained within si +Dµ. �

We denote by −→si the ray starting at pi in direction vi
and define

L := max
1≤i,j≤n

d(pi,
−→si ∩ −→sj). (2)

Note that we may only consider indices i, j for which−→si ∩−→sj is not empty. If no such indices i, j exist then we
set L to zero. Further, let us denote by ϕi,j ∈ [0, π] the
non-oriented angle spanned by vi and vj , with ϕi,j =
ϕj,i. Next we define

Φ := min
1≤i<j≤n

R+ ∩ {ϕi,j , π − ϕi,j}. (3)

If this set it is empty, i.e. if all motorcycles are driving
on parallel tracks, then we set Φ := π/2.

Lemma 4 Let mi denote a motorcycle crashing into
the motorcycle mj. The wavefronts of ∆i do not cause
a split event for uj until time µ/4 for λ ≥ 2

mink |vk| sin Φ .

Proof. We note that λ ≥ 2
|vk| sin Φ holds for any 1 ≤

k ≤ n which means that

sinαk ≤
1

|vk|λ
≤ 1

2
sin Φ ≤ sin

Φ

2
,

since sin is concave on [0, π]. By further noting that sin
is monotone on [0, π/2] we see that

αk ≤
Φ

2
∀ 1 ≤ k ≤ n.

The case where mj also crashes into mi is excluded
since two motorcycles do not crash simultaneously by
assumption. The cases where si and sj are collinear
are either trivial or excluded by assumption. Without
loss of generality, we may assume that si is right of −→sj ,
see Fig. 5. We denote by q the endpoint of the reflex
straight-skeleton arc incident to pi. Let us consider the
left (resp. right) bisector between the left (resp. right)
arm of mi and the right arm of mj , starting from q.

From the proof of Lem. 3 it follows that in order that
uj is involved in a split event with a wavefront from
∆i until time µ/4 it is necessary that one of both bisec-
tors intersects −→sj . (Check Figure 4: The two additional
motorcycles from ∆i stay within pi + Dµ. Hence, we
only have to consider the arms of mi.) Let us consider
the right bisector. Recall that αi, αj ≤ Φ/2 and that
π − ϕi,j ≥ Φ. In the extremal case, where equality is
attained for all three inequalities, the right bisector is
just parallel to sj , but strictly right of −→si . In all other
cases the bisector rotates clockwise at q such that our
assertion is true in general. Analogous arguments hold
for the left bisector. Summarizing, the vertex uj does
not lead to a split event with the wavefronts of ∆i until
time µ/4. �

q

pi

pj

si

sj

αi

αj

π − ϕi,j
≥ 0le

ft
bi
se
ct
or

right bisector

≥ 0

Figure 5: The wavefronts of ∆i do not cause a crash
with uj .

CCCG 2011, Toronto ON, August 10–12, 2011

263

23rd Canadian Conference on Computational Geometry, 2011

Lemma 5 Let mi denote a motorcycle crashing into
the motorcycle mj. For any ε > 0 and

λ ≥ 1

mink |vk| · sin Φ
·max

{
2,

L

min{µ/4, ε}

}
,

the trace si is covered up to a gap size ε by the reflex
arc traced out by ui.

Proof. We will prove the following: consider an arbi-
trary point q on si whose distance to the endpoint of si
is at least ε. Then we show that q is reached by ui until
time µ/4.

Consider Fig. 6. We first show that until time µ/4 the
vertex ui may only cause a split event with the wave-
fronts of ∆j . By Lem. 3, we know that until time µ/4
only the wavefronts of a triangle ∆k could cause a split
event with ui if sk and si intersect. Hence, mk crashed
against si. However, by Lem. 4 it follows that ui does
not lead to a split event with the wavefronts from ∆k.

W.l.o.g., we may assume that si lies right to −→sj . To
show that ui reaches q until time µ/4 it suffices to prove
that q has a smaller orthogonal distance to the left arm
of mi than to the right arm of mj and that the orthog-
onal distance of q to the left arm of mi is at most µ/4.

The orthogonal distance of q to the left arm of mi is
at most L · sinαi. The orthogonal distance of q to the
right arm of mj is at least the orthogonal distance of
q to sj . However, this distance is at least ε · sinϕi,j .
Summarizing, our assertion holds if

L · sinαi ≤ min{µ/4, ε sinϕi,j},

which is

λ ≥ L

|vi| ·min{µ/4, ε sinϕi,j}
.

However, our choice for λ fulfills this condition. The
case where sj and si are collinear such that mi crashes

< L

L · sinαi >

ε ≤
q

ε sinϕi,j ≤

ϕi,j

pi

pj

si

sj

αi

Figure 6: The point q has a smaller orthogonal distance
to the left arm of mi than to the right arm of mj .

at pj is similar. The wavefront of ∆j reaches q at least
in time ε/2 and vi reaches q in at most L

λ|vi| time. �

Let us define by S∗λ(m1, . . . ,mn) ⊂ S(G) the union
of the reflex straight-skeleton arcs which emanate from
p1, . . . , pn, where G is given as described above. Then
we get the following corollary of Lem. 5.

Corollary 6

lim
λ→∞

S∗λ(m1, . . . ,mn) =M(m1, . . . ,mn)

This corollary also asserts that a point q on a motor-
cycle trace si of a motorcycle mi that never crashed is
covered by an arc of S∗λ(m1, . . . ,mn) for large enough λ.
However, this is easily proved by applying Lem. 3 and
Lem. 4, and by finally finding λ large enough such that
the point q is reached by ui until time µ/4.

3 Computing the motorcycle graph

In order to actually compute the motorcycle graph
M(m1, . . . ,mn) from S∗λ(m1, . . . ,mn) for some big λ,
we still have to cope with the remaining gaps within
S∗λ(m1, . . . ,mn). For deciding whether a motorcycle mi

actually escapes or crashes into some trace sj we want
to determine λ large enough such that the following two
conditions hold:

• If mi crashes into a trace sj then ui leads to a split
event until the time µ/4 and the reflex arc traced
out by ui has an endpoint in a straight-skeleton
face of an edge of ∆j . (The right arm of mj if si is
right of −→sj and the left arm if si is left of −→sj .)

• If mi escapes then ui did not lead to a split event
until the time µ/4.

Lemma 7 Consider S(G) with

λ ≥
max

{
2, 8L

µ

}

mink |vk| · sin Φ
.

Then mi crashes into sj if and only if ui leads to a
split event with a wavefront emanated by ∆j until time
µ/4. In particular, mi escapes if and only if ui does not
lead to a split event until time µ/4.

Proof. We distinguish two cases. First, suppose that
the motorcycle mi crashed into the trace sj , see Fig. 7.
We may assume without loss of generality that si is
right of −→sj . First we note that by our choice of λ we
may apply Lem. 3. We denote by p the intersection
si ∩ sj . Further, we set ε := µ/8 which allows us to
apply Lem. 5 since

max

{
2,

8L

µ

}
≥ max

{
2,

L

min{µ/4, ε}

}
.

23rd Canadian Conference on Computational Geometry, 2011

264

CCCG 2011, Toronto ON, August 10–12, 2011

q

pi

pj

si

sj

≤ L
λ|vj |

p+Dµ/8

p

µ
8

Figure 7: The reflex wavefront vertex at pi is forced to
cause a split event until time µ/4.

Thus, the endpoint q of the reflex arc traced out by ui
has a distance of at most µ/8 to p.

On the other hand, uj reaches p in at most L
λ|vj | time.

We conclude that the wavefront edge from the right
arm of mj reaches q in at most L

λ|vj | + µ
8 time which

is bounded from above by

L · µ ·mink |vk| · sin Φ

8 · L · |vj |
+
µ

8
≤ µ

4

by our choice of λ. Summarizing, the point q is swept by
the wavefront of the right arm of mj and is reached by
ui until µ/4 time. Hence, the vertex ui must have caused
a split event until the requested time by crashing into
the wavefront of the right arm of mj .

For the second case assume that mi escapes. Lem-
mas 3 + 4 imply that ui does not lead to a split event
until time µ/4. �

In order to compute the motorcycle graph by em-
ploying a straight skeleton algorithm, we would have
to compute the appropriate values for L,Φ, µ in order
to determine a sufficiently large λ. While L and Φ are
already given independent of M(m1, . . . ,mn), the fol-
lowing lemma gives a formula for µ for which the actual
motorcycle graph is not needed to be known. (In the
following lemma we take d(−→si , ∅) to be infinity.)

Lemma 8 For any two disjoint motorcycle traces si
and sj the Minkowski sums si + Dµ and sj + Dµ are
disjoint if

µ :=
1

3
min

1≤i,j,k≤n
R+ ∩ {d(−→si , pj), d(−→si ,−→sj ∩ −→sk)}.

Proof. In order to guarantee that the Minkowski sums
are disjoint, it suffices to set µ to a lower bound of a
third of the minimum of all pairwise infimum distances
of disjoint traces si and sj .

Let us consider two disjoint traces si and sj . We
choose two points qi ∈ si, qj ∈ sj for which d(si, sj) =
d(qi, qj) holds. We may assume that either qi is an end-
point of si or qj is an endpoint of sj . (If sk is a ray,

the only endpoint is pk.) If qj is the start point of sj
then we have d(si, sj) = d(si, pj) ≥ 3µ. If qj is the op-
posite endpoint of sj — and hence sj is a segment —
then sj crashed into some other motorcycle trace. So
there is a trace sk such that qj = sj ∩ sk. Again we get
d(si, sj) = d(si, qj) ≥ 3µ. Analogous arguments hold if
qi is an endpoint of si. �

After computing appropriate values for L,Φ and µ
for a set of motorcycles m1, . . . ,mn, we can determine
a sufficiently large λ and build the input graph G by
constructing the triangles ∆1, . . . ,∆n as described. Af-
ter computing the straight skeleton S(G) we determine
the length of each motorcycle’s trace by applying the
conditions listed in Lemma 7.

4 Constructing the straight skeleton is P-complete

Atallah et al. [3] described a framework for reductions of
the P-complete Planar Circuit Value problem and
used it to prove the P-completeness of several geometric
problems. However, investigating the P-completeness of
geometric problems often requires the availability of ex-
act geometric computations which are not in NC. In or-
der to investigate the P-completeness of geometric prob-
lems Attalah et al. [3] propose that the answers to basic
geometric queries are provided by an oracle.

A basic building block for showing that the straight
skeleton is P-complete is the construction of the trian-
gles ∆i. Assume pi, αi, vi, µ, and λ are given. We fur-
ther assume that an oracle determines the intersection
points of two circles with given centers and radii. Then
we can construct ∆i as follows. We first compute the
point qi = pi + λvi, which is the position of mi at time
one, see Figure 3. Then we construct the circle C1 with
[pi, qi] as diameter and the circle C2 centered at pi with
radius 1. The two circles C1, C2 intersect at two points,
say ai, bi. The triangle ∆∗i with vertices ai, bi, qi is an
isosceles triangle with angle 2αi at qi and therefore sim-
ilar to ∆i. The length of the arms of ∆∗i at qi are at
most λ|vi|. By scaling the triangle by the factor µ/2λ|vi|
and by translating it accordingly, we get a triangle with
the desired geometry. (Actually, the arms of the con-
structed triangle are a bit shorter than µ/2, but this is
only to our advantage.)

Eppstein and Erickson [5] proved that the computa-
tion of the motorcycle graph is P-complete by presenting
a LOGSPACE reduction of the Circuit Value problem
to the computation of the motorcycle graph. The Cir-
cuit Value problem asks for the output value of a gate
in a binary circuit with n input gates, which is presented
an input vector of binary values. Eppstein and Erick-
son demonstrated how to translate the Circuit Value
problem to the motorcycle graph construction problem
by simulating each gadget using motorcycles. The val-
ues 1 and 0 on a wire are represented by the presence

CCCG 2011, Toronto ON, August 10–12, 2011

265

23rd Canadian Conference on Computational Geometry, 2011

or absence of a motorcycle on a track. The original
question for the output value of a particular gate of
the circuit can be translated to the question whether
a specific motorcycle crashes until some distance from
its start point. In other words, Eppstein and Erickson
proved that the decision problem whether a specific mo-
torcycle crashes until some distance from its start point
is P-complete.

Lemma 9 The construction of the straight skeleton
of a planar straight-line graph is P-complete under
LOGSPACE reductions.

Proof. Eppstein and Erickson reduced the Circuit
Value problem to a specific motorcycle graph problem.
The next step is to reduce the motorcycle graph prob-
lem to the straight-skeleton problem: we construct a
suitable input graph G which allows us to apply Lem. 7
for deciding whether a specific motorcycle crashes until
some distance from its start point.

According to [5] all O(1) different types of motorcycle
gadgets are arranged in an n× n grid, and each gadget
takes constant space and consists of O(1) motorcycles.
For determining a sufficiently large λ we need bounds
on L,Φ and µ. An upper bound on L is the length of
the diagonal of the n×n grid. Further, sin Φ ≥ 1/2 since
the direction angles of the motorcycles are all multiples
of π/4. A lower bound on µ can be found by consid-
ering each gadget independently and taking the mini-
mum among them. Finally, we build G by constructing
for each motorcycle (independently from each other) an
isosceles triangle, as described in Section 2. �

We can easily extend the construction of G to form a
polygon with holes, by adding a sufficiently large bound-
ing box to G. As remarked in [5], only one motorcycle
m may leave the bounding box B of the n×n grid. The
motorcycle m encodes the output of the binary circuit
by leaving B if the circuit evaluates to 1 and by crashing
within B if the circuit evaluates to 0.

By Lemma 7, the reflex wavefront vertex u, which
corresponds to m, encodes the output of the binary cir-
cuit by leading to a split event until time µ/4 if and only
if the circuit evaluates to 0. Lemma 3 implies that the
wavefront vertices stay within B +Dµ, except possibly
u. Hence, we could enlarge B by 2µ at each side and
add it to G such that the wavefronts of B do not inter-
fere with the wavefronts of the triangles until time µ/4,
except for u. Still, we can determine the output of the
binary circuit by checking whether the reflex straight-
skeleton arc that corresponds to u ends within B +Dµ

until time µ/4. (Recall that the end of a reflex straight-
skeleton arc marks the place where the reflex wavefront
vertex led to a split event.)

Corollary 10 The construction of the straight skeleton
of a polygon with holes is P-complete under LOGSPACE
reductions.

Unfortunately, our P-completeness proof cannot be
applied easily to simple polygons. Consider the five
motorcycles depicted in Fig. 8. A polygon, whose reflex
straight-skeleton arcs would approximate the motorcy-
cle traces, would need to connect the start points of m
and m1, . . . ,m4. But in order to decide where the red
square formed by the traces of m1, . . . ,m4 can be pen-
etrated by the polygon, while avoiding to stop a motor-
cycle too early, it would be necessary to know a specific
pair mi,mj of motorcycles such that mi is guaranteed to
crash into the trace of mj . However, deciding whether
a specific motorcycle crashes does not seem much easier
than computing the whole motorcycle graph. Hence,
it remains open whether the computation of straight
skeletons of polygons is P-complete.

m

m1

m2 m3

m4

Figure 8: These motorcycle traces cannot be approxi-
mated easily by a straight skeleton of a simple polygon.

References

[1] O. Aichholzer, D. Alberts, F. Aurenhammer, and
B. Gärtner. Straight Skeletons of Simple Polygons. In
Proc. 4th Internat. Symp. of LIESMARS, pages 114–124,
Wuhan, P.R. China, 1995.

[2] O. Aichholzer and F. Aurenhammer. Straight Skele-
tons for General Polygonal Figures in the Plane. In
A. Samoilenko, editor, Voronoi’s Impact on Modern Sci-
ence, Book 2, pages 7–21. Institute of Mathematics of the
National Academy of Sciences of Ukraine, Kiev, Ukraine,
1998.

[3] M. Atallah, P. Callahan, and M. Goodrich. P-complete
Geometric Problems. Internat. J. Comput. Geom. Appl.,
3(4):443–462, 1993.

[4] S.-W. Cheng and A. Vigneron. Motorcycle Graphs and
Straight Skeletons. Algorithmica, 47:159–182, Feb. 2007.

[5] D. Eppstein and J. Erickson. Raising Roofs, Crashing
Cycles, and Playing Pool: Applications of a Data Struc-
ture for Finding Pairwise Interactions. Discrete Comput.
Geom., 22(4):569–592, 1999.

[6] S. Huber and M. Held. Theoretical and Practical Results
on Straight Skeletons of Planar Straight-Line Graphs. In
Proc. 27th Annu. ACM Sympos. Comput. Geom., pages
171–178, Paris, France, June 2011.

23rd Canadian Conference on Computational Geometry, 2011

266

CCCG 2011, Toronto ON, August 10–12, 2011

Small Octahedral Systems

Grant Custard ∗ Antoine Deza † Tamon Stephen ‡ Feng Xie §

Abstract

We consider set systems that satisfy a certain octahe-
dral parity property. Such systems arise when study-
ing the colourful simplices formed by configurations of
points of in Rd; configurations of low colourful simpli-
cial depth correspond to systems with small cardinality.
This construction can be used to find lower bounds com-
putationally for the minimum colourful simplicial depth
of a configuration, and, for a relaxed version of colourful
depth, provide a simple proof of minimality.

1 Introduction

We are interested in set systems of the following type:
the base set S is partitioned into colours S1,S2, . . .Sm

for some m, and the sets consist of one element from
each Si. In other words, these are m-uniform hyper-
graphs where each hyperedge has a unique intersection
with each colour Si, we will sometimes refer to the sets
that belong to a given system as edges. We call a subset
of S colourful if it contains at most one point from each
Si. Thus the edges of any system are colourful. When a
colourful set has a point from Si, we will call this point
the ith coordinate of the set.

We call a colourful set of m − 1 points which misses
Si an î-transversal, and call any pair of disjoint î-
transversal an octahedron. We say that an m-uniform
collection of colourful edges forms an octahedral system
if it satisfies the following property:

Property 1 For any octahedron Ω, the parity of the
set of edges using points from Ω and a fixed point si for
the ith coordinate is the same for all choices of si.

The term octahedron comes from the following geo-
metric motivation. A point p ∈ Rd has simplicial depth
k relative to a set S if it is contained in k closed simplices

∗Advanced Optimization Laboratory, Department of Com-
puting and Software, McMaster University, Hamilton, Ontario,
Canada lounsbg@mcmaster.ca

†Advanced Optimization Laboratory, Department of Com-
puting and Software, McMaster University, Hamilton, Ontario,
Canada and Equipe Combinatoire et Optimisation, Université
Pierre et Marie Curie, Paris, France, deza@mcmaster.ca

‡Department of Mathematics, Simon Fraser University, British
Columbia, Canada tamon@sfu.ca

§Advanced Optimization Laboratory, Department of Com-
puting and Software, McMaster University, Hamilton, Ontario,
Canada xief@mcmaster.ca

generated by (d + 1) sets of S. This was introduced by
Liu [21] as a statistical measure of how representative p
is of S, and is a source of challenging problems in com-
putational geometry – see for instance [1], [14] and [22].
More generally, we consider colourful simplicial depth,
where the single set S is replaced by (d + 1) sets, or
colours, S1, . . . ,Sd+1, and the colourful simplices con-
taining p are generated by taking one point from each
set.

From any such colourful configuration, we can form
a system of vectors V where v = (s1, . . . , sd+1) is in
V if and only if the colourful simplex described by v
contains 0. In this context, î-transversals are simply
vectors with the ith coordinate removed, and octahedra
are pairs of disjoint î-transversals. It is a topological fact
that such a system satisfies Property 1, see for instance
the Octahedron Lemma of [4] for a proof. Thus V is an
octahedral system with m = d + 1. When the points of
an octahedron Ω from V considered as points in Rd form
a cross-polytope, i.e. a d-dimensional octahedron, in the
geometric sense that conv(Ω) is a cross-polytope and
same coloured points are not adjacent in the skeleton
of the polytope, then the even and odd case correspond
to 0 lying inside and outside Ω respectively. Figure 1
illustrates this in a two dimensional case where 0 is at
the centre of a circle that contains points of the three
colours.

Figure 1: Two-dimensional cross-polytopes Ω contain-
ing 0 and not.

It is interesting to get lower bounds for the number of
colourful simplices containing p for given configurations,
for instance satisfying convexity properties as described
in Section 1.1 below. Besides the intrinsic appeal of the
problem, its solution is a bound on the number of so-
lutions to a colourful linear program in the sense of [5]
and [11]. One strategy for establishing this bound is
to show that certain small octahedral systems cannot

CCCG 2011, Toronto ON, August 10–12, 2011

267

23rd Canadian Conference on Computational Geometry, 2011

exist. In particular, it leads to two nice combinatorial
questions: what is the smallest non-empty octahedral
system in terms of the number of edges on m (i.e. d+1)
sets of m points, and what is the smallest such system
where every point is contained in some edge. In Sec-
tion 2 we show that the answer to the first question is
m and use this to prove a conjecture about point con-
figurations. The second question suggests a method of
computationally attacking the colourful simplicial depth
problem, see below, at least for small dimension. Some
progress on this is described in Section 3. Finally, in
Section 4 we consider some further questions about oc-
tahedral systems.

1.1 Colourful Simplicial Depth Problems

Consider the colourful configurations described above.
Without loss of generality we assume that p = 0 and
that the points in S ∪ {0} are in general position. If
the convex hulls of the Si’s contain 0 in their interior,
we say that the configuration satisfies the core condi-
tion. Bárány’s Colourful Carathéodory Theorem [3]
shows that the core conditions imply that 0 must be
contained in some colourful simplex. In other words,
we have µ(d) ≥ 1 where µ(d) denotes the minimum
number of colourful simplices drawn from S1, . . . ,Sd+1

that contain 0 for all configurations with the core con-
dition. The sets S1, . . . ,Sd+1 must each contain at least
(d + 1) points for 0 to be in the interior of their convex
hulls, and since we are minimizing we can assume they
contain no additional points, i.e. that |Si| = d + 1 for
each i.

The quantity µ(d) was investigated in [10], where it
is shown that 2d ≤ µ(d) ≤ d2 + 1, that µ(d) is even for
odd d, and that µ(2) = 5. This paper also conjectures
that µ(d) = d2 + 1 for all d ≥ 1. Subsequently, [4]
verified the conjecture for d = 3 and provided a lower

bound of µ(d) ≥ max(3d,
⌈

d(d+1)
5

⌉
) for d ≥ 3, while

[24] independently provided a lower bound of µ(d) ≥⌊
(d+2)2

4

⌋
, before [12] showed that µ(d) ≥ & (d+1)2

2 '.
A recent generalization of the Colourful Carathéodory

Theorem in [2] and [17] relaxes the condition of 0 be-
ing in the convex hull of each Si to require only that
0 is in the convex hull of Si ∪ Sj for all i and j, and
Si not empty for all i. The analogous quantity µ♦(d),
which denotes the minimum number of colourful sim-
plices drawn from S1, . . . ,Sd+1 that contain 0 ∈ Rd

given that |Si| = d + 1 for all i and 0 ∈ Si ∪Sj for each
i (= j, has been investigated in [12] where it is shown
that µ♦(d) ≤ d + 1, µ♦(2) = 3, and µ♦(3) = 4. The
associated octahedral system of (d+1) points in (d+1)
colours satisfies Property 1.

Remark 2 Colourful simplicial depth was introduced
in the context of lower bounds for ordinary simplicial

depth. This problem is quite challenging even in two
dimensions: it has been studied at least since Kártesi
[19]; the bound of 1

27n3 + O(n2) was established in [6],
but the the construction in that paper of a set of points
meeting this bound needed to be revised, see [7]. For
general d, finding a tight bound remains a challenging
problem. Recently Gromov [16] introduced a topological
method which among other things improves the lower
bound. See also [18].

1.2 Octahedral Problems

The strong version of Bárány’s Colourful Carathéodory
Theorem says that when a colourful configuration sat-
isfies the core condition that every point in S is part
of some colourful simplex. Thus the octahedral system
generated by such a colourful configuration must satisfy:

Property 3 Every element of {1, 2, . . . , d + 1} appears
as the ith coordinate of some v ∈ V for each i ∈
{1, 2, . . . , d + 1}.

In particular, any colourful configuration satisfying
the core condition must generate a system V satisfy-
ing Property 1 and Property 3. For example, the low
colourful simplicial depth configurations of [10] gener-
ate such a system with (d + 1) sets of (d + 1) points,
containing (d2 + 1) vectors. We define ν(d) to be the
minimum number of vectors in an octahedral system of
(d + 1) points in (d + 1) colours satisfying Properties 1
and 3, and ν♦(d) to be the minimum number of vectors
of a similar system satisfying Property 1 only. Then we
have ν(d) ≤ µ(d) ≤ d2 + 1 and ν♦(d) ≤ µ♦(d) ≤ d + 1.
In Section 2 we show that ν♦(d) = µ♦(d) = d + 1. In
Section 3 we show that ν(d) = d2 + 1 for d = 2, 3, and
conjecture that it holds for all d. In particular, com-
putation of ν(d) for small d gives us a finite procedure
that can prove lower bounds for µ(d).

Remark 4 In [10] it was observed that µ(d) is even for
odd d. Similarly it is easy to see that when m = d + 1
is even, all octahedral systems have an even number of
vectors. In particular, both ν(d) and ν♦(d) are even for
odd d.

2 Proof that µ♦(d) = d + 1

A construction in [12] shows that ν♦(d) ≤ µ♦(d) ≤ d+1
for d ≥ 2. In fact, in this section we show that any non-
empty octahedral system of (d+1) sets of (d+1) points
has at least (d + 1) vectors, and hence that ν♦(d) =
µ♦(d) = d + 1.

Proposition 5 For any d ≥ 2, we have ν♦(d) =
µ♦(d) = d + 1.

23rd Canadian Conference on Computational Geometry, 2011

268

CCCG 2011, Toronto ON, August 10–12, 2011

Proof. Assume that there is an octahedron Ω consist-
ing of two î-transversals and a point s ∈ Si such that
there are an odd number of edges using points from Ω
and s. Then it follows immediately from Property 1 that
there is at least one edge that uses points from Ω and
any point in Si. Therefore ν♦(d) ≥ d+1 as |Si| = d+1.

Assume then that there exists no such octahedron
with odd parity, but that the system contains some edge
E. We view E as being formed by a î-transversal T
and a point s ∈ Si and generate edges in the following
way. Consider the d disjoint î-transversals Tj for j =
1, 2, . . . , d generated from the remaining points, and the
d octahedra Ω1,Ω2, . . . ,Ωd given by pairing Tj with T
for j = 1, 2, . . . , d. For each j, besides E, there is at
least one other edge that uses s and the points from Ωj

due to the even parity. Therefore ν♦(d) ≥ d + 1.
In both cases ν♦(d) ≥ d + 1. Thus we have ν♦(d) =

µ♦(d) = d + 1 as ν♦(d) ≤ µ♦(d) ≤ d + 1. !

In Figure 2 we illustrate the 2-dimensional configu-
ration described in [12] where 0 ∈ conv(Si ∪ Sj) for all
i (= j and is contained in exactly 3 colourful simplices.
In general, the construction is to place one point of each

Figure 2: Minimal 2-dimensional configuration for the
relaxed core condition.

of the first d colours below the equator in such a way
that 0 ∈ conv(Si). Then the conditions are satisfied
regardless of the position of the points of Sd+1. These
points are placed near the north pole in order that each
one generates a unique colourful simplex containing 0:
the simplex is formed using the d points below the equa-
tor.

We remark that if we remove the condition that |Si| ≥
d + 1 for each i then it is easy to modify the proof to
show that 0 lies in at least mini |Si| colourful simplices,
and the example can be modified to show that this is
tight.

3 Computational Approach

For a given d, the computational approach consists of
ruling out a given value k for ν(d) via an exhaustive
computer search showing that no system V of size k
can satisfy Property 3 and Property 1. This approach
was used in [12] on a laptop to show in a few seconds

that ν(2) > 3 and in a few hours that ν(3) > 8. In
other words, this approach verifies computationally that
ν(2) = µ(2) = 5 and ν(3) = µ(3) = 10 – using the fact
that ν(3) must be even, see Remark 4. Instances of
higher dimensions are currently under computation.

In this section we propose ways to normalize the vec-
tor system which significantly speed up the enumera-
tion. We also present a constraint programming formu-
lation of the problem.

3.1 Normalization of vector system

Recolouring and relabelling of the points does not
change the combinatorics of the point configuration.
This symmetry will result in many duplicates in enu-
meration. In order to speed up the enumeration of vec-
tor systems for ν(d) we normalize the vector system in
the following ways.

(i) First, since the vector system V is not empty, we
can assume vector (0, 0, . . . , 0) ∈ V .

(ii) If there is a covering octahedron, i.e. one that gen-
erates an odd number of vectors for each point
of the excluded colour, we can take the excluded
colour to be the final one, an octahedron of the
system to be {(0, . . . , 0), (1, . . . , 1)}, with the la-
bellings of the points of colours 1, . . . , d chosen so
that (i) is satisfied.

A Python routine that searches for small octahedral sys-
tems using these normalization is available at [25].

3.2 Pivoting

We may also be able to take advantage of the follow-
ing pivoting structure of octahedral systems. Given a
particular î-transversal T , we can pivot from the current
octahedral system Ω to an adjacent one Ω′ by removing
all vectors containing T and replacing them with vec-
tors T ∪ {s} for each s ∈ Si such that T ∪ {s} was not
in Ω.

If we have a transversal T which forms vectors with
more than half the points of colour i, then pivoting on
T will reduce the number of vectors in the system, al-
though it may also break Property 3. We remark that
pivoting is also seen in the setting of colourful simpli-
cial, it corresponds to moving a point of colour i across
a hyperplane defined by and î-transversal.

3.3 Constraint programming approach

The other computational approach for ν(d) is to exploit
the fact that there is a sphere covering octahedron for
each missing colour and model the search for a valid
vector system as a constraint programming problem.

We can start with the following collection of vectors
V◦. Each block of (d+1) vectors represents the simplices

CCCG 2011, Toronto ON, August 10–12, 2011

269

23rd Canadian Conference on Computational Geometry, 2011

derived from a sphere covering octahedron for a missing
colour.

(1, x2
1,1, x

3
1,1, . . . , x

d+1
1,1), (2, x2

1,2, x
3
1,2, . . . , x

d+1
1,2), . . . ,

(d + 1, x2
1,d+1, x

3
1,d+1, . . . , x

d+1
1,d+1);

(x1
2,1, 1, x3

2,1, . . . , x
d+1
3,1) , (x1

2,2, 2, x3
2,2, . . . , x

d+1
2,2), . . . ,

(x1
2,d+1, d + 1, x3

2,d+1, . . . , x
d+1
2,d+1);

. . .
(x1

d+1,1, . . . , x
d
d+1,1, 1), (x1

d+1,2, . . . , x
d
d+1,2, 2), . . . ,

(x1
d+1,d+1, . . . , x

d
d+1,d+1, d + 1).

The domain of each variable is {1, 2, . . . , d+1}. Then
we have a constraint programming satisfaction problem:
Given a value k, find an assignment of values to the vari-
ables such that |V◦| ≤ k and the following constraints
are satisfied:

(1) xi
1,1 = 1 for all i and xi

1,j ∈ {1, 2} for all i and
j ≥ 2. These constraints are derived from the nor-
malization of the vector system.

(2) |{xi
j,1, x

i
j,2, . . . , x

i
j,d+1}| ≤ 2 for all i and j because

they are from an octahedron.

(3) Constraints corresponding to Property 1.

If no solution is found, then ν(d) (= k.

4 Conclusions and remarks

Octahedral systems appear to be interesting combinato-
rial objects. Using the observation that colourful point
configurations generate small octahedral systems, we
propose a computational approach to establishing lower
bounds for colourful simplicial depth. We can ask sev-
eral other questions about octahedral systems.

We remark that the maximum cardinality octahedral
system is the set of all possible edges; if we have m
(i.e. d+1) sets of cardinality m it has size mm. As with
the other configurations discussed in this paper, it can
be realized as arising from a colourful configuration of
points in Rd, in this case the one that places the sets
S1, . . .Sd+1 close to vertices v1, . . . vd+1 respectively of
a regular simplex containing 0.

Question 6 Can all octahedral systems of (d+1) sets of
(d + 1) points be obtained as the vectors of point config-
urations in Rd, and can all such configurations covering
all points be obtained as the vectors of configurations
satisfying a core condition?

Question 7 How many octahedral systems and cover-
ing octahedral systems are there for a given m? We
remark that for m = 1 we have 2 systems, 1 of which is
covering, and for m = 2 we have 8 and 3; if we count
only up to isomorphism these numbers are 4 and 2 re-
spectively.

Question 8 Finally, it would be interesting to explore
the pivoting structure of octahedral systems by under-
stand its adjacency graph. For instance, we can ask
about connectedness, i.e. can we get to any octahedral
system from the empty octahedral system via a sequence
of pivots? If so, how long must that sequence be?

We conclude by mentioning that many aspects of
colourful simplices are just beginning to be explored.
For instance, the combinatorial complexity of a system
of colour simplices is anaylsed in [23]. As far as we know
the algorithmic question of computing colourful simpli-
cial depth is untouched, even for d = 2 where several
interesting algorithms for computing the monochrome
simplicial depth have been developed, see for instance
[1], [8], [9], [13], [15] and [20].

5 Acknowledgments

The combinatorial setting used in this paper was ini-
tiated by Imre Bárány. This work was supported by
grants from the Natural Sciences and Engineering Re-
search Council of Canada (NSERC) and MITACS, and
by the Canada Research Chairs program. We thank the
anonymous referees for helpful comments.

References

[1] G. Aloupis. Geometric measures of data depth. In
Data depth: robust multivariate analysis, computa-
tional geometry and applications, volume 72 of DI-
MACS Ser. Discrete Math. Theoret. Comput. Sci.,
pages 147–158. Amer. Math. Soc., Providence, RI,
2006.

[2] J. L. Arocha, I. Bárány, J. Bracho, R. Fabila, and
L. Montejano. Very colorful theorems. Discrete and
Comput. Geom., 42(2):142–154, 2009.

[3] I. Bárány. A generalization of Carathéodory’s theo-
rem. Discrete Mathematics, 40(2-3):141–152, 1982.

[4] I. Bárány and J. Matoušek. Quadratically many
colorful simplices. SIAM Journal on Discrete
Mathematics, 21(1):191–198, 2007.

[5] I. Bárány and S. Onn. Colourful linear pro-
gramming and its relatives. Math. Oper. Res.,
22(3):550–567, 1997.

[6] E. Boros and Z. Füredi. The number of triangles
covering the center of an n-set. Geom. Dedicata,
17(1):69–77, 1984.

[7] B. Bukh, J. Matoušek, and G. Nivasch. Stabbing
simplices by points and flats. Discrete Comput.
Geom., 43(2):321–338, 2010.

23rd Canadian Conference on Computational Geometry, 2011

270

CCCG 2011, Toronto ON, August 10–12, 2011

[8] M. A. Burr, E. Rafalin, and D. L. Souvaine. Sim-
plicial depth: an improved definition, analysis, and
efficiency for the finite sample case. In Data depth:
robust multivariate analysis, computational geom-
etry and applications, volume 72 of DIMACS Ser.
Discrete Math. Theoret. Comput. Sci., pages 195–
209. Amer. Math. Soc., Providence, RI, 2006.

[9] A. Y. Cheng and M. Ouyang. On algorithms
for simplicial depth. In Proceedings of the 13th
Canadian Conference on Computational Geometry,
pages 53–56, 2001.

[10] A. Deza, S. Huang, T. Stephen, and T. Terlaky.
Colourful simplicial depth. Discrete and Com-
put. Geom., 35(4):597–604, 2006.

[11] A. Deza, S. Huang, T. Stephen, and T. Terlaky.
The colourful feasibility problem. Discrete Appl.
Math., 156(11):2166–2177, 2008.

[12] A. Deza, T. Stephen, and F. Xie. More colourful
simplices. Discrete Comput. Geom., 45(2):272–278,
2011.

[13] K. Elbassioni, A. Elmasry, and K. Makino. Finding
simplices containing the origin in two and three di-
mensions. Internat. J. Comput. Geom. Appl., 2011.
To appear.

[14] K. Fukuda and V. Rosta. Data depth and max-
imal feasible subsystems. In D. Avis, A. Hertz,
and O. Marcotte, editors, Graph Theory and Com-
binatorial Optimization, chapter 3, pages 37–67.
Springer-Verlag, New York, 2005.

[15] J. Gil, W. Steiger, and A. Wigderson. Geometric
medians. Discrete Math., 108(1-3):37–51, 1992.

[16] M. Gromov. Singularities, expanders and topology
of maps. part 2: from combinatorics to topology
via algebraic isoperimetry. Geom. Funct. Anal.,
20(2):416–526, 2010.

[17] A. F. Holmsen, J. Pach, and H. Tverberg. Points
surrounding the origin. Combinatorica, 28(6):633–
644, 2008.

[18] R. Karasev. A simpler proof of the Boros-Füredi-
Bárány-Pach-Gromov theorem. Discrete Com-
put. Geom., 2011. To appear.

[19] F. Kárteszi. Extremalaufgaben über endliche
Punktsysteme. Publ. Math. Debrecen, 4:16–27,
1955.

[20] S. Khuller and J. S. B. Mitchell. On a triangle
counting problem. Inf. Process. Lett., pages 319–
321, 1990.

[21] R. Y. Liu. On a notion of data depth based on ran-
dom simplices. Ann. Statist., 18(1):405–414, 1990.

[22] E. Rafalin and D. L. Souvaine. Computational ge-
ometry and statistical depth measures. In The-
ory and applications of recent robust methods, Stat.
Ind. Technol., pages 283–295. Birkhäuser, Basel,
2004.

[23] A. Schulz and C. D. Tóth. The union of colorful
simplices spanned by a colored point set. In CO-
COA (1), pages 324–338, 2010.

[24] T. Stephen and H. Thomas. A quadratic lower
bound for colourful simplicial depth. J. Comb.
Opt., 16(4):324–327, 2008.

[25] F. Xie. Python code for octrahedral system com-
putation. available at:
http://optlab.mcmaster.ca/om/csd/.

CCCG 2011, Toronto ON, August 10–12, 2011

271

23rd Canadian Conference on Computational Geometry, 2011

272

CCCG 2011, Toronto ON, August 10–12, 2011

Combinatorics of Minkowski decomposition of associahedra

Carsten E. M. C. Lange∗

Abstract

Realisations of associahedra can be obtained from the
classical permutahedron by removing some of its facets
and the set of these facets is determined by the diago-
nals of certain labeled convex planar n-gons as shown
by Hohlweg and Lange (2007). Ardila, Benedetti,
and Doker (2010) expressed polytopes of this type as
Minkowski sums and differences of dilated faces of a
standard simplex and computed the corresponding coef-
ficients yI by Möbius inversion. Given an associahedron
of Hohlweg and Lange, we give a new combinatorial in-
terpretation of the values yI : they are the product of
two signed lengths of paths of the labeled n-gon. We
also discuss an explicit realisation of a cyclohedron to
show that that the formula of Ardila, Benedetti, and
Doker does not hold for generalised permutahedra not
in the deformation cone of the classical permutahderon.

1 Introduction

Consider the convex (n− 1)-dimensional polytope

Pn({zI}) :=
{
xxx ∈ Rn

∣∣∣
∑
i∈[n] xi=z[n] and∑

i∈I xi≥zI for ∅⊂I⊂[n]

}
,

where [n] denotes the set {1, 2, · · · , n}. The clas-
sical permutahedron, as described for example by

G. M. Ziegler, [21], corresponds to zI = |I|(|I|+1)
2 for

∅ ⊂ I ⊆ [n]. Generalised permutahedra were first stud-
ied by A. Postnikov, [14]. They are polytopes Pn({zI})
and are contained in the deformation cone of the classi-
cal permutahedron, [15]. We focus our study on special
realisations of associahedra denoted by Ascn−1, which
form a subclass of generalised permutahedra. Two ex-
amples of 3-dimensional polytopes Asc3 are shown in Fig-
ure 1. In Section 5, we give an example to explain the
notion of a deformation cone and to show that the ap-
proach to compute the coefficients of the Minkowski de-
composition fails for polytopes Pn({zI}) not contained
in the deformation cone of the classical permutahedron.

The Minkowski sum of two polytopes P and Q is
defined as {p + q | p ∈ P, q ∈ Q}. On the other
hand, we define the Minkowski difference P −Q of poly-
topes P and Q if and only if there is a polytope R such

∗Fachbereich Mathematik und Informatik, Freie Universität
Berlin, clange@math.fu-berlin.de, partially supported by a
DFG-grant (Forschergruppe 565 Polyhedral Surfaces)

that P = Q + R, for more details on Minkowski differ-
ences we refer to [18] . We are interested in decomposi-
tions of Ascn−1 into Minkowski sums and differences of
dilated faces of the (n−1)-dimensional standard simplex

∆n = conv{e1, e2, · · · , en},
where ei is a standard basis vector of Rn. The faces ∆I

of ∆n are given by conv{ei}i∈I for I ⊆ [n]. If a poly-
tope P is the Minkowski sum and difference of dilated
faces of ∆n, we say that P has a Minkowski decomposi-
tion into faces of the standard simplex. The following is
a general result on Minkowski decompositions of a gen-
eralised permutahedron P ({zI}) where we assume that
the values zI for redundant inequalities of P ({zI}) are
tight.

Proposition 1 ([1, Proposition 2.3])
Every generalised permutahedron Pn({zI}) can be writ-
ten uniquely as a Minkowski sum and difference of faces
of ∆n:

Pn({zI}) =
∑

I⊆[n]

yI∆I

where yI =
∑
J⊆I(−1)|I\J|zJ for each I ⊆ [n].

To put it differently, the functions I 7−→ zI and I 7−→ yI
of the boolean lattice are Möbius inverses. A weaker
version of Proposition 1 that requires yI ≥ 0 for all
I ⊆ [n] was established by A. Postnikov, [14]. Obvi-
ously, the formula of Proposition 1 is computationally
expensive in general. The formula describes a beautiful
relation between the zI - and yI -coordinates of gener-
alised permutahedra, but there is more hidden. The
author showed that the formula for yI of Proposition 1

0

1

2

3

4

5

0

1

2 3

4

5

Figure 1: Two different realisations Asc3 accord-
ing to [8] after application of an orthogonal trans-
formation. The realisations correspond to dif-
ferent labelings of a hexagon and have distinct
Minkowski decompositions into dilated faces of the
standard simplex.

CCCG 2011, Toronto ON, August 10–12, 2011

273

23d Canadian Conference on Computational Geometry, 2011

simplifies to four terms for all I if P ({zI}) = Ascn−1,
see Theorem 2 and [11]. But even better: we do not
even have to compute the four values zJ that remain
after simplification, the multiplication of two (signed)
numbers of edges connecting points on the boundary of
a polygon suffices. The precise statement is given in
Theorem 4.

We end this introduction with some general remarks.
S. Fomin and A. Zelevinsky introduced generalised as-
sociahedra in the context of cluster algebras of finite
type, [5], and it is known that associahedra and gen-
eralised associahedra associated to cluster algebras of
type A are combinatorially equivalent. The construc-
tion of [8] was generalised by C. Hohlweg, C. Lange,
and H. Thomas to generalised associahedra, [9]. The
construction depends on choosing a Coxeter element c
and the normal vectors of the facets are determined by
combinatorial properties of c. Since the normal fans
of these realisations turn out to be Cambrian fans as
described by N. Reading and D. Speyer, [16], the ob-
tained realisations are generalised associahedra associ-
ated to some cluster algebra of finite type. N. Read-
ing and D. Speyer conjectured a linear isomorphism be-
tween Cambrian fans and g-vector fans associated to
cluster algebras of finite type with acyclic initial seed
introduced by S. Fomin and A. Zelevinsky, [6]. They
proved their conjecture up to an assumption of another
conjecture of [6]. In 2008, S.-W. Yang and A. Zelevin-
sky gave an alternative proof of the conjecture of Read-
ing and Speyer, [20]. We remark in this context that
the results of Section 2 and 3 of [11] can be read along
these lines: the computations of zI and yI for fixed I
and varying c involve sums over different choices of z̃cRδ
where the diagonals δ that have to be considered de-
pend on c. Moreover, the values for z̃cRδ that occur in
these sums should be tight for the polytope but can be
choosen within a large class of possible values as de-
scribed for example in [9], not just the specific value
chosen here in Section 2. The formula of Theorem 4
of this manuscript could be rewritten in this sense by
introducing extra parameters. From this point of view,
we suggest that combinatorial properties of the g-vector
fan for cluster algebras of finite type A with respect to
an acyclic initial seed are reflected by the Minkowski
decompositions studied in [11] and in this manuscript.

Some instances of Ascn−1 have been studied earlier.
For example, J.-L. Loday computes vertex coordinates
from planar binary trees, [12]. This generalises Asc12

studied in Section 3 to higher dimensions. G. Rote,
F. Santos, and I. Streinu relate associahedra to one-
dimensional point configurations, [17]. Both realisa-
tions are affinely equivalent to Ascn−1 if Uc = ∅ or
Uc = [n] \ {1, n}. Moreover, Rote et.al. point out that
a realisation of F. Chapoton, S. Fomin, and A. Zelevin-
sky, [4], is not affinely equivalent to their realisation.

But in fact, it is affinely equivalent to some Ascn−1,
i.e. Uc = {2} or Uc = {3} for n = 4. F. Santos and
V. Pilaud recently constructed a family of polytopes
called brick polytopes that are related to multitrangu-
lations, [13]. As a special case, they obtain translates
of the associahedra Ascn−1 studied in this paper. They
describe brick polytopes as Minkowski sums of brick
polytopes and in particular, they achieve a Minkowski
decomposition different from ours. The precise relation
of these two decompositions is not clear at the time of
writing.

2 The associahedra Ascn−1

Associahedra form a class of combinatorially equivalent
simple polytopes and can be realised as generalised per-
mutahedra. They are often defined by specifying their
1-skeleton or graph. A theorem of G. Kalai, [10], implies
that the face lattice of an (n − 1)-dimensional associa-
hedron Asn−1 is completely determined by this graph.
Now, the graph of an associahedron is isomorphic to a
graph with all triangulations (without new vertices) of
a convex and plane (n + 2)-gon Q as vertex set and
all pairs of distinct triangulations that differ in pre-
cisely one proper diagonal1 as edge set. Alternatively,
the edges of Asn−1 are in bijection with the set of tri-
angulations with one proper diagonal removed. Simi-
larly, k-faces of Asn−1 are in bijection to triangulations
of Q with k proper diagonals deleted. In particular, the
facets of Asn−1 are in bijection with proper diagonals
of Q. J.-L. Loday published a beautiful algorithm to
obtain explicit vertex coordinates for associahedra from
planar binary trees, [12]. This algorithm was gener-
alised by C. Hohlweg and C. Lange and explicitly de-
scribes realisations of Asn−1 as generalised permutahe-
dra that depend on combinatorics induced by the choice
of a Coxeter element c of the symmetric group Σn on n
elements, [8]. A Coxeter element is a permutation ob-
tained by multiplying the generators of Sn in some or-
der.

We now outline the construction of [8] and avoid to
use Coxeter elements explicitly. Nevertheless, we use
them to distinguish different realisations in our nota-
tion. The choice of a Coxeter element c corresponds to
a partition of [n] into a down set Dc and an up set Uc:

Dc = {d1 = 1 < d2 < · · · < d` = n}
and

Uc = {u1 < u2 < · · · < um}.
This partition induces a labeling of the vertices of Q
with label set [n + 1]0 := [n + 1] ∪ {0} as follows. Pick

1A proper diagonal is a line segment connecting a pair of ver-
tices of Q whose relative interior is contained in the interior of Q.
A non-proper diagonal is a diagonal that connects vertices ad-
jacent in ∂Q and a degenerate diagonal is a diagonal where the
end-points are equal.

23rd Canadian Conference on Computational Geometry, 2011

274

CCCG 2011, Toronto ON, August 10–12, 2011

two vertices of Q which are the end-points of a path
of `+2 vertices on the boundary of Q, label the vertices
of this path counter-clockwise increasing using the label
set Dc := Dc ∪ {0, n + 1} and label the remaining path
clockwise increasing using the label set Uc. Without
loss of generality, we shall always assume that the label
set Dc is to the right of the diagonal {0, n+ 1} oriented
from 0 to n + 1, examples are given in Section 3. We
derive values zI for some subsets I ⊂ [n] obtained from
this labeled (n+2)-gon Q using proper diagonals of Q as
follows. Orient each proper diagonal δ from the smaller
to the larger labeled end-point of δ, associate to δ the
set Rδ that consists of all labels on the strict right-hand
side of δ, and replace the elements 0 and n + 1 by the
smaller respectively larger label of the end-points con-
tained in Uc if possible. For each proper diagonal δ we
have Rδ ⊆ [n] but obviously not every subset of [n] is
of this type if n > 2. We set

z̃cI :=

{ |I|(|I|+1)
2 if I = Rδ, δ proper diagonal,

−∞ else.

In [8] it is shown that Pn({z̃cI}) is in fact an associahe-
dron of dimension n− 1 realised in Rn for every choice
of c and the inequalities that correspond to finite val-
ues z̃cI are precisely the non-redundant facet-defining in-
equalities of Ascn−1. This ends the summary of results
found in [8].

To compute the coefficients of the Minkowski decom-
position of Ascn−1 according to Proposition 1, we have
to find tight values for zI that correspond to all inequal-
ities (redundant and non-redundant) first. Fortunately
enough, this is not necessary. As outlined by the au-
thor in an extended abstract, [11], it suffices to know
the finite values of z̃cI defined above. To state and prove
Theorem 4, we have to review some facts from [11] and
start with two key definitions given there.

Suppose from now on that [n] = DctUc is a partition
of [n] induced by a Coxeter element c with

Dc = {d1 = 1 < d2 < · · · < d` = n}
and

Uc = {u1 < u2 < · · · < um}.

Definition 1 (up and down intervals)
(a) A set S ⊆ [n] is a non-empty interval of [n] if S =
{r, r + 1, · · · , s} for some 0 < r ≤ s < n. We write
S as closed interval [r, s] (end-points included) or as
open interval (r−1, s+1) (end-points not included).
An empty interval is an open interval (k, k + 1) for
some 1 ≤ k < n.

(b) A non-empty open down interval is a set S ⊆ Dc
such that S = {dr < dr+1 < · · · < ds} for some
1 ≤ r ≤ s ≤ `. We write S as open down
interval (dr−1, ds+1)Dc where we allow dr−1 = 0
and ds+1 = n + 1, i.e. dr−1, ds+1 ∈ Dc. For

1 ≤ r ≤ ` − 1, we have the empty down inter-
val (dr, dr+1)Dc .

(c) A closed up interval is a non-empty set S ⊆ Uc
such that S = {ur < ur+1 < · · · < us} for some
1 ≤ r ≤ s ≤ m. We write [ur, us]Uc .

We emphasize that up intervals are always non-empty,
while down intervals may be empty. Moreover, it turns
out to be convenient to distinguish the empty down in-
tervals (dr, dr+1)Dc and (ds, ds+1)Dc if r 6= s although
they are equal as sets.

Definition 2 (up & down interval decomposition)
Let I be a non-empty subset of [n].
(a) An up and down interval decomposition of type

(v, w) of I is a partition of I into disjoint up and
down intervals IU1 , · · · , IUw and ID1 , · · · , IDv obtained
by the following procedure.
1. Suppose there are ṽ non-empty inclusion maxi-

mal down intervals contained in I that we denote
by ĨDk = (ãk, b̃k)Dc , 1 ≤ k ≤ ṽ, with b̃k ≤ ãk+1

for 1 ≤ k < ṽ. Let ED
i = (dri , dri+1)Dc denote

all empty down intervals with b̃k ≤ dri < dri+1 ≤
ãk+1 for 0 ≤ k ≤ ṽ, b̃0 = 0, and ãṽ+1 = n + 1.
Denote the open intervals (ãi, b̃i) and (dri , dri+1)
of [n] by Ĩi and Ei respectively.

2. Consider all up intervals of I which are con-
tained in (and inclusion maximal within) some
interval Ĩi or Ei obtained in Step 1 and denote
these up intervals by

IU1 = [α1, β1]Uc , · · · , IUw = [αw, βw]Uc .

We assume αi ≤ βi < αi+1.
3. A down interval IDi = (ai, bi)Dc , 1 ≤ i ≤ w,

is a down interval obtained in Step 1 that is ei-
ther a non-empty down interval ĨDk or an empty
down interval ED

k with the additional property
that there is some up interval IUj obtained in

Step 2 such that IUj ⊆ Ek. Without loss of gen-
erality, we assume bi ≤ ai+1 for 1 ≤ i < w.

(b) An up and down interval decomposition of
type (1, w) is called nested. A nested component of I
is an inclusion-maximal subset J of I such that the
up and down decomposition of J is nested.

The up and down interval decomposition of I ⊆ [n]
enables us to compute tight values z̃cI of Ascn−1 for all I
using only z̃cI that correspond to non-redundant inequal-
ities. These values can be substituted in the formula
for yI of Proposition 1 and the formula can be simpli-
fied significantly. Before we state the resulting theorem,
it makes sense to extend our notion of Rδ and z̃cRδ to
non-proper and degenerate diagonals δ.

For a diagonal δ = {x, y} that is not proper, we set

Rδ :=

{
∅ if x, y ∈ Dc

[n] otherwise,

CCCG 2011, Toronto ON, August 10–12, 2011

275

23d Canadian Conference on Computational Geometry, 2011

and

z̃cRδ :=

{
0 if Rδ = ∅
n(n+1)

2 if Rδ = [n].

Let I ⊆ [n] be a non-empty subset with up and down
interval decomposition of type (v, k). If I has a nested
up and down interval decomposition, then, in particular,
v = 1 and

I = (a, b)Dc ∪
⋃k
i=1[αi, βi]Uc

with αk < βk ≤ αk+1 as before. In this situation, we
denote the smallest (respectively largest) element of I
by γ (respectively Γ) and consider the diagonals

δ1 := {a, b}, δ2 := {a,Γ},
δ3 := {γ, b}, and δ4 := {γ,Γ}.

We can now state the main result of [11] which we use
to prove Theorem 4.

Theorem 2 ([11, Theorem 3.1])
Let I be a non-empty subset of [n] with a nested up and
down interval decomposition of type (1, k). Then

yI = (−1)|I\Rδ1 |
(
zcRδ1

− zcRδ2 − z
c
Rδ3

+ zcRδ4

)
.

Corollary 3 ([11, Corollary 3.2])
Let I be a non-empty subset of [n] with an up and down
interval decomposition of type (v, k) and v > 1. Then
yI = 0.

3 Main theorem and examples

We continue to use the notation introduced in the pre-
vious section. Moreover, we need the notion of signed
lengths Kγ and KΓ for sets I with interval decomposi-
tion of type (1, k) that is needed in Step 2. (b) of The-
orem 4. They denote integers and have the following
meaning: |KΓ| is the length, i.e. the number of edges,
of the path in ∂Q connecting b and Γ that does not use
the vertex labeled a and KΓ is negative if and only if
Γ ∈ (a, b)D. Similarly, |Kγ | is the length of the path con-
necting a and γ that does not use the vertex labeled b
and Kγ is negative if and only if γ ∈ (a, b)D.

Theorem 4 Let Q be the (n+ 2)-gon labeled according
to the construction of Ascn−1 and I ⊆ [n] be non-empty.
To compute yI perform the following two steps:
1. Determine the type (v, w) of the up and down interval

decomposition of I.
2. (a) If v > 1 then yI = 0.

(b) If v = 1 then

yI = (−1)|I\(a,b)D| (KγKΓ − (n+ 1))

if |I| = 1 and I ⊆ U, while

yI = (−1)|I\(a,b)D|KγKΓ

otherwise.

(
3
2
1

)

(
3
1
2

)

(
1
4
1

)

(
1
2
3

)(
2
1
3

)

(
1
0
0

) (
0
1
0

)

(
0
0
1

)

(
2
2
1

) (
1
3
1

)

(
2
1
2

) (
1
2
2

)

Asc12 = ∆{1,2,3} +
(

∆1+∆2+∆3

+∆{1,2}+∆{2,3}

)

Figure 2: The Minkowski decomposition of the 2-
dimensional associahedron Asc12 into faces of the stan-
dard simplex is in fact a Minkowski sum.

Theorem 4 is the third to relate combinatorics of la-
beled n-gons to different aspects of realisations of asso-
ciahedra. Firstly, the coordinates of the vertices can be
extracted, [12, 8]. Secondly, the facet normals and the
right-hand sides for their inequalities can be read off, [8].
Thirdly, the coefficients of a Minkowski decomposition
are obtained according to Theorem 4.

Before giving the proof, we give an example of two
2-dimensional associahedra Asc12 and Asc22 . The first ex-
ample Asc12 corresponds to Dc1 = [n] and Uc1 = ∅.
Minkowski decompositions of Asc12 and its higher dimen-
sional analogues were already studied earlier as men-
tioned by A. Postnikov and it is known that yI ∈ {0, 1},
so these polytopes are actually a Minkowski sum of faces
of the standard simplex. We have

Asc12 = ∆{1} + ∆{2} + ∆{3} + ∆{1,2} + ∆{2,3} + ∆{1,2,3},

see Figure 2. Although Asc22 is isometric to Asc12 , it does
not decompose into a Minkowski sum of dilated faces
of a standard simplex but into a Minkowski sum and
difference of dilated faces of the standard simplex:

Asc22 =
(

∆{1}+∆{3}+2·∆{1,2}
+∆{1,3}+2·∆{2,3}

)
− ∆{1,2,3},

see Figure 3. The up and down sets in this situation are

Uc = {2} and Dc = {1, 3},
so we obtain the following labeled pentagon Q:

4

2

0

1 3 .
We now compute the coefficients y{2}, y{1,2}, and
y{1,2,3} in order to demonstrate Theorem 4.

The up and down interval decompositions for {2},
{1, 2}, and {1, 2, 3} are of type (1, 1):

{2} = (1, 3)D t [2, 2]U,

{1, 2} = (0, 3)D t [2, 2]U,

{1, 2, 3} = (0, 4)D t [2, 2]U.

Hence we obtain the following table:

23rd Canadian Conference on Computational Geometry, 2011

276

CCCG 2011, Toronto ON, August 10–12, 2011

(
3
2
1

) (
2
3
1

)

(
3
0
3

) (
1
2
3

)

(
1
3
2

)

(
1
0
0

) (
0
1
0

)

(
0
0
1

)

(
4
2
1

) (
2
4
1

)

(
4
0
3

)

(
3
0
4

) (
1
2
4

)

(
1
4
2

)

Asc22 + ∆{1,2,3} =
(

∆1+∆3+∆{1,3}
+2·∆{1,2}+2·∆{2,3}

)

Figure 3: The Minkowski decomposition of the 2-
dimensional associahedron Asc22 into dilated faces of
the standard simplex.

I a b γ Γ Kγ KΓ |I \ (a, b)D|
{2} 1 3 2 2 2 2 1
{1,2} 0 3 1 2 −1 2 1
{1,2,3} 0 4 1 3 −1 −1 1

Since n = 3 in this example, we compute

y{2} = (−1)1(2 · 2− (3 + 1)) = 0,

y{1,2} = (−1)1 · (−1) · 2 = 2,

y{1,2,3} = (−1)1 · (−1) · (−1) = −1.

4 Proof of the main theorem

The strategy of the proof is clear: Suppose I ⊆ [n] is
non-empty, we compute the up and down interval de-
composition (Step 1. of Theorem 4) and then reinter-
pret Theorem 2 and Corollary 3 in terms of Kγ and KΓ.
If the up and down decomposition of I is of type (v, w)
with v ≥ 2 then the claim of Step 2. (a) follows immedi-
ately from Corollary 3. We therefore assume that I has
an up and down interval decomposition of type (1, k),
the associated down interval is (a, b)D and the minimal
and maximal elements of I are γ and Γ. We also use
the notation of δi, 1 ≤ i ≤ 4, from Section 2 and define

K̃Γ := |Rδ2 | − |Rδ1 | as well as K̃γ := |Rδ3 | − |Rδ1 |.

A simple case-by-case analysis shows
1. K̃γ > 0 if and only if γ ∈ Uc.

2. K̃Γ > 0 if and only if Γ ∈ Uc.
3. K̃γ = −1 if and only if γ ∈ Dc.

4. K̃Γ = −1 if and only if Γ ∈ Dc.
as well as KΓ = K̃Γ and Kγ = K̃γ . We additionally
define K := |Rδ1 | and a direct computation allows to
express zcRδi

, 1 ≤ i ≤ 3, in terms of K, KΓ, and Kγ :

zcRδ1
=
K(K + 1)

2
,

zcRδ2
=

(K +KΓ)(K +KΓ + 1)

2
,

and zcRδ3
=

(K +Kγ)(K +Kγ + 1)

2
.

Another direct computation yields

KΓKγ = zRδ1 − zRδ2 − zRδ3
+

(K +KΓ +Kγ)(K +KΓ +Kγ + 1)

2
.

To express z̃cRδ4
in terms of K, KΓ, and Kγ , we observe

(K +KΓ +Kγ)(K +KΓ +Kγ + 1)

2

=

{ |Rδ4 |(|Rδ4 |+1)

2 if I 6= {us},
|Rδ4 |(|Rδ4 |+1)

2 + (n+ 1) if I = {us},

and obtain

zcRδ4
=

(K +KΓ +Kγ)(K +KΓ +Kγ + 1)

2

if I 6= {us}, and

zcRδ4
=

(K +KΓ +Kγ)(K +KΓ +Kγ + 1)

2
− (n+ 1)

if I = {us}. The claim follows now from Theorem 2.

5 A Remark on Cyclohedra

Cyclohedra are also known as Bott-Taubes polytopes or
type B generalised associahedra, [3, 4, 19]. They can be
realised using some Ascn−1 by intersection with type B
hyperplanes xi + x2n+1−i = 2n+ 1, 1 ≤ i < n. We refer
to [8] for details. A 2-dimensional cyclohedron Cyc2 ob-
tained from some Asc3 by intersection with x1 + x4 = 5
is shown in Figure 4. Tight right-hand sides for Cyc2
are the right-hand sides of Asc2 except z{1,4} and z{2,3}
whose tight value is 5 instead of 2. The inequalities
x1 + x4 ≥ 2 and x2 + x3 ≥ 2 are redundant for Asc2
and altering the level sets for these inequalities from 2
(for Asc2) to 5 (for Cyc2) means that we move past the
four vertices A, B, C, and D. As explained in [15], this

A B

C

D

Figure 4: A 2-dimensional cyclohedron Cyc2 (indi-
cated in black) obtained from an associahedron Asc3
by intersection with type B hyperplanes.

CCCG 2011, Toronto ON, August 10–12, 2011

277

23d Canadian Conference on Computational Geometry, 2011

implies that Cyc2 is not in the deformation cone of the
classical permutahdron. Applying Proposition 1 to the
function zI on the boolean lattice for Cyc2, we compute
the Möbius inverse yI . We obtain

Cyc2 +
(

∆2+4∆123

+3∆124+2∆134+∆234

)
=
(

∆1+∆3+∆4+3∆12+∆13

+3∆14+5∆23+∆34+5∆1234

)

if Proposition 1 were true for polytopes Pn({zI}) not
contained in the deformation cone of the classical per-
mutahedron. One way to see that this equation does
not hold is to compute the number of vertices of the
polytope on the left-hand side (27 vertices) and on the
right-hand side (20 vertices) using polymake, [7].

6 Concluding remarks

There are some questions related to the coefficients yI .
Firstly, how do Minkowski decompositions of gener-
alised associahedra obtained in [9] look like and how
can we compute them if they exit? In particular, how
to decompose the cyclohedron of [8]?

Secondly, the computation of the Minkowski decom-
position depends on a good understanding of compu-
tational aspects of Möbius inversions. Efficient compu-
tations of Möbius functions on lattices were studied by
A. Blass and B. Sagan, [2]. Does this extend somehow
to Möbius inversion? Moreover, Möbius inversions are
often used in proofs but because of the computational
complexity rarely used in computations. Is there some
theory to compute the Möbius inverse more efficiently?

References

[1] F. Ardila, C. Benedetti, and J. Doker. Matroid
polytopes and their volumes. Discrete Comput
Geom, 43:841–854, 2010.

[2] A. Blass and B. E. Sagan. Möbius functions of
lattices. Adv Math, 127:94–123, 1997.

[3] R. Bott and C. Taubes. On the self-linking of knots.
J. Math. Phys., 35:5247–5287, 1994.

[4] F. Chapoton, S. Fomin, and A. Zelevinksy.
Polytopal realizations of generalized associahedra.
Canad Math Bull, 45:537–566, 2002.

[5] S. Fomin and A. Zelevinksy. Y-systems and gener-
alized associahedra. Ann. of Math., 158:977–1018,
2003.

[6] S. Fomin and A. Zelevinksy. Cluster algebras iv.
coefficients. Compos Math, 143:112–164, 2007.

[7] E. Gawrilow and M. Joswig. polymake: a frame-
work for analyzing convex polytopes. In G. Kalai
and G. M. Ziegler, editors, Polytopes — Combina-
torics and Computation, pages 43–74. Birkhäuser,
2000.

[8] C. Hohlweg and C. Lange. Realizations of the
associahedron and cyclohedron. Discrete Comput
Geom, 37:517–543, 2007.

[9] C. Hohlweg, C. Lange, and H. Thomas. Permu-
tahedra and generalized associahedra. Adv Math,
226:608–640, 2011.

[10] G. Kalai. A simple way to tell a simple polytope
from its graph. J. Combin Theory Ser A, 49:381–
383, 1988.

[11] C. Lange. Minkowski decompositions of associahe-
dra (extended abstract). FPSAC 2011, pages 611–
622, 2011.

[12] J.-L. Loday. Realizations of the Stasheff polytope.
Arch Math, 83:267–278, 2004.

[13] V. Pilaud and F. Santos. The brick polytope of
a sorting network. Proceedings of FPSAC 2011,
pages 777–788.

[14] A. Postnikov. Permutahedra, associahedra, and be-
yond. Int Math Res Not, pages 1026–1106, 2009.

[15] A. Postnikov, V. Reiner, and L. Williams. Faces of
generalized permutahedra. Documenta Mathemat-
ica, 13:207–273, 2008.

[16] N. Reading and D. Speyer. Cambrian fans. J Europ
Math Soc, 11:411–447, 2009.

[17] G. Rote, F. Santos, and I. Streinu. Expan-
sive motions and the polytope of pointed pseudo-
triangulations. Number 25 in Algorithms and Com-
binatorics, pages 699–736. Springer-Verlag, Berlin,
2003.

[18] R. Schneider. Convex bodies: the Brunn-Minkowski
theory, volume 44 of Encyclopedia of Mathemat-
ics and Applications. Cambridge University Press,
Cambridge, 1993.

[19] R. Simion. A type-B associahedron. Adv. Appl.
Math., 30:2–25, 2003.

[20] S.-W. Yang and A. Zelevinksy. Cluster algebras
of finite type via coxeter elements and principal
minors. Transform Groups, 13:855–895, 2008.

[21] G. M. Ziegler. Lectures on Polytopes, volume 152 of
Graduate Texts in Mathematics. Springer-Verlag,
Heidelberg, 1998.

23rd Canadian Conference on Computational Geometry, 2011

278

CCCG 2011, Toronto ON, August 10–12, 2011

A Fourier-Theoretic Approach for Inferring Symmetries

Xiaoye Jiang∗ Jian Sun† Leonidas Guibas‡

Abstract

In this paper, we propose a novel Fourier-theoretic ap-
proach for estimating the symmetry group G of a geo-
metric object X. Our approach takes as input a geomet-
ric similarity matrix between low-order combinations of
features of X and then searches within the tree of all
feature permutations to detect the sparse subset that
defines the symmetry group G of X. Using the Fourier-
theoretic approach, we construct an efficient marginal-
based search strategy, which can recover the symme-
try group G effectively. The framework introduced in
this paper can be used to discover symmetries of more
abstract geometric spaces and is robust to deformation
noise. Experimental results show that our approach can
fully determine the symmetries of many geometric ob-
jects.

1 Introduction

Symmetries are extremely common in both man-made
and natural objects. In the context of computational
geometry, we often consider the symmetry group of a
geometric object with a pre-defined metric. One easy
way of describing all symmetries of geometric objects is
to look at group actions, where we use a set to repre-
sent the object, and the symmetries of the object are
described by bijective mappings on the set. In this pa-
per, assume we have a discrete set X = {xi}ni=1 which
describes a geometric object. As shown in Figure 1-(a),
the five tip points on a star can be used as a discrete
set X to study the symmetry of such a 3D star model.
This is because each symmetry of the star model can
be identified with a permutation of the elements in X1.
For convenience, we say a permutation is “good” if it
can be identified as a symmetry of the geometric object.
It can be shown that all good permutations of X consist
a group G, which is the symmetry group of X.

In practice, we are often limited to verifying low-order
information about X, such as the similarity of curva-
tures between pairs of points (first order), or the consis-

∗Institute of Computational and Mathematical Engineering,
Stanford University, xiaoyej@stanford.edu
†Mathematical Sciences Center, Tsinghua University,

jsun@math.tsinghua.edu.cn
‡Department of Computer Science, Stanford University,

guibas@cs.stanford.edu
1Choosing different set X can result in different group actions.

In this paper, however, we assume such a set X is given where
each symmetry can be identified as permuting X.

tency of distances between pairs of pairs of points (sec-
ond order). But how can we integrate such low-order
pieces of symmetry evidence together to identify all the
good permutations of X and derive its symmetry group?
This question is quite challenging since the space of all
permutations grows factorially with the number of ele-
ments in X so that directly searching among all permu-
tations is impossible, unless n is small. In this paper,
we propose a Fourier-theoretic approach to address this
problem, based on low-order similarities of points in X.

The symmetry group of X is a subgroup of the per-
mutation group Sn, where n = |X|. To search for G,
we naturally have the following simple strategy: we or-
ganize the elements of Sn in a tree where each node
represents all the permutations in its sub-tree, and then
search those in G within the tree, see Figure 1-(b) for an
illustration of the tree. Whenever we reach a permuta-
tion of X, we check whether it is a good one. However,
such a brute force strategy would be computationally
intractable for all but very small n.

In this paper, we propose a novel search strategy
within the tree of Sn, called the marginal probability
search, which fully exploits the algebraic structure of
the groups G and Sn. The main contribution of the pa-
per are the following two ways of making use of algebraic
structures to facilitate the search of symmetries.

Firstly, we consider the symmetry group G as an in-
dicator distribution (see Theorem 1 in Section 2) over
the permutation group Sn. This novel point of view
enables us to utilize techniques from the group repre-
sentation theory to convert low-order information into
a set of Fourier coefficients which characterizes the
low-frequency components of the distribution over Sn.
Those Fourier coefficients can thus be used to efficiently
estimate the marginal probability of the permutations
represented by an internal node, which serves as the cri-
terion for pruning the sub-tree rooted at that node. Un-
like other traditional pruning criteria [4], the marginal
probability is much more informative as it not only eval-
uates the part of the permutation which is already de-
termined but also summarizes the remaining part which
is undecided, and thus provides a more efficient pruning.

Secondly, we exploit the group structure of G and
show that the internal nodes on the same level have
either the same marginal probability as the node con-
taining the identity permutation or 0 marginal proba-
bility for the indicator distribution G. This ensures the
correctness of taking the marginal probability of the in-

CCCG 2011, Toronto ON, August 10–12, 2011

279

23rd Canadian Conference on Computational Geometry, 2011

ternal nodes as the reference for pruning.
The approach proposed in this paper generalizes the

existing work on graph automorphism, in the sense that
we can deal with noisy similarity information caused by
heavy distortion or deformation of the geometric ob-
ject and robustly estimate the symmetry group G from
the input. Moreover, any arbitrary order of similari-
ties, e.g., triple-wise or even higher order similarities
can be taken as input in our framework. Different orders
of similarities can be combined together easily because
Fourier analysis can fully disentangle and decompose
the information over permutations of different orders
into orthogonal components. In addition, our approach
does not require a concrete realization of the geometric
object. As long as a discrete set X, which characterizes
the symmetry of the geometric object, can be effectively
extracted, our approach can be used for inferring the
symmetry group G.
Related work We note that a great amount of re-
search has already been done on Euclidean symmetry
detection in the geometry processing community [7, 10].
However, those approaches often suffer from the curse
of dimensionality. The problem of inferring the global
symmetry from low-order similarities, is closely related
to the graph automorphism problem, or more gener-
ally, the colored graph automorphism problem. However,
there are no known polynomial time algorithms for find-
ing the automorphism group of a general graph except
for certain special cases such as the triply connected
planar graph [2, 16]. The problem we consider also con-
nects to the orbit partitioning problem whose goal is to
determine whether two vertices or two pairs of vertices
lie in the same orbits. However, those problems are gen-
erally very difficult, and there are no known polynomial
time algorithms [1, 11, 13].

2 Marginal Probability of Cosets

In this section, we give a detailed description on how
to organize all the elements in Sn in a tree. We also
show that the marginal probabilities of the nodes on the
same level only take two possible values for the indicator
distribution of G.

We consider a tree decomposition of all permutations
in Sn as depicted in figure 1-(b). All permutations are
classified into n sub-trees according to their mappings
on the last element, i.e., σ(n), where σ denotes a permu-
tation. The n sub-trees are further classified according
to their mappings on the last two elements, i.e., σ(n−1)
and σ(n). In general, a node on the k-th level stands for
all permutations that maps the tuple (n− k+ 1, · · · , n)
to a particular k-tuple. Thus, the leaves in the tree
represent all the permutations.

Let f be a distribution over Sn. We consider the
marginal probability of a node on the kth level:

∑

σ∈Sn
f(σ)I

(
σ(n− k + 1, · · · , n) = (tn−k+1, · · · , tn)

)
, (1)

which sums up all f(σ) such that σ maps the k-tuple
(n−k+ 1, · · · , n) to the k-tuple (tn−k+1, · · · , tn) where
ti’s are all distinct and each ti ∈ {1, · · · , n}. Here, I is
an indicator function which is 1 if and only if σ maps
i to ti for all n − k + 1 ≤ i ≤ n. Each node in the
tree of permutations is associated with such a marginal
probability. The following theorem characterizes spe-
cific properties of these marginal probabilities.

Theorem 1 Let f(σ) =

{ 1
|G| , σ ∈ G
0, σ 6∈ G (2)

be the indicator distribution for G in Sn, and let mk

be the marginal probability of all permutations that fix
(n − k + 1, · · · , n), i.e., the quantity in (1) with ti =
i (n − k + 1 ≤ i ≤ n). Then, we have mk 6= 0; and for
every node on the k-th level, its marginal probability (1)
is either 0 or mk.

The proof of Theorem 1 is based on coset represen-
tation theorems. This theorem immediately translates
into a search strategy for estimating the group G. Ba-
sically, we perform a top-down search in the tree of
Sn. A node which represent all permutations that map
(n− k + 1, · · · , n) to a k-tuple (tn−k+1, · · · , tn) will be
kept only if its marginal probability is nonzero. The
group G can be fully decided if all those marginal infor-
mation is available.

3 Inference with the Similarity Matrix

In real applications, the primary challenge for esti-
mating the group G is that the marginal probabilities
needed for search are not directly observable. Instead,
we typically can only verify low-order similarities. In
this section, we introduce two related concepts: the sim-
ilarity matrix and the marginal probability matrix.

Definition 2 A low-order similarity matrix Sk of order
k (k is usually very small) for X (|X| = n) is an N -
by-N matrix where N = n(n− 1) · · · (n− k+ 1) and the
(i, j)-entry is a similarity measure sij for two k-tuples

(t
(i)
1 , · · · , t(i)k) and (t

(j)
1 , · · · , t(j)k) indexed by i, j.

We can construct various similarity measures sij for
two k-tuples indexed by i and j, for example:
• k = 1: we can use a binary rule by letting sij = 1

if and only if points i and j have the same curvature; or
use a continuous Gaussian kernel sij = exp(−|ci− cj |2)
where ci, cj are the curvatures of the point i, j.
• k = 2: we can use a binary rule by letting sij = 1

if and only if distances di and dj are the same, where
di (dj) is the distance between two points in the pair i
(j); or use a Gaussian kernel sij = exp(−|di − dj |2).

Definition 3 Given a distribution f on permutations
(
∑
σ f(σ) = 1), the k-th order marginal probability

matrix Hk of f is an N -by-N matrix where N =
n(n − 1) · · · (n − k + 1) and the (i, j)-entry equals

23rd Canadian Conference on Computational Geometry, 2011

280

CCCG 2011, Toronto ON, August 10–12, 2011

S3

[·, ·, 3]

[·, 2, 3]

[1, 2, 3]

[·, 1, 3]

[2, 1, 3]

[·, ·, 2]

[·, 1, 2]

[3, 1, 2]

[·, 3, 2]

[1, 3, 2]

[·, ·, 1]

[·, 2, 1]

[3, 2, 1]

[·, 3, 1]

[2, 3, 1]

(a) (b)

Figure 1: (a) Star. (b) Tree Decomposition of Sn.
∑
σ f(σ)I(σ(i) = j), where i and j index two k-tuples:

(t
(i)
1 , · · · , t(i)k) and (t

(j)
1 , · · · , t(j)k).2

For a given geometric object X, we can compute its
low order similarity matrix. We hope such a matrix
can approximate the marginal probability matrix of the
indicator distribution if we normalize the similarity ma-
trix so that each row sum equals one. As two real ex-
amples, we look at the low order similarity matrices for
the star and human (see Figure 1-(a) and Figure 3-(d)).

For the star example, we compute the similarity ma-
trices using the binary rule (see Figure 2-(a,c)). The
first order similarity matrix is an all-one matrix which
has no information about the symmetry, however, the
second order similarity matrix S2 can completely re-
veal the symmetry – if we normalize S2 so that each
row-sum is one, then the normalized similarity matrix
exactly equals the marginal probability matrix H2 of
the distribution indicating the five-fold dihedral group
G = D5 as in (2) which characterizes the symmetry.

For the human example (see Figure 2-(b,d)), we com-
pute the similarity matrices using the Gaussian kernel.
The first order similarity matrix takes a block diago-
nal form, which partially reveals the symmetry of the
human. However, there are still ambiguities that can
not be resolved by first order information – whenever
we map the left hand to the right hand, we have to
map the left foot to the right foot. However, the second
order similarity matrix S2 constructed by computing
exp(−|di − dj |2) can help us further clarify the symme-
try group of the human – if we normalize S2, then it well
approximates (there are tiny noises within the human
model) the marginal probability matrix H2 of the dis-
tribution indicated by one-fold dihedral group G = D1.

In the above two examples, we observe that the nor-
malized similarity matrix is a good approximation of
the marginal probability matrix for the distribution in-
dicating G if we use a good similarity measure. Such
a matrix can reveal G better if we incorporate higher
order information because in the extremal case the n-th
order marginal probability matrix can exactly pinpoint
the distribution over permutations. Theoretically, we
may prove that normalized low order similarity matrix
in the noiseless case (computed using the binary rule)
equals the marginal probability matrix in the manifold
setting, as long as the signatures we use to construct
similarity measures are powerful enough [9].

In this sequel, we assume the normalized low-order
similarity matrix estimated from geometric objects ap-

2The mk defined in Theorem 1 is one element of Hk where

(t
(i)
1 , · · · , t(i)k) and (t

(j)
1 , · · · , t(j)k) both equals (n− k + 1, · · · , n).

(a)

(b) (c) (d)

(e) (f)

Figure 2: (a,b) First order similarity matrix for the star
and human; (c,d) Second order similarity matrix for the
star and human. The normalized similarity matrix are
of the same block structures except that each row sum
equals one. (e,f) Reconstructed distribution over per-
mutations from the normalized second order similarity
matrix for the star and human. Red dots denote good
permutations.

proximates a marginal probability matrix of the indica-
tor distribution of G.3 By using the Fourier transforms
over permutation group, we can extract a set of low
frequency Fourier coefficients from the normalized low-
order similarity matrix, which provides a band-limited
approximation (`2 projection in the Fourier space) for
the indicator distribution of G over Sn [5]. With such a
set of Fourier coefficients, we estimate all the marginal
probabilities and search elements in G in the tree of all
permutations.

3.1 Fourier Approach

In this section, we consider the problem of estimating
all the marginal probabilities needed for search based on
the normalized low-order similarity matrix S. We first
translate the matrix S into a set of Fourier coefficients
f̂λ’s using Specht modules [6]. Those Fourier com-
ponents (indexed by λ) characterize the low-frequency
components of the distribution f over permutations. Af-
ter that, we compute a pointwise product of f with the
indicator I(σ(n) = (tn)) in the Fourier domain, so that
the distribution over all permutations {σ} such that σ
maps n to tn can be extracted. The result of such a
pointwise distribution can be summarized by a distri-
bution over Sn−1 if one relabels 1, 2, · · · , n so that tn
becomes n. We use an algorithm called Kronecker Con-
ditioning to compute the pointwise product completely
in the Fourier domain [5]. A theorem by [8] gives us a
bound on which representations can appear in the re-
sult of such a pointwise product. We finally apply an
FFT based approach, which will be described later, to
compactly summarize such a distribution over Sn−1.

The above procedure decomposes the distribution im-
plied by S to n distributions over Sn−1. Such a proce-

3We make sure that the normalized similarity matrix is a valid
marginal probability matrix by imposing certain inherent con-
straints such as doubly stochasticity [5].

CCCG 2011, Toronto ON, August 10–12, 2011

281

23rd Canadian Conference on Computational Geometry, 2011

dure can be used iteratively on each Sn−1, until we reach
the bottom of the tree decomposition of Sn. At each
node, a set of Fourier coefficients are maintained to char-
acterize the distribution over permutations dominated
by that node. The key benefit of using Fourier coeffi-
cients to summarize the information is due to the sim-
plicity of evaluating marginals in the Fourier domain [5].

In this process, we see that the relabeling is used
extensively, so that we can view the permutations as
if they are always permuting (1, · · · , n − 1), rather
than mapping from (1, · · · , n− 1) to (1, · · · , t̂n, · · · , n).
Whenever such a relabeling operation is used, the
Fourier coefficients of f on Sn also change accordingly.
It turns out that there is a class of operations, called
shift operations [3] which can compute the Fourier trans-
form with respect to the reordered sets.

3.2 FFT-Based Method

In this section, we detail how to extract the Fourier
coefficients of f restricted on Sn−1 from f̂λ, which is an
essential step in estimating the marginals.

In the tree decomposition of Sn, we see that Sn =
∪ni=1Ji, nKSn−1, where Ji, nK denotes the cyclic permu-
tation (i, i + 1, · · · , n) (i is mapped to i + 1, i + 1 is
mapped to i+ 2, etc, n is mapped to i), and Ji, nKSn−1

is the so-called left Sn−1-coset

Ji, nKSn−1 = {σ ∈ Sn|σ(n) = i} (3)

The fast Fourier transform (FFT) for Sn works by
relating the Fourier transform over Sn to Fourier trans-
forms over the above n cosets. This idea can be ap-
plied recursively, computing the Fourier transform on
each Sn−1-coset from n−1 Fourier transforms on Sn−2-
cosets, etc., all the way down to S1-cosets, which are
individual permutations. We will present a method to
estimate the high order marginals using this approach.

More precisely, we can define the restriction of f to
the Ji, nKSn−1-coset as fi(τ) = f(Ji, nKτ) (which is now
a function on Sn−1), and observing that the Fourier
transform of f can be broken up as

f̂λ =
∑

σ∈Sn
f(σ)ρλ(σ) =

n∑

i=1

∑

τ∈Sn−1

f(Ji, nKτ)ρλ(Ji, nKτ) (4)

=

n∑

i=1

ρλ(Ji, nK)
∑

τ∈Sn−1

fi(τ)ρλ(τ) (5)

The inner summation on the right of this equation
looks almost like the Fourier transform of fi over the
smaller group Sn−1, except that ρλ is an irreducible
representation of Sn instead of Sn−1. In fact, the ρλ(τ)
matrices do form a representation of Sn−1, but in gen-
eral this representation is not irreducible. Maschke’s
theorem [14] tells us that we can express it in terms of
the ρµ irreducible representations of Sn−1 in the form

ρλ(τ) =
⊕

µ∈λ↓n−1

ρµ(τ) (6)

if a particular system of irreducible representa-
tions for Sn, called Young’s Orthogonal Representation

(YOR) [14] is used. Here λ ↓n−1 denotes the set of all
partitions of n−1 dominated by λ, i.e., those partitions
that we can get from λ by removing a single box from
λ’s diagram. Plugging (6) into (5) gives the relationship

between f̂ and f̂1, f̂2, · · · , f̂n:

f̂λ =

n∑

i=1

ρλ(Ji, nK)
⊕

µ∈λ↓n−1

(f̂i)µ (7)

Such a formula can also be inverted to express f̂1, f̂2,
· · · , f̂n in terms of f̂ :

(f̂i)µ =
n− 1

ndµ

∑

λ∈µ↑n
dλρλ(Ji, nK)−1

(f̂λ)µ (8)

where µ ↑n is the set of all partitions of n that dom-
inate µ, i.e., which can be derived from µ by adding a
single box, and (f̂λ)µ is the block of f̂λ for µ.

The ideas in FFTs can be used to identify a restricted
components. For the function given by f(σ)I(σ(n) =
n), we know that f only takes nontrivial values on Sn−1.
We have the following result to exactly calculate the
Fourier coefficients for the function f restricted on Sn−1.

Theorem 4 Given a distribution f on Sn that only
takes nontrivial values on Sn−1, then function restricted
on Sn−1 has Fourier coefficients

(f̂ |Sn−1
)µ ∝

1

dµ

∑

λ∈µ↑n

zλ,µ∑

j=1

dλ(f̂λ)µ (9)

The operation involved in computing the Fourier co-
efficients for f |Sn−1

amounts to finding certain blocks

within the f̂λ matrices and adding them together
weighted by the appropriate dλ and d−1

µ constants. We
can upper bound the computational complexity by the
total size

∑
λ d

2
λ of the f̂λ matrices. Since we only

store the first few low-frequency Fourier components,
the computing complexity is thus strongly polynomial.

In summary, the FFT-based method provides a scal-
able algorithm for computing Fourier coefficients for
f |Sn−1

. The representations that can appear in the com-
putation result is also guaranteed, see proposition 5.

Proposition 5 Given a set of Fourier coefficients for
a distribution f over Sn whose order dominates λ =
(n− p, 1, · · · , 1), the FFT-based method computes a set
of Fourier coefficients whose order dominates λ = (n−
p− 1, 1, · · · , 1) for f |Sn−1

with complexity O(
∑
λ d

2
λ).

4 Marginal Probability Search

Based on previous sections, by exploiting the algebraic
structure of G, we now formally propose a new al-
gorithm – the marginal-based search. This algorithm
searches within the tree of the permutation group Sn,
from the root towards deeper levels, until the group
G is fully identified. Starting from the root, we itera-
tively search and build deeper level nodes based on the
marginal information. If the estimated marginal defined
in (1) is no less than ε times mk (see Theorem 1 from
which we know the left-most node must have nonzero

23rd Canadian Conference on Computational Geometry, 2011

282

CCCG 2011, Toronto ON, August 10–12, 2011

1

3

7 8

6

5
2

4

3

5
4

6

2
1

1

2 3

4 5

(a) (b) (c) (d)

Figure 3: (a) Icosahedron. (b) Octopus. (c) Hand. (d)
Human.

Algorithm 1 Marginal-Based Search
Input: A normalized similarity matrix S, ε.
Output: A list of automorphisms characterizing G.
Procedure:
Initialize the tree T of Sn
Estimate a set of Fourier coefficients {f̂λ}.
k ← 0
for k from 1 to n do

Build child nodes for every node on the (k − 1)-th level.
for Each node on the k-th level do
{f̂µ} ← Fourier coefficients of a distribution over Sn−k.
mk ← 0-th order Fourier coefficient of the left-most node.
if The marginal of the node is less than εmk then

Prune the node.
end if

end for
Prune any node which does not have any k-th level children.

end for

Name #Vertices |G| Running time

Tetrahedron 4 24 0.07s

Hexahedron 8 48 1.07s

Octahedron 6 48 0.61s

Dodecahedron 20 120 131.2s

Icosahedron 12 120 49.5s

Table 1: Detecting Symmetries of Regular Polyhedra

marginal), we keep this node; otherwise, we drop it off.4

Such an iterative search algorithm is essentially doing
a sparse pursuit of G within Sn, which takes account
of the group structures of G, see algorithm 1 for the
pseudo code.

Such a marginal-based search algorithm uses a set of
Fourier coefficients to approximate a distribution over
Sn−k for a node on the k-th level. However, since low-
frequency Fourier coefficients characterize a smooth dis-
tribution over all the permutations. We typically ob-
serve that ε will be choosen to be very large, e.g., around
0.8. However, we still have theoretical guarantees about
our approach.

Theorem 6 Suppose S is the first order marginal prob-
ability matrix reconstructed from f̂µ, when all S’s are
block diagonal dominant matrices5 which indicate orbits
partitioning, then Algorithm 1 can find all symmetries
in G.

In the second order matrix case, we restrict our the-
orem to the special case that all points lie in the same
orbit. If all points does not lie in the same orbit, then
the inverse Fourier transform formula will put weights

4When we are done with building the k-th level nodes in the
tree, we also prune the nodes in the current tree which do not
have any k-th level children.

5Entries off blocks are strictly less than entries within blocks
that lie in the same row and column

Figure 4: Searching for G using the marginal-based
search algorithm for the perturbed icosahedron. We
use a simplified notation for each node, for example, the
node of (11)→ (11) denote all permutations that maps
(11, 12)→ (11, 12). The blue nodes are those should be
kept and the red nodes are those should be dropped off
in the groundtruth.

Dodecahedron Icosahedron Octopus Human

Greedy 76.7% 90.8% 81.3% 100%
Eigen 75.8% 85.8% 75.0% 50%

Morgan 72.5% 87.5% 75.0% 50%
Fourier 79.1% 91.7% 87.5% 100%

Table 2: Accuracy of Different Approaches.

Dodecahedron Icosahedron Octopus Human

Greedy 248.71 85.09 5.89 0.59
Eigen 220.35 82.10 5.03 0.17

Morgan 218.92 79.50 5.18 0.17
Fourier 140.04 52.31 2.03 0.41

Table 3: Running Time of Different Approaches.

on different entries in Sij which yield a distribution over
permutations. However, such a distribution is still an
`2 projection of the noised indicator distribution to the
Fourier space.

5 Experiments

We test our algorithm on several examples, including
regular polyhedra and 3D geometric objects. All the ex-
periments are performed in Matlab on a regular desktop
with 2.4GHz CPU and 3G RAM.

The first example is on detecting the symmetries for
all 3D regular polyhedra. We first build a second or-
der similarity matrix S using the continuous Gaussian
kernel sij = exp(−|di− dj |2) where where di (dj) is the
distance between two points in the pair indexed by i (j).
We normalize S and use it as a marginal probability ma-
trix to estimate the symmetry group G by implementing
Algorithm (1). As shown in table 1, our approach can
detect the symmetry group G for all 3D regular polyhe-
dra with reasonable running time. We note that brute
force search for the symmetry group G for dodecahe-
dron and icosahedron would be very difficult, since the
sizes of the permutation groups are 20! ≈ 2.43 × 1018

and 12! ≈ 4.79× 108.
One benefit of the proposed approach of inferring the

symmetry group G is that it can naturally deal with

CCCG 2011, Toronto ON, August 10–12, 2011

283

23rd Canadian Conference on Computational Geometry, 2011

noise. As an example, we randomly perturb the vertices
of the icosahedron with certain magnitudes. After that,
we repeat the previous experiment where we build the
similarity matrix, normalize it to get a marginal prob-
ability matrix, and then estimate the symmetry group
G. It turns out that our approach can still find the
symmetry group G for the perturbation with a relative
magnitude up to 0.05 (the edge length is 1).

To demonstrate how the marginal-based search algo-
rithm prunes the nodes in the tree, we show part of
the tree implemented during our experiments in Fig-
ure 4-(a). As we can see from the figure, on the first,
second and fifth level, the nodes that intersect with G
have larger marginals than those that do not. Such a
gap tends to be smaller at certain levels, such as level
3 and 4, thus it is very possible that we may include
some nodes which do not intersect with G during the
implementation of our algorithm. However, it turns out
that when we look several levels down, those nodes will
be dropped. The labeling of vertices of the icosahedron
illustrated in this tree is shown in Figure 3-(a).

As another example, we detect the symmetries for the
octopus, see Figure 3-(b). Unlike the regular polyhedra
examples, the symmetry of the octopus can only be de-
fined as isometries which preserve the geodesic distance,
rather than the Euclidean distance. We use the fuzzy
geodesics proposed in [15] which can be interpreted as
a robust distance measure to get an effective similarity
matrix between pairs. The later routines for inferring
the group G are the same as in previous experiments.
Though in this example the octopus is heavily deformed,
we can still recover the dihedral group as its symmetry
group.

Using the same technique of fuzzy geodesic metrics,
we can get similarity matrix for many other 3D geo-
metric models, such as the hand and human, as shown
in Figure 3-(c,d). We can fully determine the 2-fold
symmetries of the human model using our approach.
However, for the heavily perturbed hand model, many
permutations will be identified to be good ones, among
which the permutations that have the highest values are
still meaningful. For example, the top 2 permutations
being identified are the identity and (1, 2, 3, 4, 5, 6) →
(6, 3, 2, 4, 5, 1).

We finally compare our algorithm with another
greedy heuristics [12] whose pruning criteria is based on
the current maximum distortions. Several other algo-
rithms such as principle eigenvector analysis (spectral
analysis of the similarity matrices), the Morgan algo-
rithm (an iterative procedure to estimate the orbit par-
titioning), and etc [1, 11] can be used as a pre-processing
step which may reduce the size of the searching space.
The comparison of accuracy (how many percentages of
correct symmetries identified) and running time of dif-
ferent approaches are shown in Table 2 and 3. Through-

out these experiments, we distort the geometric models
so that it becomes difficult to recognize all the symme-
tries. Thus, we typically observe that eigenvector anal-
ysis and Morgan algorithm often make errors in iden-
tifying the orbit of the vertices. Whenever such an er-
ror occurs, it decreases the accuracy dramatically. The
greedy heuristic algorithm typically has longer running
time than our proposed Fourier approach.

6 Acknowledgement

The authors would like to thank the anonymous review-
ers for valuable comments and suggestions. Leonidas
Guibas and Xiaoye Jiang wish to acknowledge the sup-
port of NSF grants FODAVA 0808515, as well as ARO
grant W911NF-10-1-0037.

References

[1] P. J. Cameron. Permutation Groups. London Mathe-
matical Society, 1999.

[2] S. Datta, N. Limaye, P. Nimbhorkar, T. Thierauf,
and F. Wagner. Planar graph isomorphism is in log-
space. In IEEE Conference on Computational Com-
plexity, 2009.

[3] P. Diaconis. Group Representations in Probability and
Statistics. Institute of Mathematical Statistics, 1988.

[4] T. Funkhouser and P. Shilane. Partial matching of 3D
shapes with priority-driven search. In Proceedings of
SGP, 2006.

[5] J. Huang, C. Guestrin, and L. J. Guibas. Fourier theo-
retic probabilistic inference over permutations. Journal
of Machine Learning Reserach, 2009.

[6] G. D. James. The Representation Theory of the Sym-
metric Groups. Springer-Verlag, 1978.

[7] N. J. Mitra, L. Guibas, and M. Pauly. Partial and
approximate symmetry detection for 3d geometry. In
ACM Transactions on Graphics, 2006.

[8] F. Murnaghan. The analysis of the kronecker product
of irreducible representations of the symmetric group.
American Journal of Mathematics, 1938.

[9] M. Ovsjanikov, Q. Merigot, F. Memoli, and L. Guibas.
One point isometric matching with the heat kernel. In
Proceedings of SGP, 2010.

[10] J. Podolak, P. Shilane, A. Golovinskiy, S. Rusinkiewicz,
and T. Funkhouser. A planar-reflective symmetry
transform for 3D shapes. In Proceedings of SIGGRAPH,
2006.

[11] I. Ponomarenko. Graph isomorphism problem and
schurian algebras. preprint, 1994.

[12] D. Raviv, A. M. Bronstein, M. M. Bronstein, and
R. Kimmel. Symmetries of non-rigid shapes. In Pro-
ceedings of ICCV, 2007.

[13] R. Read and D. Corneil. The graph isomorphism dis-
ease. Journal of Graph Theory, 1977.

[14] B. Sagan. The Symmetric Group: Representations,
Combinatorial Algorithms, and Symmetric Functions.
Springer-Verlage, 2001.

[15] J. Sun, X. Chen, and T. Funkhouser. Fuzzy geodesics
and consistent sparse correspondences for deformable
shapes. In Proceedings of SGP, 2010.

[16] L. Weinberg. On the maximum order of the automor-
phism group of a planar triply connected graph. SIAM
Journal on Applied Mathematics, 1966.

23rd Canadian Conference on Computational Geometry, 2011

284

CCCG 2011, Toronto ON, August 10–12, 2011

List coloring and Euclidean Ramsey Theory (Abstract)

Noga Alon ∗ Alexandr Kostochka †

Abstract

It is well known that one can color the plane by 7 colors with no monochromatic configuration consisting of
the two endpoints of a unit segment, and it is not known if a smaller number of colors suffices. Many similar
problems are the subject of Euclidean Ramsey Theory, introduced by Erdős et. al. in the 70s.

In sharp contrast we show that for any finite set of points K in the plane, and for any finite integer s, one
can assign a list of s distinct colors to each point of the plane, so that any coloring of the plane that colors each
point by a color from its list contains a monochromatic isometric copy of K. The proof follows from a general new
theorem about coloring uniform simple hypergraphs with large minimum degrees from prescribed lists.

1 Euclidean Ramsey Theory

A well known problem of Hadwiger and Nelson is that of determining the minimum number of colors required to
color the points of the Euclidean plane so that no two points at distance 1 have the same color. Hadwiger showed
already in 1945 that 7 colors suffice, and Nelson as well as L. Moser and W. Moser noted that 3 colors do not suffice.
These bounds have not been improved, despite a considerable amount of effort by various researchers.

A more general problem has been considered by Erdős, Graham, Montgomery, Rothschild, Spencer and Straus
[4, 5, 6] under the name Euclidean Ramsey Theory. The main question is the investigation of finite point sets K in
the Euclidean space for which any coloring of an Euclidean space of a sufficiently high dimension d ≥ d0(K, r) by r
colors must contain a monochromatic copy of K. The conjecture is that this holds for a set K if and only if it can
be embedded in a sphere. Another conjecture considered by these authors asserts that for any set K of 3 points in
the plane, there is a coloring of the plane by 3 colors with no monochromatic copy of K.

Intriguing variants of these questions arise when one places some restrictions on the set of colors available in each
point. This is related to the notion of list coloring introduced by Vizing [8] and by Erdős, Rubin and Taylor [7].

2 List coloring

The list chromatic number (or choice number) χ`(G) of a graph G = (V,E) is the minimum integer s such that for
every assignment of a list Lv of s colors to each vertex v of G, there is a proper vertex coloring of G in which the color
of each vertex is in its list. This notion was introduced independently by Vizing [8] and by Erdős, Rubin and Taylor
[7]. In both papers the authors realized that this is a variant of usual coloring that exhibits several new properties,
and that in general χ`(G), which is always at least as large as the chromatic number of G, may be arbitrarily large
even for graphs G of chromatic number 2.

It is natural to extend the notion of list coloring to hypergraphs. The list chromatic number χ`(H) of a hypergraph
H is the minimum integer s such that for every assignment of a list of s colors to each vertex of H, there is a vertex
coloring of H assigning to each vertex a color from its list, with no monochromatic edges.

An interesting property of list coloring of graphs, which is not shared by ordinary vertex coloring, is the result
that the list chromatic number of any (simple) graph with a large average degree is large. Indeed, it is shown in [1]
that the list chromatic number of any graph with average degree d is at least (1

2 − o(1)) log2 d, where the o(1)-term
tends to zero as d tends to infinity. Our main combinatorial result is an extension of this fact to simple uniform
hypergraphs.

∗Schools of Mathematics and Computer Science, Tel Aviv University, Tel Aviv, Israel nogaa@tau.ec.il
†Department of Mathematics, University of Illinois, Urbana, IL, USA kostochk@math.uiuc.edu

CCCG 2011, Toronto ON, August 10–12, 2011

285

23rd Canadian Conference on Computational Geometry, 2011

3 The new results

A hypergraph is called simple if every two of its distinct edges share at most one vertex. It is an r-graph if each
of its edges contains exactly r vertices. We prove that the result of [1] can be extended to simple r-graphs. This is
stated in the following theorem.

Theorem 1 For every fixed r ≥ 2 and s ≥ 2, there is d = d(r, s), such that the list chromatic number of any simple
r-graph with n vertices and nd edges is greater than s.

It is worth noting that the theorem provides a linear time algorithm for computing, for a given input simple
r-graph, a number s such that its list chromatic number is at least s and at most f(s) for some explicit function f .
There is no such known result for ordinary coloring, and it is known that there cannot be one under some plausible
hardness assumptions in Complexity Theory, as shown in [3].

The above result implies the following.

Theorem 2 For any finite set X in the Euclidean plane and for any positive integer s, there is an assignment of a
list of size s to every point of the plane, such that whenever we color the points of the plane from their lists, there is
a monochromatic isometric copy of X.

The proofs of both theorems can be found in [2].

References

[1] N. Alon, Degrees and choice numbers, Random Structures & Algorithms 16 (2000), 364–368.

[2] N. Alon and A. V. Kostochka, Hypergraph list coloring and Euclidean Ramsey Theory, Random Structures and Algo-
rithms, to appear.

[3] I. Dinur, E. Mossel and O. Regev, Conditional hardness for approximate coloring, SIAM J. Comput. 39 (2009), 843–873.

[4] P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer, and E. G. Straus, Euclidean Ramsey theorems. I.
J. Combinatorial Theory Ser. A 14 (1973), 341–363.

[5] P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer, and E. G. Straus, Euclidean Ramsey theorems.
II. Infinite and finite sets (Colloq., Keszthely, 1973) Vol. I, pp. 529–557. Colloq. Math. Soc. Janos Bolyai, Vol. 10,
North-Holland, Amsterdam, 1975.

[6] P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer, and E. G. Straus, Euclidean Ramsey theorems,
III. Infinite and finite sets (Colloq., Keszthely, 1973) Vol. I, pp. 559–583. Colloq. Math. Soc. Janos Bolyai, Vol. 10,
North-Holland, Amsterdam, 1975.

[7] P. Erdős, A. L. Rubin and H. Taylor, Choosability in graphs, Proc. West Coast Conf. on Combinatorics, Graph Theory
and Computing, Congressus Numerantium XXVI, 1979, 125-157.

[8] V. G. Vizing, Coloring the vertices of a graph in prescribed colors (in Russian), Diskret. Analiz. No. 29, Metody Diskret.
Anal. v. Teorii Kodov i Shem 101 (1976), 3-10.

23rd Canadian Conference on Computational Geometry, 2011

286

CCCG 2011, Toronto ON, August 10–12, 2011

Rigidity-Theoretic Constructions of Integral Fary Embeddings

Timothy Sun∗

Abstract

Fáry [3] proved that all planar graphs can be drawn in
the plane using only straight line segments. Harborth
et al. [7] ask whether or not there exists such a drawing
where all edges have integer lengths, and Geelen et al.
[4] proved that cubic planar graphs satisfied this con-
jecture. We re-prove their result using rigidity theory,
exhibit other natural families of planar graphs that sat-
isfy this conjecture as immediate corollaries, and also
prove a weaker result for all planar graphs in R3.

1 Introduction

All graphs in this paper are simple and finite. Let G =
(V,E) be a planar graph. A Fary embedding φG : V →
R2 of G is an embedding such that the drawing induced
by φG with straight-line edges has no crossing edges.
Fáry [3] proved a classic theorem on these embeddings.

Theorem 1 (Fáry [3]) All planar graphs have a Fary
embedding.

The main idea for the proof was by induction on the
number of vertices. A vertex v of degree at most 5 in the
interior is deleted from a maximal planar graph G, and
v is carefully replaced in a Fary embedding of a trian-
gulation of G− v so that it “sees” all its neighbors. An
integral Fary embedding is a Fary embedding in which
for all adjacent vertices a and b, ||φG(a)− φG(b)|| is an
integer. Harborth et al. [7] found integral Fary em-
beddings for the Platonic graphs, which led them to
conjecture the following.

Conjecture 1 All planar graphs have an integral Fary
embedding.

Previous attacks on this conjecture took the same di-
rection as [3], inductively adding new vertices by using
solutions to Diophantine equations. Kemnitz and Har-
borth [8] outline an idea for a possible proof and a con-
struction for some planar graphs, but their method does
not always work. Geelen et al. [4] give a partial solution
in which they demonstrated that all cubic planar graphs
satisfy Conjecture 1. Our method determines when it
is possible to perturb an edge length without affecting

∗Department of Computer Science, Columbia University,
ts2578@columbia.edu

any other edge lengths and preserving planarity, and we
prove Conjecture 1 for planar graphs in which all edges
can be perturbed. While that family does not contain
all planar graphs, it does contain some well-known fam-
ilies of planar graphs, including all but one of the cubic
planar graphs. Unlike the results in [4] and [8], the ex-
act combinatorial characterization for such graphs are
known.

2 Rigidity and Edge Perturbations

A (d-dimensional) framework is a pair (G, p) where
p : V (G)→ Rd, known as a configuration, is a mapping
which takes the vertices of G to points in Euclidean d-
space. We assume that the image of p does not lie on a
hyperplane and that p is injective. A generic configura-
tion is one where all vd coordinates are independent over
the rationals, and a generic framework is a framework
with a generic configuration. We say that a framework
is flexible (in Rd) if there exists a continuous motion of
the vertices that preserves edge lengths and is not a Eu-
clidean motion, and that it is rigid otherwise. We say
that a graph is (generically) flexible/rigid if all generic
frameworks of that graph are flexible/rigid. While the
rigidity of a particular framework is dependent on the
choice of configuration, generic rigidity is a property of
only the underlying graph.

Let G be a graph. Consider the function fG that
takes a configuration to a vector of all the edge lengths
squared. In other words, fG : Rvd → Re is a function
which takes

p = (p1, p2, ...pv) 7→ (..., ||pi − pj ||2, ...).

The Jacobian dfG(p), called the rigidity matrix of
(G, p), is an e × vd matrix where each row corre-
sponds to an edge and encodes the vector between the
two vertices incident with the edge. For example, the
rigidity matrix of the graph K3 with the configuration
p1 = (1, 1), p2 = (2,−2), p3 = (0, 3) can be written as

2 ∗

p1,1 p1,2 p2,1 p2,2 p3,1 p3,2

v1v2 −1 3 1 −3 0 0
v1v3 1 −2 0 0 −1 2
v2v3 0 0 2 −5 −2 5

.

By factoring out the 2, the entries of the rigidity matrix
can be calculated by simply taking the difference be-

CCCG 2011, Toronto ON, August 10–12, 2011

287

23rd Canadian Conference on Computational Geometry, 2011

tween coordinates. Since all possible edge-length func-
tions can be obtained by some permutation of the edges
and swapping the “head” and “tail” of an edge, we re-
fer to dfG as the rigidity matrix. Most importantly, we
are only interested in the rank of the rigidity matrix,
which is not affected by such choices. The derivative of
any flex or Euclidean motion on a framework lies in the
kernel of the framework’s rigidity matrix, so the rank
gives an informal notion of how rigid the framework is.
In particular, adding an edge which is linearly indepen-
dent from the other edges reduces the dimension of the
space of flexes by one. The rank of the rigidity matrix is
dependent on the choice of configuration, so we restrict
our attention to a specific subset of all configurations.
A configuration p is a regular point of fG if

rank dfG(p) = max
q∈Rvd

rank dfG(q).

For v > d, let r(v, d) be defined as the quantity vd−(
d+1
2

)
. vd −

(
d+1
2

)
can be informally thought of as the

number of degrees of freedom we have in selecting a
framework. There are vd coordinates to choose from,
but the d-dimensional space of translations and the

(
d
2

)
-

dimensional space of rotations limit the space of non-
congruent frameworks. Asimow and Roth [1] formalized
this intuitive notion and proved that at regular points, a
framework on more than d vertices is rigid at a regular
point if and only if the rank of its rigidity matrix is
r(v, d). In the case where v is at most d, the only rigid
graphs are the complete graphs.

The theorem by Asimow and Roth [1] roughly states
that we need as many edge constraints as degrees of
freedom for a framework to be rigid. For example,
the graph K3,3 is generically rigid in R2 since it has
9 = r(6, 2) linearly independent edges. In fact, the only
flexible frameworks of K3,3 are those whose vertices lie
on a conic section, like in Figure 1. However, even when
there are exactly r(v, d) edges, the framework may not
be rigid. For example, any degree 1 vertex can pivot
around its neighbor in the plane. We will present the
classic combinatorial characterization of graphs with all
independent edges in R2 in the next section that elimi-
nates such problems.

Figure 1: When the configuration is not generic, some-
times the framework is infinitesimally flexible even
though the graph is generically rigid.

A redundant edge is one whose removal does not de-

crease the rank of the rigidity matrix. With regards
to flexes, removing a redundant edge does not increase
the space of flexes. The main technique of this paper is
described in the following theorem.

Theorem 2 Let (G, p) be a framework in R2 such that
p is a Fary embedding and a regular point, and let ab be
a non-redundant edge. Then there exists a framework
(G, p′) such that p′ is a Fary embedding and a regu-
lar point, ||p′(a)− p′(b)|| is rational, and all other edge
lengths remain fixed.

Proof. There exists an open neighborhood of configu-
rations Nε around p of Fary embeddings. To see this, we
can examine the set of configurations where two fixed
edges do not intersect. Since this set is open, the inter-
section of all such constraints is also open. Furthermore,
there exists an open neighborhood of regular points Nη
around p. This follows from the fact that there is a
maximal rank square submatrix with non-zero determi-
nant and that the determinant is a continuous function
on the coordinates.

Nε

Nη

p1 p2

C

Figure 2: Perturbing an edge. If we remove a non-
redundant edge ab of a rigid framework (G, p1), there
will be a non-trivial one-dimensional flex C. By re-
stricting C to Nε ∩ Nη, we can find a configuration p2
such that ||p2(a)− p2(b)|| is rational. Then, the edge ab
in (G, p2) has rational length.

Consider the graph formed by removing ab. Since ab
is non-redundant, its removal creates a one-dimensional
space of flexes. Moving along the flex, the distance be-
tween a and b changes, otherwise this flex would be
a Euclidean motion. Since the rationals are dense in
the reals, we can find a configuration p′ ∈ Nε ∩ Nη
such that ||p′(a) − p′(b)|| is rational. Then p′ is a reg-
ular point (p′ ∈ Nη) and a Fary embedding (p′ ∈ Nε),
||p′(a) − p′(b)|| is rational, and all other edge lengths
remained constant. �

3 Harborth’s Conjecture for (2, 3)-Sparse Graphs

A graph G is (m,n)-sparse if for any subgraph G′ with
v′ vertices and e′ edges, e′ ≤ max(0,mv′−n). Our result
in the plane relies on the following characterization.

23rd Canadian Conference on Computational Geometry, 2011

288

CCCG 2011, Toronto ON, August 10–12, 2011

Theorem 3 (Graver et al. [6, Lemma 4.2.1])
Every edge in (G, p) is non-redundant at a regular point
p if and only if G is (2, 3)-sparse.

This result perhaps takes on its most familiar form in
Laman [9], who demonstrates that the generically rigid
graphs in the plane are exactly the (2, 3)-sparse graphs
with 2v − 3 edges, the so-called Laman graphs.

Figure 3: K3 ×K2, a planar Laman graph.

In the original paper, Laman actually showed only
the existence of rigid realizations of Laman graphs, but
the density of regular points guarantees that all generic
frameworks of Laman graphs are rigid, as well. While
the (2,3)-sparseness property does not directly play a
part in the proof of the following result, it is useful in
characterizing other families of planar graphs that have
integral Fary embeddings as corollaries.

Theorem 4 All planar (2, 3)-sparse graphs have inte-
gral Fary embeddings.

Proof. Let G be a (2, 3)-sparse graph. We can find a
Fary embedding p that is also a regular point by taking
a Fary embedding φG and perturbing it slightly. The
regular points are dense in Rvd, so this is always possi-
ble. By repeatedly applying Theorems 2 and 3, we can
perturb all edges to rational lengths by a sequence of
configurations p = p0 → p1 → . . .→ pe, where each suc-
cessive term in the sequence is obtained by perturbing
another edge in the preceding configuration. Then, pe
is a Fary embedding of G with all rational edge lengths,
and scaling appropriately yields an integral Fary em-
bedding. �

An intuitive way to interpret the above result is that
if there are few edges and they are evenly spread out
among the vertices, it is possible to perturb the lengths
of the edges almost however we want. That is, we
can choose any rational lengths within some neighbor-
hood of a Fary embedding and obtain an integral Fary
embedding by scaling. The construction by Geelen et
al. [4] can be shown to work on (2, 3)-sparse graphs,
but their result does not allow for arbitrary choices of
rational lengths. On the other hand, Biedl [2] gives
an efficient algorithm in the case of 3-connected cubic
graphs demonstrating that we can actually choose inte-
ger lengths linear in the number of vertices.

Unfortunately, (2, 3)-sparseness is far from covering
all the planar graphs. When the graph has more than

2v − 3 edges, we can no longer use this approach since
there are redundant edges. Fortunately, this approach
is just enough to prove some already-known results. Let
G be a sub-cubic graph if it has maximal degree 3. We
obtain the following results from Theorem 4.

Corollary 5 (Geelen et al. [4]) All sub-cubic pla-
nar graphs have integral Fary embeddings.

Proof. Sub-cubic graphs have at most 3
2v edges, so the

only sub-cubic graph with more than 2v−3 edges is K4.
No connected sub-cubic graph can have K4 as a proper
subgraph because otherwise some vertex would have de-
gree at least 4. Hence, all connected sub-cubic graphs
with the exception of K4 are (2, 3)-sparse, so they have
an integral Fary embedding by the previous theorem.
There are several ways of finding an integral Fary em-
bedding forK4, the smallest of which can be found using
Pythagorean triples as demonstrated in [7]. �

Corollary 6 Triangle-free planar graphs have integral
Fary embeddings.

Proof. Triangle-free graphs with v ≥ 3 have at most
2v − 4 edges, and since a subgraph of a triangle-free
graph is also triangle-free, they are (2, 3)-sparse. �

Corollary 7 Bipartite planar graphs have integral Fary
embeddings.

G is a series-parallel graph if it is a subgraph of a
graph that is constructed from K2 by adding vertices
and attaching them to two adjacent vertices. Wagner
[10] proved that a graph is series-parallel if and only
if it does not contain K4 as a minor. Since both K3,3

and K5 have K4 as a minor, series-parallel graphs are
planar. Alternatively, the constructive characterization
immediately yields a method of finding integral Fary
embeddings.

Corollary 8 Series-parallel graphs have integral Fary
embeddings.

Proof. Let G be a “maximal” series-parallel graph. As
stated above, G can be constructed from adding new
vertices and connecting them to adjacent vertices, so
G has 2v − 3 edges. Any subgraph of G is also series-
parallel, so G is (2, 3)-sparse. �

Corollary 9 Outerplanar graphs have integral Fary
embeddings.

4 Integral Convex Embeddings in R3

In this section, we prove a result weaker than Conjec-
ture 1. A convex embedding is an embedding of a planar
graph in R3 such that the set of edges can be extended

CCCG 2011, Toronto ON, August 10–12, 2011

289

23rd Canadian Conference on Computational Geometry, 2011

to form the skeleton of a convex polyhedron on the same
set of vertices. One notable property of such an embed-
ding is that it is also linkless (and furthermore flat).
That is, the set of cycles are pairwise unlinked in a con-
vex embedding. We prove that all planar graphs have
integral convex embeddings by using a known sufficient
condition for independence in R3.

Theorem 10 (Gluck [5]) Let (G, p) be a framework
in R3 such that G is planar and p is a regular point.
Then every edge is non-redundant.

Since a convex embedding stays a convex embedding
under small perturbations, we can make the following
analogous statements to Theorems 2 and 4.

Theorem 11 Let (G, p) be a framework in R3 such that
p is a convex embedding and a regular point, and let uv
be a non-redundant edge. Then there exists a framework
(G, p′) such that p′ is a convex embedding and a regu-
lar point, ||p′(u)− p′(v)|| is rational, and all other edge
lengths remain fixed.

Theorem 12 All planar graphs have an integral convex
embedding.

Ziegler [11, Problem 4.18] asks whether every 3-
polytope has a realization where every edge has rational
length. Theorem 12 answers this in the affirmative in
the case where the number of edges is maximal. In par-
ticular, the technique of perturbing each edge does not
necessarily preserve the flatness of a non-triangular face,
so we can only answer this problem for 3-polytopes with
only triangular faces.

5 Acknowledgements

I would like to thank Dylan Thurston for a helpful dis-
cussion on the topic and the anonymous reviewer for
his or her suggestions on the paper. I especially want
to thank David Surowski, who in his final piece of aca-
demic advice, urged me to submit this paper.

References

[1] L. Asimow and B. Roth, The rigidity of graphs,
Trans. Amer. Math. Soc. 245 (1978), 279-89.

[2] T. Biedl, Drawing some planar graphs with integer
edge-lengths, to appear in Canadian Conference on
Computational Geometry (2011).

[3] I. Fáry, On straight-line representation of planar
graphs, Acta Sci. Math. 11 (1948), 229-233.

[4] J. Geelen, A. Guo, D. McKinnon, Straight line em-
beddings of cubic planar graphs with integer edge
lengths, J. Graph Theory 58 (2008) No. 3, 270-274.

[5] H. Gluck, Almost all simply connected closed sur-
faces are rigid, Geom. Top., Lecture Notes in Math.
438 (1975), 225-239.

[6] J. Graver, B. Servatius, H. Servatius, Combina-
torial rigidity, Grad. Stud. Math., Vol. 2, Amer.
Math. Soc. (1993).

[7] H. Harborth, A. Kemnitz, M. Moller, A. Sussen-
bach, Ganzzahlige planare Darstellungen der pla-
tonischen Korper, Elem. Math. 42 (1987), 118-122.

[8] A. Kemnitz, H. Harborth, Plane Integral Drawings
of Planar Graphs, Discrete Math. 236 (2001), 191-
195.

[9] G. Laman, On graphs and rigidity of plane skeletal
structures, J. Eng. Math. 4 (1970), 331-340.

[10] K. Wagner, Über eine Eigenschaft der ebenen Kom-
plexe, Math. Ann. 144 (1937), 570-590.

[11] G. Ziegler, Lectures on polytopes, Springer (1995),
123.

23rd Canadian Conference on Computational Geometry, 2011

290

CCCG 2011, Toronto ON, August 10–12, 2011

Drawing some planar graphs with integer edge-lengths

Therese Biedl ∗

Abstract

In this paper, we study drawings of planar graphs such
that all edge lengths are integers. It was known that
such drawings exist for all planar graphs with maxi-
mum degree 3. We give a different proof of this result,
which is based on a simple transformation of hexagonal
drawings as created by Kant. Moreover, if the graph is
3-connected then the vertices have integer coordinates
that are in O(n). We then study some other classes of
planar graphs, and show that planar bipartite, series-
parallel graphs, and some other graphs also have planar
drawings with integer edge lengths.

1 Introduction

A planar graph is a graph that can be drawn without
crossing. Fáry, Stein and Wagner [4, 13, 15] proved
independently that every planar graph has a drawing
such that all edges are drawn as straight-line segments.
Sometimes additional constraints are imposed on the
drawings. The most famous one is to have integer co-
ordinates while keeping the area small; it was shown in
1990 that this is always possible in O(n2) area [5, 12].

In this paper, we study a different restriction that was
first posed by Kemnitz and Harborth [8]: Does every
planar graph admit a straight-line drawing with integer
edge lengths? This question remains open in general,
but was answered in the positive for planar graphs with
maximum degree 3 by Geelen, Guo and McKinnon [6].

In this paper, we first give a different proof of the
result for planar graphs with maximum degree 3. In
particular, our proof is constructive and yields a linear-
time algorithm to find the drawing. (In contrast to this,
Geelen, Guo and McKinnon require a theorem about
rational distances that does not lend itself to an algo-
rithm easily.) For 3-connected 3-regular graphs, our al-
gorithm is very easy: Use the drawings with few slopes
that are known to exist, and modify them so that all
edge lengths are integers. In the resulting drawing all
vertices are also at (integer) grid points, and the grid
has width and height O(n). For graphs that are not

∗David R. Cheriton School of Computer Science, Univer-
sity of Waterloo, Waterloo, ON N2L 3G1, Canada, e-mail
biedl@uwaterloo.ca. Research partially supported by NSERC.
The author would like to thank Terry Anderson, Michal Stern,
Ruth Urner, and especially Elena Lesvia Ruiz Velazquez for in-
spiring discussions.

3-connected, we split them into subgraphs, draw these
separately, and paste them together suitably. The proof
here is still algorithmic, but no bound on the grid-size
of the resulting drawing is apparent.

We also study some other graphs classes, such as pla-
nar bipartite graphs and series-parallel graphs. As it
turns out, the proof of Geelen et al. [6] actually works
for these graphs as well, and so they also can be drawn
with integer edge lengths. This was also shown inde-
pendently (with a different proof) by Sun [14].

2 Drawing 3-connected 3-regular planar graphs

We first study graphs with maximum degree 3 that are
also 3-connected, i.e., cannot be separated by removing
at most 2 vertices. Such graphs are in fact 3-regular,
i.e., every vertex has degree 3. In 1993, Kant [7] showed
how to create hexagonal grid drawings of 3-connected
3-regular graphs. His results (cf. Theorem 9 and Figure
5 of [7]) imply:

Theorem 1 [7] Let G be a 3-connected 3-regular graph,
and let vo be an arbitrary vertex on the outer-face of G.
Then G− vo has a straight-line drawing Γ such that

• all edges are drawn horizontally, vertically or with
slope −1,

• the drawing is contained in a triangle with corners
at (0, 0), (n−2

2 − 1, 0) and (0, n−2
2 − 1),

• the three neighbours of vo are placed at the three
corners of the triangle.

Such a drawing can be found in linear time.

See also Figure 1. A similar result was also proved
later by Dujmovic et al. [3] using the so-called canonical
ordering.

vo

Γ

y

x
n−2

2

n−2
2

Figure 1: Kant’s drawing (from [7].)

To convert Γ into a drawing with integer edge lengths,
skew it suitably, and then add vo. There are many ways

CCCG 2011, Toronto ON, August 10–12, 2011

291

23rd Canadian Conference on Computational Geometry, 2011

to do such a skew. The most intuitive one would be to
convert the drawing back to the hexagonal grid (with
angle 0, π/3 and 2π/3.) This would make the edge
lengths integers, but vertices would not be at grid points
(and in fact, would have irrational coordinates.)

We hence use a different skew that maps grid points
to grid points and lines to slopes that are part of a
Pythagorean triplet. More precisely, define the linear
mapping ψ : (x, y) → (7x − 3y, 24y) and note that it
maps grid points to grid points. Consider any line seg-
ment s in Γ; say s connects grid points (x1, y1) and
(x2, y2):

• If s is horizontal, then y1 = y2, and hence ψ(s) is
also horizontal. Since grid points are mapped to
grid points, ψ(s) hence has integer length.

• If s has slope −1 then x2 − x1 = y1 − y2. Hence
ψ(s) has slope

24y1 − 24y2
(7x1 − 3y1) − (7x2 − 3y2)

=
24(x2 − x1)

7(x1 − x2) − 3(x2 − x1)

=
24

−10
= −12

5

Say ψ(s) projects to length X in x-direction and
length Y in y-direction, then Y = 12

5 X and both X
and Y are integers (since ψ maps grid points to grid
points.) Hence X = 5A for some integer A, and the
length of ψ(s) is

√
X2 + Y 2 =

√
(5A)2 + (12A)2 =√

169A2 = 13A, which is an integer.

• If s is vertical, then x1 = x2. Similar calculations
show that ψ(s) has slope −24/7, its x-projection
has length 7A for some integer A, and the length
of ψ(s) is

√
(7A)2 + (24A)2 = 25A, an integer.

Therefore ψ(Γ) is a drawing of G− vo where all edges
have integer length. Hence it only remains to add vo

suitably. In ψ(Γ) the three neighbours of vo are placed
at (0, 0), (7n−2

2 , 0) and (−3n−2
2 , 24n−2

2). Place vo at
(−3n−2

2 ,−24n−2
2), which is a grid point. The three

edges to its neighbours than have slope 12/5, 24/7 and
+∞, respectively. Since the neighbours are also at grid
points, this implies (as above) that the edge lengths are
integers.

Theorem 2 Every 3-regular 3-connected planar graph
has a planar straight-line drawing such that

• all edges have integer length,

• all edges are horizontal, vertical or have slope ± 5
12

or ± 7
24 ,

• the width is 5(n− 2) and the height is 24(n− 2).

Such a drawing can be found in linear time.

ψ(Γ)

−3n−2
2 7n−2

2

−24n−2
2

24n−2
2

Figure 2: Applying ψ and adding vo.

Without going into details, we note here that a dif-
ferent skew to apply would have been ψ′ : (x, y) →
(7x− 9y, 12y). This maps segments of slope −1 to seg-
ments of slope −3/4, and vertical segments to segments
of slope −4/3; since 32 + 42 = 52 one easily shows that
edge lengths are then integers. The area of the final
drawing then can be shown to be 8(n− 2) × 12(n− 2),
which is less than in Theorem 2 and also has a better
aspect ratio. But this drawing would have a larger angle
at the “top tip”, which will be undesirable later.

In fact, any two Pythagorean triplets a < b < c and
a′ < b′ < c′ where {a, b} and {a′, b′} have a term in
common can provide a suitable skew. For example, if
a′ = b, then use the skew (x, y) → (b′x − ay, a′y) to
obtain a drawing of area (b′ + a)a′ · ((n− 2)/2)2. There
are many such pairs of Pythagorean triples, and any of
them give O(n2) area, but is ψ′ the best one for the
constant in the area-bound?

3 Max-degree-3 graphs

The previous section studied graphs that have maxi-
mum degree 3 and are 3-connected. In this section,
we now extend this to all graphs of maximum degree
3, i.e., we explain how to deal with a bridge (an edge
whose removal disconnects the graph) and with a cutting
edge-pair (a pair of edges whose removal disconnected
the graph.) Since the graph has maximum degree 3, it
must have either a bridge or a cutting edge-pair or must
be 3-connected.

Our approach is the “standard” approach in graph

23rd Canadian Conference on Computational Geometry, 2011

292

CCCG 2011, Toronto ON, August 10–12, 2011

drawing, also used in [7]: Cut the graph apart at such
an edge/pair, draw each part separately, and paste the
drawings together suitably. The idea of this is very sim-
ple, but the details are a bit more complicated since we
need to add invariants to the drawing to ensure that
they can be merged.

We will only explain how to obtain a drawing with
rational coordinates; this implies the result after scaling.

3.1 Bridges

We will show how to draw any planar graph G with
maximal degree 3 with rational edge lengths such that
additionally one pre-specified vertex w of G is on the
convex hull of the resulting drawing. We proceed by
induction on the number of bridges. In the base case,
G has no bridge, so it is 2-connected. We will show an
even stronger statement for 2-connected graphs in the
next subsection.

For the induction step, assume now that G has a
bridge e = (v1, v2), and let G1 and G2 be the two sub-
graphs that result from removing e, with vi in Gi. As-
sume that w belongs to graph G1.

Draw G1 recursively with rational edge lengths such
that w is on the convex hull. In this drawing, find an
open disk D that is inside the face where G2 used to be,
and such that any point inside D can be connected to
v1 without intersecting other edges of G1. Furthermore,
if v1 is on the outer-face of G1, choose D so small that
w is still on the convex hull of the union of G1 and D.

Draw G2 with rational edge lengths such that v2 is on
the convex hull. Shrink the drawing of G2, if necessary,
so that it can fit inside the open disk D. Then connect
v2 and v1, rotating G2 so that the edge (v1, v2) does
not intersect it, and shifting G2 as needed to achieve
rational length of the edge (v1, v2). See Figure 3.

v2

w

v1

G1

G2

Figure 3: Merging the drawing of G2 into the drawing
of G1.

3.2 Cutting edge-pairs

So now assume that G has no bridge, but it may have
a cutting edge-pair.

In this case, we will show how to draw G with ratio-
nal edge lengths such that additionally one pre-specified
edge (v, w) on the outer-face of G is drawn as the base
of a strictly enclosing half-square1 . By this we mean
that there exists a triangle T such that (v, w) is drawn
on one edge of T , the angles of T at v and w are π/4,
and the rest of the drawing is in the interior of T .

If G has no cutting edge-pair, then it is 3-connected
and we can apply the construction of Section 2. Recall
that Kant’s algorithm allows to choose vo. If we choose
it to be the clockwise first of v and w, then these two
vertices will be the leftmost vertices (connected verti-
cally) in Figure 2. By choice of the slopes, the rays of
slope −1 and +1 from these vertices will form a half-
square that contains the whole drawing. So (v, w) is the
base of a strictly enclosing half-square as desired.

Now assume that G has cutting edge-pair e1, e2 whose
removal splits G into graphs G1 and G2. Furthermore,
assume that ei = (vi, wi) and vi ∈ G1 while wi ∈ G2.
Assume first that neither e1 nor e2 is the edge (v, w)
to be drawn as base of a strictly enclosing half-square.
After possible renaming, we can then assume that (v, w)
belongs to G1.

Let G′
1 be the graph obtained from G1 by adding

(v1, v2), if it did not exist already, and draw G′
1 recur-

sively with rational edge lengths and with (v, w) as base
of a strictly enclosing half-square. Locate a triangle T ′

with base at (v1, v2) and small enough that it fits inside
the face of G1 where G2 used to be. Furthermore, if
(v1, v2) was on the outer-face of G1, choose T ′ so small
it fits inside the half-square that strictly encloses the
drawing and has (v, w) as base.

Let G′
2 be the graph obtained from G2 by adding

(w1, w2), if it did not exist already, and draw G′
2 recur-

sively with rational edge lengths and with (w1, w2) as
base of a strictly enclosing half-square.

Shrink the drawing of G′
2 small enough so that it

fits inside the interior of T with (w1, w2) is parallel to
(v1, v2), and then connect v1 to w1 and v2 to w2. See
Figure 4.

We can justify that this can be done with rational
distances for all edges as follows. Let α be the smaller
of the angles of T ′ at v1 and v2. Let 0 < β < α be an
angle such that sin(β) is rational. It is easy to find such
a β: Since (2i)2 + (i2 − 1)2 = (i2 + 1)2, simply choose
β = arctan(2i/(i2 − 1)) for large enough integer i; then
sin(β) = 2i/(i2 + 1), which is rational.

Now form an isosceles trapezoid with base (v1, v2) and
angle β at v1 and v2. Make the non-parallel sides to be
of rational length. Then the top edge (the shorter of the
parallel edges) has also rational length since sin(β) is
rational and (v1, v2) has rational length. Also, choose
the non-parallel sides long enough such the top edge is

1The term “isosceles right triangle” would be more accurate
than “half-square”, but also more cumbersome.

CCCG 2011, Toronto ON, August 10–12, 2011

293

23rd Canadian Conference on Computational Geometry, 2011

so short that a half-square with the top edge as base
would still be inside T ′. This is possible since β < α.

Scale the drawing of G2 such that the (rational-
length) edge (w1, w2) fits onto the (rational-length) top-
edge; hence all edges in G2 are scaled by a rational as
desired. The drawing of G2 then fits entirely inside the
half-square on top of the top-edge of the trapezoid, and
hence is inside T ′ and creates no crossings. Therefore
the resulting drawing is planar.

wv

w2
v1 v2

w1

T

T ′

Figure 4: Merging the drawing of G2 into the drawing
of G1.

A special case occurs if edge (v, w) is one of the edges
of the cutting pair, say v = v1 and w = w1. Define the
graphs G1 and G2 as before, and draw them recursively,
drawing (v1, v2) and (w1, w2) as bases of their respective
strictly enclosing half-squares.

Consider the drawing of G1. Since it is strictly en-
closed by a half-square, we can in fact enclose it in an
isosceles triangle where the isosceles angles have size
α1 < π/4. Similarly define α2 < π/4 as the isosceles
angle of an isosceles enclosing triangle of G2.

Choose β such that max{α1, α2} < β < π/4 and such
that sin(β) is rational. Such a β exists since there are
infinitely many Pythagorean triplets for which the two
shorter lengths differ by one [1].

Scale the drawings of G1 and G2 such that the edges
(v1, v2) and (w1, w2) have length 1. Now place the draw-
ings of G1 and G2 in a trapezoid where the angles at
the larger parallel side are β, the non-parallel sides have
length 1, and the parallel sides are rational. See Fig-
ure 5. One easily verifies all conditions.

rational

G2

w = w1

G1

v = v1

sin(β)· rationalsin(β)· rational

w2v2

α1

β

Figure 5: Merging the drawings of G1 and G2 if (v, w)
is part of the cutting edge-pair.

This ends the proof that there exists an rational edge-
length drawing in all cases. Since breaking apart a
graph can be done in constant amortized time, and
finding the appropriate coordinates for placing the sub-
graphs can be done in constant time, we hence have:

Theorem 3 Any planar graph with maximum degree 3
has a planar drawing with integer edge lengths. More-
over, such a drawing can be found in O(n) time.

We note here that no bound on the coordinates re-
quired to achieve integer edge lengths are apparent if the
graph has a bridge or a cutting edge-pair. The ‘O(n)’
run-time hence only holds under the assumption that
arbitrarily small rationals can be handled in constant
time. Finding a bound for the coordinates remains an
open problem.

4 Graphs with a 3-elimination order

The algorithm that we gave above for finding integer
edge-length drawings very much relies on the graph hav-
ing maximum degree 3. In contrast to this, the proof
given by Geelen, Guo and McKinnon [6] only needs a
much weaker property of graphs, which we paraphrase
as follows:

Definition 1 Let G be a graph. We say that G has a
3-elimination order v1, . . . , vn if

• G has only the 2 vertices v1, v2, or

• vn has degree at most 2, and v1, . . . , vn−1 is a 3-
elimination order for G− vn, or

• vn has degree 3, and v1, . . . , vn−1 is a 3-elimination
order for G′ = G− vn ∪ (u,w), where u and w are
two of the neighbours of vn.

We note here that the neighbours u and w of a vertex
vn of degree 3 can be chosen arbitrarily. Also, this edge
is added only if G− vn does not contain it already.

This 3-elimination order is a stronger concept than
the 3-acyclic edge orientation (see for example [2]),
where it is only required that vn has degree at most
3, but no edge between its neighbours is added. On the
other hand, it is a weaker concept than the vertex order
that defines a 3-tree. Since we will need this concept
later, we define it briefly here. A graph is a k-tree if it
has a vertex order v1, . . . , vn such that vi, for i > k, has
exactly k predecessors and they form a clique. A graph
is a partial k-tree if it is a subgraph of a k-tree.

Geelen, Guo and McKinnon did not phrase their proof
in terms of a 3-elimination order, but following their
steps, one can see that this is in fact all they needed,
and so they proved:

Theorem 4 [6] Every graph G that has a 3-elimination
order has a straight-line drawing Γ with rational edge

23rd Canadian Conference on Computational Geometry, 2011

294

CCCG 2011, Toronto ON, August 10–12, 2011

lengths. Moreover, we can create Γ such that the vertices
are placed arbitrarily close to a given drawing Γ′ of G.
In particular, if G is planar then Γ can be made planar.

Geelen et al. then used the fact that every graph with
maximum degree 3 has a 3-elimination order. They also
point out that every partial 3-tree has such an order.
But actually, this holds for even more graphs, as we will
argue now.

Call a graph G (k, ℓ)-sparse if any induced subgraph
H of G has |E(H)| ≤ max{0, k|V (H)| − ℓ}. Indepen-
dently of the research in this paper, Sun [14] showed
that any (2, 3)-sparse graph has an integer edge-length
drawing, using results from rigidity theory. But in fact,
it can even be shown for (2, 1)-sparse graphs.

Lemma 5 Any (2, 1)-sparse graph G has a 3-
elimination order.

Proof: We prove this by induction; the claim is trivial
if G has only 1 vertex. So assume n ≥ 2. Since G has at
most 2n−1 edges, it has a vertex v of degree at most 3,
and we choose this vertex as vn. G − v is (2, 1)-sparse
and so if deg(v) ≤ 2, we can find a 3-elimination order
for G− v by induction, add vn to it and are done.

If deg(v) = 3 then we add an edge between two neigh-
bours u,w of v, so (2, 1)-sparseness of G′ = G − v ∪
{(u,w)} is not immediately obviously. But we claim
that it holds as follows.

Let H ′ be any induced subgraph of G′. If H ′ does
not contain both u and w, then H ′ is also an induced
subgraph of G and hence |E(H ′)| ≤ 2|V (H ′)|− 1. If H ′

does contain both u and w, then consider the graph H
that is induced by the vertex V (H ′) ∪ {v} in graph G.
Since G is (2, 1)-sparse, |E(H)| ≤ 2|V (H)| − 1. There-
fore, |E(H ′)| = |E(H)| + 1 − 3 ≤ 2|V (H)| − 1 + 1 − 3 =
2|V (H)| − 3 = 2|V (H ′)| − 1 as desired.

So G′ is also (2, 1)-sparse and we can find a 3-
elimination order of it by induction. Adding v = vn

to it gives the desired order. ✷

There are numerous graphs that are known to be
(2, 1)-sparse, and we list here just a few:

Theorem 6 Any (2, 1)-sparse graph G has a straight-
line drawing with rational edge lengths that is planar if
G is planar. This includes the following graph classes:

1. Connected graphs with maximum degree 4 that are
not 4-regular.

2. Graphs with arboricity 2.

3. Planar bipartite graphs.

4. Series-parallel graphs, which are the same as graphs
of treewidth 2, which are the same as partial 2-trees.

5. Outer-planar graphs.

Proof: The main claim follows immediately by com-
bining Theorem 4 with Lemma 5 and scaling to make
edge lengths into integers. It remains to argue that the
given graph classes are actually (2, 1)-sparse.

1. Any connected graph G with maximum degree 4 is
(2, 1)-sparse unless it is 4-regular. For G itself has
at most 2n− 1 edges, and any strict subgraph H of
G has at least one vertex with an edge into G−H
and hence is also not 4-regular.

2. A graph of arboricity 2 is a graph whose edges can
be split into two forests. It is well-known that this
is the same as the set of (2, 2)-sparse graphs [9],
which are hence (2, 1)-sparse.

3. Any planar bipartite graph has arboricity 2 [10].

4. A k-tree can easily be shown to have arboricity k:
for each vertex vi, assign the (at most) k edges to
predecessors to different forests. Therefore a partial
2-tree has arboricity 2.

5. Every outer-planar graph is a series-parallel graph.

✷

5 Conclusion and open problems

In this paper we studied planar straight-line drawings
that have integer edge lengths for all edges. It was al-
ready known that this exists for all graphs with max-
imum degree 3; we provided a different proof of this,
which is simpler and constructive, especially for 3-
connected 3-regular graphs. Then we proved the same
result for some other classes of planar graphs.

The most pressing open problem concerns whether
such drawing exists for all planar graphs. Two sub-
classes of planar graphs where we strongly believe this
to be true are the 4-regular graphs and graphs that
are acyclic 3-orientable [2]. How can this be proved
for them?

For graphs that have an integer edge-length drawing,
can we assume that vertices are additionally at integer
coordinates? (This holds for the drawings of Theorem 4,
and hence for all graphs classes studied thus far.) If so,
are the coordinates bounded as a function of n, and how
small can they be made? (We proved linear bounds for
3-connected 3-regular graphs only.)

Other modification of this problem are possible. For
example, we could define graphs on a given set of points
by adding only those edges that are integers, or perhaps
even only in a given set of integers (see also the work
by Schnabel [11].) What kind of graphs define these,
and do they include all planar graphs? In other words,
can we draw any planar graph such that the distance
between two points is an integer if and only if the edge
between them exists?

CCCG 2011, Toronto ON, August 10–12, 2011

295

23rd Canadian Conference on Computational Geometry, 2011

References

[1] C.C. Chen and T.A. Peng. Classroom note: Almost-
isosceles right-angled triangles. Australasian Journal of
Combinatorics, 11:263–267, 1995.

[2] H. de Fraysseix and P. Ossona de Mendez. Regular
orientations, arboricity and augmentation. In Graph
Drawing (GD’94), volume 894 of Lecture Notes in Com-
puter Science, pages 111–118, 1994.

[3] V. Dujmovic, D. Eppstein, M. Suderman, and D. Wood.
Drawings of planar graphs with few slopes and seg-
ments. Computational Geometry: Theory and Appli-
cations, 38:194–212, 2007.

[4] I. Fáry. On straight line representation of planar graphs.
Acta Scientiarum Mathematicarum (Szeged), 11:229–
233, 1948.

[5] H. de Fraysseix, J. Pach, and R. Pollack. How to draw a
planar graph on a grid. Combinatorica, 10:41–51, 1990.

[6] J. Geelen, A. Guo, and D. McKinnon. Straight line
embeddings of cubic planar graphs with integer edge
lengths. Journal of Graph Theory, 58(3):270–274, 2008.

[7] G. Kant. Hexagonal grid drawings. In Graph-theoretic
concepts in computer science (WG’93), volume 657 of
Lecture Notes in Comput. Sci., pages 263–276, 1993.

[8] A. Kemnitz and H. Harborth. Plane integral drawings
of planar graphs. Discrete Mathematics, 236:191–195,
2001.

[9] C. St. J. Nash-Williams. Decomposition of finite graphs
into forests. J. London Math. Soc., 39:12, 1964.

[10] G. Ringel. Two trees in maximal planar bipartite
graphs. J. Graph Theory, 17:755–758, 1993.

[11] K. Schnabel. Representation of graphs by integers. In
Topics in Combinatorics and Graph Theory, pages 635–
640. Physica-Verlag, 1990.

[12] W. Schnyder. Embedding planar graphs on the grid.
In ACM-SIAM Symposium on Discrete Algorithms
(SODA ’90), pages 138–148, 1990.

[13] S. Stein. Convex maps. In Proceedings of the Amercian
Mathematical Society, volume 2, pages 464–466, 1951.

[14] T. Sun. Rigidity-theoretic construction of integral Fary
embeddings. In Canadian Conference on Computa-
tional Geometry (CCCG ’11), 2011. In these proceed-
ings.

[15] K. Wagner. Bemerkungen zum Vierfarbenprob-
lem. Jahresbericht der Deutschen Mathematiker-
Vereinigung, 46:26–32, 1936.

23rd Canadian Conference on Computational Geometry, 2011

296

CCCG 2011, Toronto ON, August 10–12, 2011

Approximating the Obstacle Number for a Graph Drawing Efficiently∗

Deniz Sarıöz†

Abstract

An obstacle representation for a (straight-line) graph
drawing consists of the positions of the graph vertices
together with a set of polygonal obstacles such that ev-
ery line segment between a pair of non-adjacent vertices
intersects some obstacle, while the vertices and edges of
the drawing avoid all the obstacles. The obstacle num-
ber obs(D) for a graph drawing D is the least number
of obstacles in an obstacle representation for it. We
present an efficient algorithm for computing the obstacle
number for a given graph drawing D with approxima-
tion ratio O(log obs(D)). This is achieved by showing
that the V-C dimension is bounded for the family of
hypergraphs of the underlying transversal problem, and
using results from epsilon net theory.

1 Introduction

Let D be a straight-line drawing of a (not necessarily
planar) graph G on n vertices in the Euclidean plane
with no three graph vertices on the same line. We refer
to the open line segment between a pair of non-adjacent
graph vertices as a non-edge of D. We define an obstacle
representation for D as the set of vertices of G identified
with their positions in D together with a collection of
polygons (not necessarily convex) called obstacles, such
that:

1. no edge of D meets any obstacle, and

2. every non-edge of D meets at least one obstacle.

Without loss of generality, the vertices of polygonal
obstacles taken together with the graph vertices are in
general position (no three on a line) and no graph ver-
tices are inside any obstacle. Notice that the positions of
the graph vertices and the obstacles in such an obstacle
representation are sufficient to determine the abstract
structure of the graph, based on whether or not a pair
of graph vertices can “see” each other. Graphs obtained
in this manner are called visibility graphs, and they are
extensively studied and used in computational geom-
etry, robot motion planning, wireless sensor networks,
and mobile ad-hoc networks; see [5, 23, 18, 17, 11, 9].

∗Research supported by NSA grant 47149-0001 and
PSC-CUNY grant 63427-0041.
†Ph. D. Program in Computer Science, The Graduate Center

of The City University of New York (CUNY), sarioz@acm.org

We define the obstacle number for D as the least num-
ber of obstacles over all obstacle representations for D.
We denote this parameter by obs(D).

Our main contribution is a polynomial-time ap-
proximation algorithm that, given a graph drawing
D, computes an obstacle representation for D with
O(obs(D) log obs(D)) obstacles.

Related notions of (an) obstacle representation of a
graph and (the) obstacle number of a graph were first
defined by Alpert, Koch, and Laison [1]. An obstacle
representation of a graph G is equivalent to an obstacle
representation for some (straight-line) drawing D of it.
The obstacle number of a graph G is the minimum value
of obs(D) attained over all drawings D of G.

The obstacle numbers of certain graphs have been de-
termined exactly; upper bounds have been established
for some graph families, and proofs of unboundedness
have been offered for others [1, 21, 16, 20, 10]. How-
ever, the question of devising a computational proce-
dure to determine or approximate the obstacle number
of a graph has to our knowledge not yet been addressed,
even in part. The results presented here can be consid-
ered a first step in that direction.

In Section 2, we will explicate the connection to hy-
pergraphs defined by intersection, and present some
background about hypergraph transversals including
notions of V-C dimension and epsilon net. In Section
3, we prove our main result having to do with bounding
the V-C dimensions of various hypergraphs. In Section
4 we present a concrete algorithm and discuss its effi-
cacy.

2 Preliminaries

2.1 Intersection Hypergraphs and their Transversals

A hypergraph is a pair (X,F) in which X is a set
of ground elements, and F is a collection of subsets
of X. We introduce the following notation and ter-
minology for intersection hypergraphs. Let X and Y
be collections of sets. For each y ∈ Y , let N(y) =
{x ∈ X | x ∩ y 6= ∅}, and say that y generates N(y).
Let F = {N(y) | y ∈ Y }. Then (X,F) is an inter-
section hypergraph, which we shall denote by H(X,Y)
whenever convenient.1 Similarly, for each x ∈ X, let

1In many well-studied geometric hypergraphs H(X,Y), each
set in X is a singleton. The intersection of a member of X with
a member of Y thus corresponds to the inclusion of the former in

CCCG 2011, Toronto ON, August 10–12, 2011

297

23rd Canadian Conference on Computational Geometry, 2011

N(x) = {y ∈ Y | x ∩ y 6= ∅}, and say that x generates
N(x). Let F ′ = {N(x) | x ∈ X}. The hypergraph
(Y,F ′), which we shall denote by H(Y,X) when conve-
nient, is known as the dual of the hypergraph H(X,Y).

A transversal of an intersection hypergraph H(X,Y)
is a subset T ⊆ X such that every member of Y—that
meets some member of X—meets some member of T .
Let τ denote the minimum cardinality of a transversal
of H(X,Y). The (optimization version of) the hyper-
graph transversal problem is to compute τ exactly, and
this has an equivalent formulation as the set cover prob-
lem. The decision version of the hypergraph transversal
problem is NP-complete; indeed, the restriction to the
case in which every member of Y meets exactly two
members of X corresponds to a canonical NP-complete
problem, “Vertex Cover.”

2.2 Computing the Obstacle Number for a Graph
Drawing as a Transversal Problem

For a given graph drawing D, we refer to a connected
component of the complement of D as a face of the
drawing. To rephrase an observation in [1] in our con-
text, in an obstacle representation for D with cardi-
nality obs(D), there can be at most one obstacle per
face, for otherwise obstacles in the same face could be
merged, contradicting the minimality of obs(D). Hence
for any given graph drawing, each polygonal obstacle to
be included in a minimal obstacle representation can be
considered to be a face of the drawing. If need be, one
can compute for each face a representative simple poly-
gon that lies inside the face and meets every non-edge
that the face meets. (This is not always a simple mat-
ter of perturbing the boundary of a face to lie inside the
face, since a face may have holes and so its boundary
may be a disconnected set.)

Since an n-vertex graph has less than n2 edges (with
Ω(n2) edges attainable), its drawing must have less
than n4 faces (with Ω(n4) faces attainable). Computing
obs(D) is therefore a matter of computing a transversal
for the finite intersection hypergraph H(X,Y) where X
is the face set of D and Y is the non-edge set of D.
Observe that |X| < n4 and Y < n2, with |X| = Ω(n4)
attainable simultaneously with |Y | = Ω(n2). Using a
representation ofD with integer coordinates represented
as signed integers, an incidence matrix representation of
H(X,Y) with fewer than n8 bits (and possibly Ω(n8))
can be computed using standard techniques [5] in time
polynomial in the number of input bits, and in time

the latter. The members of Y are commonly referred to as ranges,
especially in hypergraphs in which Y is a natural feature of the
geometric space that the “points” of X belong to, e.g., the set of
all half-spaces, all balls, or all axis-parallel boxes. We eschew the
use of the term range since this is not the case for problems we
are interested in, and also because our hypergraphs are defined
by intersection not limited to inclusion: A set in X can meet two
disjoint sets in Y and vice versa.

poly(n) in the RAM model with unit-cost arithmetic op-
erations. It is important to make this distinction, since
coordinates may need to be represented using exponen-
tially many bits in n, see [12]; or more, as discussed in
Section 5.

It is well-known that the greedy algorithm for the hy-
pergraph transversal problem, which iteratively adds to
an initially empty set T a member x ∈ X that meets
the largest number of sets y ∈ Y that do not already
meet some x′ ∈ T , provides a O(log |Y |)-factor approx-
imation [25]. Thus we have a natural O(log n)-factor
approximation algorithm for our problem of computing
the obstacle number for a given drawing.

2.3 Improving the Approximation Ratio

How about doing better? Not only is the approximation
ratio tight for this greedy algorithm, but the general hy-
pergraph transversal problem is known to be o(log |Y |)-
inapproximable [25]. But it is also well-known [25, 19]
that if every member of X meets at most ∆ members of
Y , then the greedy algorithm attains an approximation
ratio of O(log ∆). Unfortunately, this does not make
our task easier, since it is seen that a face could meet
Ω(n2) non-edges by considering any drawing of the null
graph on n vertices. Nonetheless, many families of hy-
pergraphs arising in geometric settings lend themselves
to algorithms with approximation ratios that do not de-
pend on either |X| or |Y | using the following ideas.

In the context of an intersection hypergraphH(X,Y),
a set S ⊆ X is said to be shattered if for every A ⊆ S
there is some y ∈ Y such that S ∩N(y) = A. The size
of a largest shattered set is called the V-C dimension of
H(X,Y), after Vapnik and Chervonenkis who first de-
fined it in [24]. For some hypergraphs in which X and
Y are both infinite, the V-C dimension is undefined and
said to be infinite. Furthermore, for a family of hyper-
graphs of the form H(X,Y), even if each hypergraph
has finite V-C dimension, there may exist no absolute
constant upper bound for the V-C dimension. If there
an integer d such that every hypergraph in that family
has V-C dimension at most d, we say that the family
has bounded V-C dimension.

Let w : 2X → [0, 1] be an additive weight function
with w(X) = 1. For a given ε > 0, an ε-net (with respect
to w) is a set S ⊆ X that is a transversal of H(X,Yε),
where Yε ⊆ Y consists exactly of those members of Y
each of which generates a subset of X with weight at
least ε. Haussler and Welzl have shown [13] that if the
V-C dimension of H(X,Y) is some integer d, then for
every ε > 0 there is an ε-net of size at most cdε−1 ln ε−1,
where c is a small constant. This is remarkable because
the size of an ε-net bears no relation to the sizes of X
or Y . See also [19, 15].

Based on this observation, various—deterministic as
well as randomized—efficient algorithms have been pre-

23rd Canadian Conference on Computational Geometry, 2011

298

CCCG 2011, Toronto ON, August 10–12, 2011

sented [3, 7, 8, 6] to compute a transversal of size within
a tiny constant factor of dτ ln τ . In Section 4, we state
and analyze a specific algorithm for computing the ob-
stacle number for a graph drawing. For now, we suf-
fice it to say that bounding the V-C dimension for the
corresponding hypergraph implies an efficient algorithm
with approximation ratio independent of |X| or |Y | (and
hence n).

Before we proceed, we state an important fact that we
make immediate use of. It is well-known [15] that if the
V-C dimension of H(Y,X) is d, then the V-C dimension
of H(X,Y) is at most 2d+1. The V-C dimension of a
family of hypergraphs is therefore bounded if and only
if the V-C dimension of the family of dual hypergraphs
is bounded.

In the next section, we show that the V-C dimension
is bounded for the family of hypergraphs of the form
H(Y,X) where Y is the set of non-edges of a graph
drawing and X is the set of faces of that drawing. This
implies that the V-C dimension of H(X,Y) (the hy-
pergraph for the transversal problem at hand) is also
bounded.

3 Main Results

Theorem 1 The V-C dimension is bounded for the
family of hypergraphs of the form H(Y,X) in which Y
is the set of non-edges in a straight-line drawing D of a
graph, and X is the set of faces of D.

We can replace each face x ∈ X by a simple path x′

inside x that meets every non-edge that x meets and
does not meet any non-edges that x does not. This
substitution will not alter the hypergraph structure, and
the resulting paths x′ will be disjoint from one another.
Hence Theorem 1 is implied by the following result.

Theorem 2 The V-C dimension is bounded for the
family of hypergraphs of the form H(Y,X) in which Y
is a set of line segments (with every pair meeting at a
single point or not at all) and X is a set of simple paths
disjoint from one another.

Proof. Assume for contradiction that for every m,
there is a hypergraph H(Y,X) such that Y is a set of
m line segments (with every pair meeting at a single
point or not at all), X is a set of paths disjoint from
one another, and Y is shattered.

Given m, and a pair (Y,X) such that |Y | = m and
X shatters Y , let X3 ⊆ X be a minimal set of paths
that generate all the

(
m
3

)
triples in Y . That is, every

path in X3 meets exactly three segments in Y , and for
every three segments i, j, k ∈ Y exactly one path πijk ∈
X3 meets all three. To keep the following argument
simple, without loss of generality, no π ∈ X3 meets any
intersection points among the segments, of which there

are at most
(
m
2

)
= O(m2). If there were such paths in

X3, we could remove them from X3 and still be left with
at least

(
m
3

)
−
(
m
2

)
= Ω(m3) paths. We will now charge

Figure 1: Example of an original path πijk meeting seg-
ments i, j, and k.

Figure 2: The interim path (after erasing from tail).

Figure 3: The final path (after erasing from head too),
which will be charged to segment j.

each path π ∈ X3 to a line segment in Y , intuitively,
“the middle segment” that it meets. Nothing prevents
such a path from going back and forth between three
segments, so we need to define this more carefully. For
a given path π = πijk that meets segments i, j, k ∈ Y

CCCG 2011, Toronto ON, August 10–12, 2011

299

23rd Canadian Conference on Computational Geometry, 2011

(see Fig. 1), arbitrarily label one end of the path as the
tail and the other as the head. Starting from the tail,
erase π as long as it still meets all three segments, and
stop erasing when erasing any longer would cause the
remaining path to intersect fewer segments. The tail
is now on one of the three segments, without loss of
generality, i (see Fig. 2). Note that the path does not
intersect i anywhere else but the tail. Now start erasing
π from the head in a similar fashion, and stop erasing
when erasing any more would cause the remaining path
to intersect fewer than three segments. Again, the head
must be on some segment when we stop, but it could not
be on i by the above observation (see Fig. 3). Without
loss of generality, the head is on the segment k. Now
notice that the path does not meet k anywhere else but
the head. Without changing the shatter property, let
us replace πijk with this shorter version of its former
self: starting at i, meeting j but no other segment one
or more times, before it ends at k. We charge πijk to j.

Let ŝ be a segment that accumulated the greatest
charge at the end of this process. Since at least Ω(m3)
paths were charged to at most m segments, ŝ was
charged by at least Ω(m2) paths. Let X ′ denote the
set of paths in X3 that were charged to ŝ.

Figure 4: Example of a cell of A and the segments from
the original X ′ that are inside the cell.

Let A denote the arrangement of the line segments in
Y \ {ŝ}. A segment endpoint or an intersection point of
two segments is called a vertex of the arrangement. An
open interval on a segment of the arrangement between
two vertices of the arrangement that contains no vertex
of the arrangement is called an edge of the arrangement.
A connected component in the complement of the union
of the segments is called a cell of the arrangement.

Note that every path in X ′ starts at an edge of the
arrangement A, ends at another edge of A, and its in-
terior is fully contained in a cell of A (see Fig. 4). Let
G(X ′) be the graph with the endpoints of the paths as

the vertex set, and the interiors of the paths as edges.
Since the paths are disjoint, clearly, G(X ′) is planar.
Now for each edge of the arrangement, merge the path
endpoints on that edge at the midpoint of the edge while
making sure that the paths remain interior-disjoint (see
Fig. 5). Recall that by Euler’s formula a planar graph
on n vertices has at most 3n − 6 edges. It is not clear
that we have a contradiction yet, since A may have up
to m2 edges (attained when every pair among the m
segments cross). Hence it seems that G(X ′) may have
Θ(m2) vertices, so it is plausible that G(X ′) has Θ(m2)
edges.

Figure 5: The same cell after merging path endpoints.

However, each edge of G(X ′) must be contained in a
single cell that meets ŝ. Might this mean that G(X ′)
has o(m2) vertices? We know that every vertex ofG(X ′)
corresponds to a distinct edge of A in a cell of A that
meets ŝ. Hence, the complexity of the zone2 of ŝ is an
upper bound on |V (G(X ′))|. We present two lemmas
regarding the complexity of the zone of a line segment
in an arrangement of line segments, each of which is
sufficient by itself.

Lemma 3 Let A be an arrangement of n line segments,
and let s be another line segment. The zone of s has
complexity O(n4/3).

Proof. Even if s meets all n segments of A, its zone
will consist of at most n cells including the unbounded
cell. The bound then follows from the main result in
[2]: That the maximum number of edges bounding m
cells in an arrangement of n line segments in the plane
is O(m2/3n2/3 + nα(n) + n logm). �

2The complexity of a cell of an arrangement is the number of
edges of the arrangement that are incident to it. The zone of a
segment is the set of cells that it meets, and the complexity of the
zone of a segment is the number of edges incident to all the cells
that it meets.

23rd Canadian Conference on Computational Geometry, 2011

300

CCCG 2011, Toronto ON, August 10–12, 2011

Lemma 4 (B. Aronov, personal communication)
Let A be an arrangement of n line segments, and let s
be another line segment. The zone of s has complexity
O(nα(n)) where α denotes the very slow growing
inverse of Ackerman’s function.

Proof. Let the shape s′ be obtained by enlarging s (e.g.
taking the Minkowski sum of s with a small enough disk)
such that s′ meets no vertex of A that s does not. Ob-
tain a new arrangement A′ of line segments by erasing
s′ from A. Doing this will possibly disconnect some
original line segments that define A into two, ending up
with an arrangement A′ of at most 2n line segments.
Every point of s′ is in the same cell of this new arrange-
ment. Every cell in an arrangement of m line segments
has complexity O(mα(m)) [22]. Hence, every cell of A′
has complexity at most O(2nα(2n)), i.e., O(nα(n)), in-
cluding the cell that s is in. Since every edge bordering
a cell of A that s meets corresponds to one or two edges
bordering the cell of A′ that s is in, the complexity of
the zone of s in A is at most O(nα(n)). �

Either lemma implies that the zone of ŝ has com-
plexity o(m2), hence the number of vertices of the pla-
nar graph G(X ′) is o(m2). But since G(X ′) has Ω(m2)
edges, we have a contradiction due to Euler’s Formula.
Therefore, the V-C dimension is bounded for the fam-
ily of hypergraphs H(Y,X) in which Y is a set of line
segments and X is a set of paths disjoint from one an-
other. �

4 Algorithm

We continue using the terminology of having been given
a drawing D of an n-vertex graph, with X as the set of
faces in D and Y as the set of non-edges in D. For
the rest of this section, we assume that D has been
processed into the incidence matrix of the hypergraph
H(X,Y) with O(n8) entries in memory, as discussed in
Section 2.

First, we present a randomized algorithm modeled
around an algorithm presented by Efrat and Har-Peled
[6] and relies on the analysis in [4], for a totally unrelated
family of hypergraphs, in which an upper bound on the
V-C dimension was in fact known. Here we use dove-
tailing to not only vary k (essentially a guess for τ) but
also vary d (essentially a guess for the V-C dimension).

According to the analysis therein, for a given graph
drawing D that admits an obstacle representation with
τ obstacles, our algorithm will return a traversal of size
at most O(τ log τ), and it is clear that its running time
is polynomial in n even in the worst case.

In the following C-style pseudocode, a = b means a
takes on the value of b, the macro sampleSize(d, k) ex-
pands to d2dk lg ke, and the macro numRounds(k, |X|)
expands to d8k lg |X|e.

ComputeObstacleRepresentation(set of faces X,
set of nonedges Y) {

bestSoln = X; bestSize = |X|;
for(deekay = 2; 2 deekay < bestSize;

deekay = 2 deekay) {
for(k = 2; k ≤ deekay; k = 2k) {
d = deekay / k;
if (sampleSize(d, k) ≥ bestSize) break;
Assign weight 1 to each face in X;
for (i = 1; i ≤ numRounds(k, |X|); i = i+ 1) {

• Pick randomly a set S of sampleSize(d, k) obsta-
cles, choosing each obstacle randomly and inde-
pendently from the face set X according to their
weights.

• Check if the obstacles in S together meet all of
the non-edges in Y ; if so, set bestSoln = S, set
bestSize = |S|, and break the innermost loop.

• Else, find a non-edge y that does not meet any ob-
stacle in S, and let N(y) be the set of faces in X
that the non-edge y meets.

• Compute ω, the sum of weights of faces in N(y). If
2kω ≤ the sum of weights of all faces in X, double
the weight of every face in N(y).

} // end for i
} // end for k

} // end for deekay
return bestSoln;

} // end ComputeObstacleRepresentation

5 Remarks

The problem of computing the obstacle number for a
graph drawing D exactly is in NP, since it can be trans-
formed into a hypergraph transversal problem in poly-
nomial time. Hence, a naive deterministic algorithm
can compute obs(D) in time 2O(n), or if we allow our-
selves to be output-sensitive, in time merely nO(obs(D)),
by trying every k-face combination for every value of k
from 0 up to obs(D). Since the submission of the ac-
cepted version of this paper, an NP-completeness proof
has been scheduled to appear on arXiv [14].

What about the original problem of determining the
obstacle number of a given abstract graph on n vertices?
If all drawings of a graph could be enumerated up to the
incidence matrix of faces versus non-edges, then by us-
ing our approximation algorithm in the “inner loop,” we
could obtain a O(logOPT)-approximation to the orig-
inal problem. While this may be viable for small in-
stances (perhaps in conjunction with a distributed ap-
proach), we conjecture that this problem lies outside
of NP and believe it to be intractable in a centralized
model of computation. Our rationale follows.

CCCG 2011, Toronto ON, August 10–12, 2011

301

23rd Canadian Conference on Computational Geometry, 2011

For some simple order types of n-point configurations
on the plane, a coordinate representation on an integer
lattice needs exponentially many bits in n in order to al-
low the order type to be inferred [12]. Further, we know
that a particular labeled graph has two drawings with
different obstacle numbers but vertex sets of the same
simple labeled order type. (The dual labeled order type
of the

(
n
2

)
connecting lines of n vertices in a drawing ap-

pears to be sufficient to determine the obstacle number
for the drawing.) Hence, coordinate representations of
some drawings for the present purpose seem to require
at least exponential storage in n. Some drawing-based
certificates will in turn have sizes super-polynomial in
the number of bits that represent the abstract graph.
It may be tempting to think that a certificate could in-
stead be based on the poly(n) sized incidence matrix of
faces versus non-edges, but it seems unlikely that one
can decide in polynomial time whether or not the given
graph has some drawing corresponding to a given inci-
dence matrix.

Acknowledgments

The author is indebted to Boris Aronov, Alon Efrat,
Nabil Mustafa, and János Pach for fruitful discussions
and feedback, and the anonymous CCCG reviewers for
keen comments. Alon Efrat’s encouragement in the
early stages of this work and pointers to recent pub-
lications were especially helpful. The author assumes
full responsibility for all errors and omissions.

References

[1] H. Alpert, C. Koch, and J. Laison. Obstacle numbers
of graphs. Discrete Comput. Geom., 44:223–244, 2010.

[2] B. Aronov, H. Edelsbrunner, L. J. Guibas, and
M. Sharir. The number of edges of many faces in a
line segment arrangement. Combinatorica, 12:261–274,
1992.

[3] H. Brönnimann and M. T. Goodrich. Almost optimal
set covers in finite VC-dimension. Discrete Comput.
Geom., 14(4):463–479, 1995.

[4] K. L. Clarkson. Algorithms for polytope cover-
ing and approximation. In Proc. Algorithms and
Data Structures, 3rd Workshop, WADS ’93, Montréal,
Canada, August 11–13, 1993, LNCS 709, pages 246–
252. Springer, 1993.

[5] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational Geometry. Algorithms
and Applications (2nd ed.). Springer-Verlag, 2000.

[6] A. Efrat and S. Har-Peled. Guarding galleries and ter-
rains. Info. Proc. Letters, 100:238–245, December 2006.

[7] A. Efrat, F. Hoffmann, C. Knauer, K. Kriegel, G. Rote,
and C. Wenk. Covering with ellipses. Algorithmica,
38:145–160, 2003.

[8] G. Even, D. Rawitz, and S. Shahar. Hitting sets
when the VC-dimension is small. Info. Proc. Letters,
95(2):358–362, 2005.

[9] A. Frieze, J. Kleinberg, R. Ravi, and W. Debany. Line-
of-sight networks. Combinatorics, Probability and Com-
puting, 18:145–163, 2009.

[10] R. Fulek, N. Saeedi, and D. Sarıöz. Convex obstacle
numbers of outerplanar graphs and bipartite permuta-
tion graphs, 2011. arXiv:1104.4656v2 [cs.DM].

[11] S. K. Ghosh. Visibility Algorithms in the Plane. Cam-
bridge University Press, Cambridge, 2007.

[12] J. E. Goodman, R. Pollack, and B. Sturmfels. Coor-
dinate representation of order types requires exponen-
tial storage. In Proc. 21st annual ACM Symposium on
Theory of Computing, STOC ’89, pages 405–410, New
York, NY, USA, 1989. ACM.

[13] D. Haussler and E. Welzl. ε-nets and simplex range
queries. Discrete Comput. Geom., 2:127–151, 1987.

[14] M. P. Johnson and D. Sarıöz. Computing the obstacle
number of a plane graph, July 2011. http://arXiv.org.

[15] J. Matoušek. Lectures on Discrete Geometry. Graduate
Texts in Mathematics. Springer, 2002.

[16] P. Mukkamala, J. Pach, and D. Sarıöz. Graphs with
large obstacle numbers. In Graph Theoretic Con-
cepts in Computer Science, LNCS 6410, pages 292–303.
Springer, 2010.

[17] J. O’Rourke. Visibility. In Handbook of Discrete
and Computational Geometry, CRC Press Ser. Discrete
Math. Appl., pages 467–479. CRC, 1997.

[18] J. O’Rourke. Open problems in the combinatorics of
visibility and illumination. In Advances in Discrete
and Computational Geometry, volume 223 of Contemp.
Math., pages 237–243. AMS, Providence, RI, 1999.

[19] J. Pach and P. K. Agarwal. Combinatorial Geometry.
Wiley-Interscience Series in Discrete Mathematics and
Optimization. John Wiley & Sons Inc., 1995.

[20] J. Pach and D. Sarıöz. Small (2, s)-colorable
graphs without 1-obstacle representations, 2010.
arXiv:1012.5907v2 [cs.DM].

[21] J. Pach and D. Sarıöz. On the structure of graphs
with low obstacle number. Graphs and Combinatorics,
27:465–473, 2011.

[22] R. Pollack, M. Sharir, and S. Sifrony. Separating two
simple polygons by a sequence of translations. Discrete
Comput. Geom., 3:123–136, January 1988.

[23] J. Urrutia. Art gallery and illumination problems. In
Handbook of Computational Geometry, pages 973–1027.
North-Holland, Amsterdam, 2000.

[24] V. N. Vapnik and A. Y. Chervonenkis. On the uniform
convergence of relative frequencies to their probabili-
ties. Theory Probab. Appl., 16(2):264–280, 1971.

[25] V. V. Vazirani. Approximation Algorithms. Springer,
2004.

23rd Canadian Conference on Computational Geometry, 2011

302

CCCG 2011, Toronto ON, August 10–12, 2011

A Note on Minimum-Segment Drawings of Planar Graphs

Stephane Durocher ∗† Debajyoti Mondal ∗ Rahnuma Islam Nishat ‡ Sue Whitesides ‡§

Abstract

A straight-line drawing of a planar graph G is a planar
drawing of G, where each vertex is mapped to a point on
the Euclidean plane and each edge is drawn as a straight
line segment. A segment in a straight-line drawing is
a maximal set of edges that form a straight line seg-
ment. A minimum-segment drawing of G is a straight-
line drawing of G, where the number of segments is the
minimum among all possible straight-line drawings of
G. In this paper we prove that it is NP-complete to
determine whether a plane graph G has a straight-line
drawing with at most k segments, where k ≥ 3. We
also prove that the problem of deciding whether a given
partial drawing of G can be extended to a straight-line
drawing with at most k segments is NP-complete, even
when G is an outerplanar graph. Finally, we investigate
a worst-case lower bound on the number of segments
required by straight-line drawings of arbitrary spanning
trees of a given planar graph.

1 Introduction

A planar graph is a graph that admits a plane embed-
ding. A plane graph is a fixed planar embedding of
a planar graph. A straight-line drawing Γ of a planar
graph G is an embedding of G in the Euclidean plane,
in which each vertex of G is mapped to a distinct point,
each edge of G is a straight line segment, and no two
edges intersect except possibly at a common endpoint.
A segment of Γ is a maximal set of edges in Γ that form
a straight line segment. Γ is called a minimum-segment
drawing of G if the number of segments in Γ is the
minimum possible. Figure 1(a) depicts a plane graph
G, Figure 1(b) depicts its straight-line drawing with 13
segments, and Figure 1(c) shows a minimum-segment
drawing of G with 7 segments.

Dujmović et al. [4] showed that η/2 segments are nec-
essary and sufficient for a straight-line drawing of a tree,
where η is the number of odd degree vertices in the tree.

∗Department of Computer Science, University of Mani-
toba. {durocher, jyoti}@cs.umanitoba.ca

†Work of the author is supported in part by the Natural Sci-
ences and Engineering Research Council of Canada (NSERC).

‡Department of Computer Science, University of Victo-
ria. {rnishat, sue}@cs.uvic.ca

§Work of the author is supported in part by the Natural Sci-
ences and Engineering Research Council of Canada (NSERC) and
the University of Victoria.

(a) (b) (c)

a aa

b
b

bc c c
d d

d

e
e

e

f f

g
gh

h

f
h

g

Figure 1: (a) A plane graph G. (b) A straight-line
drawing of G. (c) A minimum-segment drawing of G.

They gave optimal bounds on the number of segments
in straight-line drawings of outerplanar graphs, plane
2-trees and plane 3-trees, as well as algorithms for con-
structing straight-line drawings of planar 3-connected
graphs with at most 5n/2 segments, where n is the num-
ber of vertices. Later, Samee et al. [13] gave a linear-
time algorithm for computing minimum-segment draw-
ings of series-parallel graphs, where all the vertices have
degree at most three. Recently, Biswas et al. [2] gave a
linear-time algorithm to obtain minimum-segment con-
vex drawings of 3-connected cubic plane graphs.

A natural question is: what is the time complexity
of computing a minimum-segment drawing of a planar
graph [2]? Dujmović et al. [4] posed the following re-
lated questions: (a) Is there a polynomial-time algo-
rithm to draw a given outerplanar graph with the min-
imum number of segments? (b) What is the minimum
c such that every n-vertex planar graph has a plane
drawing with at most cn + O(1) segments?

In many applications a graph is drawn emphasizing
the drawing of one of its spanning trees, and the other
edges are displayed on demand [5, 8, 11]. Given an ar-
bitrary spanning tree, one may want to draw it with the
minimum number of segments, where the edges that are
not in the spanning tree are to be drawn with polylines
or curves. Given a planar graph G, we investigate a
worst-case lower bound on the number of segments re-
quired by straight-line drawings of arbitrary spanning
trees of G. For this purpose, we introduce a new graph
parameter for planar graphs, which we define as fol-
lows: the spanning-tree segment complexity of a planar
graph G is the minimum positive integer C such that
every spanning tree of G admits a drawing with at most
C segments. Observe that any lower bound on C is a
lower bound on the number of segments required by
straight-line drawings of those spanning trees of G that

CCCG 2011, Toronto ON, August 10–12, 2011

303

23d Canadian Conference on Computational Geometry, 2011

determine the spanning-tree segment complexity of G.
For simplicity, in the rest of the paper we use the term
segment complexity instead of the term spanning-tree
segment complexity.

Main results: Our main results are given below.

(1) Given an arbitrary integer k ≥ 3, it is NP-complete
to decide if a given plane graph has a straight-line
drawing with at most k segments (see Section 3).

(2) It is NP-complete to determine whether a given par-
tial drawing of an outerplanar graph G can be ex-
tended to a straight-line drawing of G with at most
k segments, even when the partial drawing can be
extended to a straight-line drawing of G (see Sec-
tion 4).

(3) In Section 5, we derive lower bounds on segment
complexities of different classes of planar graphs
(see Table 1).

Graph Class Lower Bound on C
Maximal outerplanar n/6

Plane 2-tree n/6
Plane 3-tree (2n − 5)/6

Plane 3-connected n/8
Plane 4-connected n/5

Table 1: Lower Bound on Segment Complexity.
Here n denotes the number of vertices.

2 Preliminaries

Here we introduce some preliminary definitions.
Let G = (V,E) be a connected simple graph with ver-

tex set V and edge set E. Let v be a vertex in G. We de-
note the degree of v by deg(v). G is called k-connected,
k ≥ 1, if the minimum number of vertices, whose re-
moval results in a disconnected graph or a single-vertex
graph, is k. An independent set S is a subset of V , such
that no two vertices of S are adjacent.

A plane graph partitions the plane into connected re-
gions, called faces. The unbounded face is called the
outer face and all other faces are called the inner faces.
The vertices on the boundary of the outer face are called
the outer vertices and all other vertices are called the in-
ner vertices. A maximal planar graph is a planar graph,
where addition of any edge results in a nonplanar graph.

An outerplanar graph is a planar graph that admits
a plane embedding, where all its vertices are on the
outer face. We call such an embedding an outerplanar
embedding. An outerplanar graph G is called a maximal
outerplanar graph if addition of any edge to G results in
a graph that does not admit an outerplanar embedding.

An arrangement of a set L of n lines is the subdivision
of the plane induced by L, where the vertices are the in-
tersection points of the lines. An arrangement A(L) of
L is called simple if no three lines intersect at the same
point and no two lines are parallel. In this paper we con-
sider simple arrangements only. An arrangement graph
G(L) is the graph obtained from A(L) by removing the
infinite half edges (see Figure 2). The following lemma

l5
l4

l3

l2

l1

(a) (b)

Figure 2: (a) An arrangement of 5 lines. (b) Arrange-
ment graph.

gives some properties of arrangement graphs.

Lemma 1 [Bose et al. [3]] Let G be a 2-connected
graph, where each vertex has degree at most four. Then
G is an arrangement graph of a set of l lines if and only
if G admits a straight-line drawing Γ such that:

1. Each segment contains l − 2 edges.

2. All the vertices of degree two and degree three in G
are on the outer face of Γ.

3. Each vertex of degree two is the endpoint of exactly
two segments and each vertex of degree three is the
endpoint of exactly one segment. No segment has an
endpoint that is a vertex of degree four.

4. The number of segments is l = n2 +(n3/2), where n2

and n3 are the number of vertices of degree two and
degree three, respectively.

We call Γ an arrangement drawing of G.

3 Minimum-Segment Drawing

In this section we prove that it is NP-complete to decide
whether a plane graph has a straight-line drawing with
a given number of segments. We first need the following
two lemmas.

Lemma 2 Let G be a graph with l(l−1)/2 vertices and
l(l − 2) edges, where l ≥ 3. Let the number of degree
two and degree three vertices be n2 and n3, respectively.
Then G is an arrangement graph if and only if G admits
a straight-line drawing Γ with l segments, where l =
n2 + (n3/2).

23rd Canadian Conference on Computational Geometry, 2011

304

CCCG 2011, Toronto ON, August 10–12, 2011

Proof. By Lemma 1, if G is an arrangement graph,
then G admits a drawing with l = n2+(n3/2) segments.

We thus assume that Γ is a straight-line drawing of G
with l segments and then prove that Γ is an arrangement
drawing of G. By Lemma 1, this will imply that G is
an arrangement graph.

We first prove that Γ satisfies Property 1 of Lemma 1.
Suppose for a contradiction that there exists a segment
l′ that contains at least l − 1 edges. Therefore, l′ is
intersected by at least l other straight lines. Thus the
number of segments in Γ is at least l+1, a contradiction.
Thus each segment contains at most l − 2 edges. Since
the number of edges in Γ is l(l − 2) and there are l
segments, therefore each segment contains exactly l − 2
edges, which proves the property.

We next prove that Γ satisfies Property 2 of Lemma 1.
Since each segment of Γ contains l − 2 edges, it is in-
tersected by all the other l − 1 segments in Γ. Thus Γ
contains all pairwise intersections of the l segments and
any extension of the segments beyond their endpoints
will not create any new crossings. We now claim that
the vertices of degree two and three must lie on the outer
face of Γ. Suppose for a contradiction that there exists
an inner vertex v such that deg(v) < 4. Then exten-
sion of the segments at v towards infinity will intersect
the outer face of Γ, which contradicts the fact that Γ
contains all pairwise intersections of the l segments.

Finally, we prove that Γ satisfies Property 3 of
Lemma 1. The number of vertices in G is l(l − 1)/2
and the number of segments in Γ is l. Thus, Γ contains
all pairwise intersections of the l segments and each ver-
tex v in Γ must be an intersection point of two different
segments. Consequently, if deg(v) = 4, then v cannot
be an endpoint of any of those two different segments.
Similarly, if deg(v) = 3, then v is the endpoint of one
of those two different segments. If deg(v) is two, then v
must be the endpoints those two different segments. �

Lemma 3 An arrangement drawing of an arrangement
graph G is a minimum-segment drawing of G.

Proof. Let G be an arrangement graph of l lines. By
Lemma 2, G admits a drawing with at most l segments.
We now prove that any straight-line drawing of G con-
tains at least l segments.

Let w be any vertex of G. Observe that if deg(w) = 2,
then the two neighbors x and y of w are adjacent. Since
wxy form a triangle, in any minimum-segment drawing
of G, xw and yw must lie on different segments. There-
fore, each vertex of degree two will be the endpoint of at
least two segments in any minimum-segment drawing.

If deg(w) = 3, then let x, y and z be the three neigh-
bors of w. Observe that at most two of the edges wx, wy
and wz can lie on the same segment, which implies that
w must be an endpoint of the segment that contains
the remaining edge. Therefore, each vertex of degree

three will be the endpoint of at least one segment in
any minimum-segment drawing.

Let the number of vertices of degree two and degree
three be n2 and n3, respectively. Then any minimum-
segment drawing must contain at least (2n2+n3)/2 seg-
ments. By Lemma 2, (2n2 + n3)/2 = l. �

We are now ready to prove that it is NP-complete
to decide whether a plane graph admits a straight-line
drawing with a given number of segments. We define
the Min-Seg-Draw problem as follows:

INSTANCE : A plane graph G, where the vertices are
uniquely labeled, and an integer k ≥ 3.

QUESTION : Is there a straight-line drawing Γ of G
with at most k segments?

We reduce an NP-hard problem, Arrangement-
Graph-Recognition [3], to Min-Seg-Draw.

INSTANCE : A plane 2-connected graph G with k(k−
1)/2 vertices and k(k−2) edges, where the degree of each
vertex of G is at most four and all the vertices of degree
two and degree three are on the outer face of G.

QUESTION : Is G an arrangement graph?

We now have the following theorem.

Theorem 4 Min-Seg-Draw is NP-Complete.

Proof. Given a drawing Γ, we can certify whether Γ
is a straight-line drawing with at most k segments in
polynomial time. We can also verify in polynomial time
whether Γ is a drawing of G or not as follows: We first
compare the outer face of G with outer face of Γ. If they
are different then Γ is not a drawing of G. Otherwise, for
each vertex v, we compare the clockwise ordering of the
neighbors of v in Γ with the corresponding ordering of
neighbors of v in G. If for any vertex the two orderings
are different, then Γ is not a drawing of G. In all other
cases Γ is a drawing of G. Thus the problem is in NP.

To prove the problem is NP-hard we reduce
Arrangement-Graph-Recognition to Min-Seg-
Draw. Let G be an instance of Arrangement-
Graph-Recognition. We assign a unique label to
each vertex of G. The resulting labeled graph G′ is
an instance of Min-Seg-Draw.

By Lemma 2 and Lemma 3, G′ is an arrangement
graph if and only if G′ admits a straight-line drawing
with at most k segments. Therefore, the answer to the
instance of Min-Seg-Draw is the answer to the in-
stance of Arrangement-Graph-Recognition. �

4 Minimum-Segment Drawing with Given Partial
Drawing

Drawing a graph extending a given partial drawing is
a well-studied problem [1, 7]. The problem of deciding
whether a given partial drawing can be extended to a

CCCG 2011, Toronto ON, August 10–12, 2011

305

23d Canadian Conference on Computational Geometry, 2011

straight-line drawing of a given planar graph has been
shown to be NP-complete by Patrignani [12]. We show
that given a planar graph G and the drawing of a sub-
graph of G, determining whether the drawing can be
extended to a straight-line drawing of G with at most
k segments is NP-complete, even when G is outerpla-
nar and the partial drawing can be extended to some
straight-line drawing of G. A formal definition of the
decision problem is as follows:

INSTANCE : An outerplanar graph G, a straight-line
drawing Γ′ of a subgraph G′ of G such that Γ′ can be
extended to some straight-line drawing of G, and an
integer k ≥ 1.

QUESTION : Is there a straight-line drawing of G,
which includes Γ′, with at most k segments?

We call this problem Partial-Min-Seg. We prove
NP-hardness by reduction from a strongly NP-complete
problem 3-Partition [6] which is defined as follows.

INSTANCE : A set of 3m nonzero positive integers
S={a1, a2, . . . , a3m} and an integer B > 0, where a1 +
a2 + . . .+a3m = mB and B/4 < ai < B/2, 1 ≤ i ≤ 3m.

QUESTION : Can S be partitioned into m subsets
S1, S2, . . . , Sm such that |S1|=|S2|= . . . =|Sm|=3 and
the sum of the integers in each subset is equal to B?

Observe that the NP-completeness of 3-Partition
holds even when each integer of S is greater than one.

A fan f is a maximal outerplanar graph with n ver-
tices, where a vertex v has degree n − 1. We call v the
apex of f and all the other vertices the path vertices.
We call the edges that are incident to v the ribs of f .

We now have the following theorem.

Theorem 5 Partial-Min-Seg is NP-Complete.

Proof. We can prove that the problem is in NP
as in the proof of Theorem 4. We now create
an instance of Partial-Min-Seg from an instance
B,S={a1, . . . , a3m}, of 3-Partition, where each inte-
ger of S is greater than one.

We construct in polynomial time an outerplanar
graph G as in Figure 3(a), where 3m + 2 fans have a
common apex v. Each fan fi, 1 ≤ i ≤ 3m, contains ex-
actly ai path vertices. There are two more fans f ′ and
f ′′ which contain m + 1 path vertices and mB + m + 1
path vertices, respectively. The size of G is polynomial
since 3-Partition is strongly NP-complete. We denote
by G′ the subgraph of G induced by the vertices of f ′

and f ′′. We construct a straight-line outerplanar draw-
ing Γ′ of G′ that satisfies the following (a)–(c).

(a) Let w1, . . . , wm+1 be the path vertices of f ′ ordered
clockwise around v and let u1, u2, . . . , umB+m+1 be
the path vertices of f ′′ ordered clockwise around v.
For each j, 1 ≤ j ≤ m+1, rib (wj , v) of f ′ and rib

(v, ui) of f ′′ form a segment, i=B(j−1)+j. These
segments are shown in bold lines in Figure 3(a).

(b) The edges between path vertices of f ′ and f ′′ are
drawn on two different segments. All the other
edges of f ′′ are drawn as separate segments, which
are shown as thin lines in Figure 3(a).

The gray region in Figure 3(a) shows Γ′. By construc-
tion, the number of segments in Γ′ is k′ = mB + m + 3.
We can observe that G admits some straight-line draw-
ing that includes Γ′. We now ask whether G ad-
mits a straight-line drawing, including Γ′, with at most
k = mB+m+3+3m segments. In the following we prove
that such a drawing exists if and only if the given in-
stance of 3-Partition has a positive answer.

We first assume that the 3-Partition we considered
has a positive answer. In other words, S can be parti-
tioned into m subsets S1, S2, . . . , Sm such that each Si,
1 ≤ i ≤ m, contains exactly three integers and the sum
of the integers in Si is equal to B. Since each fan fi,
1 ≤ i ≤ 3m, requires at least one new segment to draw
the edges between path vertices, any extension of Γ′ re-
quires at least k′ + 3m = k segments. Let E′ be the set
of ribs of f ′′ that are not drawn on the same segment
as any rib of f ′. To obtain a straight-line drawing of G
with exactly k segments, we need to draw each rib of
each fi on the same segment as one of the ribs in E′.
Let e1 and e2 be any two consecutive ribs of f ′ in Γ′

and let e′
1 and e′

2 be the ribs of f ′′ that are on the same
segments as e1 and e2, respectively. Then the number
of ribs between e′

1 and e′
2 is B. Let the integers in any

Si, 1 ≤ i ≤ m, be a, b and c, where a + b + c = B. We
place the fans that have a, b and c path vertices inside
the face bounded by the ribs e1 and e2 in Γ′ in such a
way that each rib of a, b and c shares a segment with
one of the ribs of f ′′ between e′

1 and e′
2. In this way, we

place the three fans with path vertices corresponding to
the integers in Si in the face bounded by the pair of ribs
ei and ei+1, where 1 ≤ i ≤ m. The final drawing Γ of
G that includes Γ′ has exactly k segments.

We now assume that the given instance of 3-
Partition has a negative answer and hence the set
S cannot be partitioned into m subsets as described
above. We prove that in that case G does not have a
drawing with k or fewer segments including Γ′. Recall
that any extension of Γ′ to some straight-line drawing of
G requires at least k segments. Suppose for a contradic-
tion that G has a drawing Γ including Γ′ with exactly
k segments. Then each rib of each fi, 1 ≤ i ≤ 3m,
must be drawn on the same segment as one of the ribs
of E′. Since Γ is a planar drawing of G, each fi must
be placed inside a face bounded by two consecutive ribs
of f ′. Therefore, the fans f1, . . . , f3m are partitioned
into m subsets and the total number of ribs for each set
of fans must be B. Since ai < B/2, no two fans can

23rd Canadian Conference on Computational Geometry, 2011

306

CCCG 2011, Toronto ON, August 10–12, 2011

cumulatively have B ribs. Similarly, since B/4 < ai,
four or more fans cumulatively have more than B ribs.
Therefore, each subset must contain exactly three fans.
Hence each subset of fans corresponds to a subset Si of
S that contains three integers whose sum is B. This
gives a solution to the given instance of 3-Partition,
a contradiction. Therefore, G cannot have a drawing
with at most k segments including Γ′. �

G

u
B+2

w
3

w
2

w
1

f

f

B+2 3u
1u

f

f
G

vf
2

(a) (b)

G

v

f

f
1

3m

....

Figure 3: Illustration for the proof of Theorem 5.

5 Segment Complexity of Planar Graphs

In this section we give lower bounds on the segment
complexities of different classes of planar graphs. Recall
that segment complexity of a planar graph G is the min-
imum positive integer C, such that any spanning tree
of G admits a drawing with at most C segments. Duj-
mović et al. [4] proved that if the number of odd degree
vertices in a tree is η, then any straight-line drawing of
the tree requires at least η/2 segments. If a spanning
tree T of G has x leaves, then x ≤ η and any straight-
line drawing of the tree requires at least x/2 segments.
Thus we have the following observation.

Observation 1 Let G be a planar graph with a span-
ning tree T , where the number of leaves is x. Then x/2
is a lower bound on the segment complexity of G.

By Observation 1, we obtain a lower bound on the seg-
ment complexity of a planar graph by finding a spanning
tree with many leaves. A maximum-leaf spanning tree
of a graph G is a spanning tree of G, where the number
of leaves is the maximum possible. It is NP-hard to find
a maximum-leaf spanning tree in a graph G, even when
G is a planar bipartite graph with maximum degree
four [10]. In the following we obtain lower bounds on
segment complexities for maximal outerplanar graphs,
plane 2-trees, plane 3-trees, plane 3-connected graphs
and plane 4-connected graphs.

A graph G with n vertices is a k-tree if G satisfies the
following properties:

(a) If n = k, then G is the complete graph Kn.

(b) If n > k, then G can be constructed from a k-
tree G′ with n − 1 vertices by adding a vertex adjacent
to exactly k vertices of G′, where the induced graph of
these k-vertices is a complete graph.

Every k-tree G = (V,E) admits an ordered partition
π = (V1, V2, ..., Vm) of V that satisfies the following:

(a) V1 contains k vertices inducing a complete graph
and every other partition contains only one vertex.

(b) Let Gk, 1 ≤ k ≤ m, be the subgraph of G induced
by V1∪V2∪...∪Vk. Then Gk, k > 1, is a k-tree obtained
by adding Vk to Gk−1.

Every 2-tree is 3-colorable. The following lemma finds
a spanning tree of a plane 2-tree using graph coloring.

Lemma 6 Let G be a plane 2-tree with n ≥ 3 vertices.
Let S be a set of vertices that are assigned the same
color c in a 3-coloring of G. Then G − S is a tree.

Proof. Let π = (V1, V2, ..., Vm) be an ordered partition
of V . We use induction on m. The case when m = 1
is straightforward since G1 is K2. We thus assume that
for each Gi, 1 ≤ i ≤ m − 1, Gi − Si is a tree. Now
consider Gm = G. Let z be the vertex in Vm and let x
and y be its neighbors. By the definition of plane 2-tree,
x and y are adjacent. We assume that G is colored with
colors c1, c2, c3 such that color(x)=c1, color(y)=c2 and
color(z)=c3. If c=c3, then G−S=Gm−1−Sm−1 is a tree
by induction. If c= c1 or c = c2, then G−S is formed
by connecting vertex z to Gm−1−Sm−1 with exactly one
edge. Since Gm−1−Sm−1 is a tree, G−S is a tree. �

We use Lemma 6 to prove the following theorem.

Theorem 7 Let G be a maximal outerplanar graph
with n ≥ 3 vertices. Then the segment complexity of
G is at least n/6.

Proof. We show that every maximal outerplanar graph
G with n ≥ 3 vertices has a spanning tree T , where the
number of leaves in T is at least n/3. By Observation 1,
this will prove that the segment complexity of G is at
least n/6.

Every maximal outerplanar graph admits a 3-
coloring. Let Si, 1 ≤ i ≤ 3, be a set of vertices that
are assigned color i in a 3-coloring of G. The set with
the maximum cardinality among S1, S2 and S3 will have
at least n/3 vertices. Without loss of generality assume
that the set with the maximum cardinality is S1, that
is, |S1| ≥ n/3. Every outerplanar graph is a plane 2-
tree. Therefore, by Lemma 6, G − S1 is a tree, which
we denote by T ′.

Let v be a vertex in S1. Since S1 is an independent set
and G is connected, there exists an edge (x, v), where x
is a vertex of T ′. Therefore, we can connect v to x to
obtain another tree that contains v as one of its leaves.
By making the vertices of S1 into leaves in T ′, we can
obtain a spanning tree T with at least n/3 leaves. �

CCCG 2011, Toronto ON, August 10–12, 2011

307

23d Canadian Conference on Computational Geometry, 2011

In a similar technique as we used in the proof of The-
orem 7 we can prove the following theorem.

Theorem 8 Let G be a plane 2-tree with n ≥ 3 vertices.
Then the segment complexity of G is at least n/6.

Every plane 3-tree G has a spanning tree with at
least (2n−5)/3 leaves [14]. Furthermore, Kleitman and
West [9] proved that every plane 4-connected graph has
a spanning tree with at least 2n/5 leaves, and every
plane 3-connected graph has a spanning tree with at
least n/4 leaves. We combine these results with Obser-
vation 1 to obtain the following theorem.

Theorem 9 The segment complexities of plane 3-trees,
plane 4-connected graphs and plane 3-connected graphs
are at least (2n − 5)/6, n/8 and n/5, respectively.

6 Conclusion

Among other results, we have proved that it is NP-
complete to decide whether a plane graph G has a
straight-line drawing with k segments. This motivates
finding approximation algorithms for minimum-segment
drawings of different classes of planar graphs.

A minimum-segment drawing becomes more visually
coherent if we minimize the number of distinct lines
that contain the segments of the drawing. We call such
a drawing a minimum-line drawing. Figures 4(a) and
(b) depict two different minimum-segment drawings of
a tree, where the number of lines are 7 and 6, respec-
tively. Since the number of distinct slopes used in both
figures is two, the problem of computing a minimum-line
drawing is different from the problem of minimizing the
number of distinct slopes.

Open Problem: Compute non-trivial upper bounds
on the number of lines required for minimum-line draw-
ings of different classes of planar graphs.

(a) (b)

Figure 4: (a) A minimum-segment drawing. (b) A
minimum-segment drawing, which is also a minimum-
line drawing. Lines are shown in dotted lines.

Acknowledgment. The authors wish to thank an
anonymous reviewer for bringing to our attention an
error in our initial submission.

References

[1] P. Angelini, G. Di Battista, F. Frati, V. Jeĺınek,
J. Kratochv́ıl, M. Patrignani, and I. Rutter. Testing

planarity of partially embedded graphs. In Proc. of
ACM-SIAM SODA, pages 202–221, 2010.

[2] S. Biswas, D. Mondal, R. I. Nishat, and M. S.
Rahman. Minimum-segment convex drawings of
3-connected cubic plane graphs. In Proc. of CO-
COON, pages 182–191, 2010.

[3] P. Bose, H. Everett, and S. K. Wismath. Prop-
erties of arrangement graphs. International Jour-
nal of Computational Geometry and Applications,
13(6):447–462, 2003.

[4] V. Dujmović, D. Eppstein, M. Suderman, and D. R.
Wood. Drawings of planar graphs with few slopes
and segments. Computational Geometry: Theory
& Application, 38(3):194–212, 2007.

[5] The Cooperative Association for Internet
Data Analysis. Walrus. http://www.caida.org/
tools/visualization/walrus/.

[6] M. R. Garey and D. S. Johnson. Computers and
intractability. Freeman, San Francisco, 1979.

[7] E. Di Giacomo, W. Didimo, G. Liotta, H. Meijer,
and S. K. Wismath. Point-set embeddings of trees
with given partial drawings. Computational Geom-
etry: Theory & Application, 42(6-7):664–676, 2009.

[8] C. Homan, A. Pavlo, and J. Schull. Smoother tran-
sitions between breadth-first-spanning-tree-based
drawings. In Proc. of GD, pages 442–445, 2006.

[9] D. J. Kleitman and D. B. West. Spanning trees
with many leaves. SIAM Journal on Discrete Math-
ematics, 4(1):99–106, 1991.

[10] P. C. Li and M. Toulouse. Variations of the
maximum leaf spanning tree problem for bipartite
graphs. Information Processing Letters, 97:129–
132, 2006.

[11] T. Munzner. Drawing large graphs with H3Viewer
and site manager (system demonstration). In Proc.
of GD, pages 384–393, 1998.

[12] M. Patrignani. On extending a partial straight-line
drawing. International Journal of Foundations of
Computer Science, 17(5):1061–1070, 2006.

[13] M. A. H. Samee, M. J. Alam, M. A. Adnan, and
M. S. Rahman. Minimum segment drawings of
series-parallel graphs with the maximum degree
three. In Proc. of GD, pages 408–419, 2008.

[14] F. Zickfeld. Geometric and combinatorial struc-
tures on graphs. PhD dissertation, Technische Uni-
versität Berlin, 2007.

23rd Canadian Conference on Computational Geometry, 2011

308

CCCG 2011, Toronto ON, August 10–12, 2011

Characterization of Shortest Paths
on Directional Frictional Polyhedral Surfaces

Gutemberg Guerra-Filho∗ Pedro J. de Rezende†

Abstract

In this paper, we address a shortest path problem where
an autonomous vehicle moves on a polyhedral surface
according to a distance function that depends on the
direction of the movement (directional) and on the fric-
tion of the space (frictional). This shortest path prob-
lem generalizes a hierarchy of problems and finds ge-
ometric structure to solve several proximity problems.
We perform the characterization of shortest paths for a
directional frictional geodesic (DFG) distance function
on polyhedral surfaces. We derive the local optimality
criterion necessary to solve the corresponding shortest
path problem using the continuous Dijkstra algorithm
[11]. The derivation of this optimality criterion essen-
tially involves demonstrating the strict convexity of the
DFG distance function. This contribution is the most
fundamental result that enables all constructions of the
continuous Dijkstra algorithm to solve the correspond-
ing DFG shortest path problem.

1 Introduction

Path planning still remains an active field with modern
applications such as autonomous vehicles and surveil-
lance systems [1, 5, 7]. Although some effort has been
made on path planning in unknown and dynamic envi-
ronments [4, 19], the shortest path planning problems
in known static environments are a fundamental step
towards these spaces.

In this paper, we address a shortest path problem
where an autonomous vehicle moves on a polyhedral
surface according to a distance function that depends
on the direction of the movement (directional) and on
the friction of the space (frictional). More specifically,
the distance function considers the total work done by
an external force applied to the vehicle to move it from a
point to another. Therefore, we generalize the shortest
path problem on polyhedral surfaces [11, 12] to consider
the moving direction, friction, and slope.

The continuous Dijkstra paradigm [11] is an algo-
rithm that solves several shortest path problems by sim-

∗Department of Computer Science and Engineering, University
of Texas at Arlington, guerra@cse.uta.edu.

†Institute of Computing, State University of Campinas,
rezende@ic.unicamp.br. Partially supported by CNPq grants
483177/2009-1, 473867/2010-9, FAPESP grant 07/52015-0.

ulating the propagation of a wave from a source point to
all points in the space. The structure of the wave is up-
dated at discrete events when the wave reaches vertices
and edges. This structure consists of intervals of opti-
mality subdividing each edge according to the sequences
of vertices and edges that uniquely define a path from
the source to any point in the interval.

The continuous Dijkstra algorithm finds shortest
paths by exploring characteristic properties related to
the local behavior of the shortest paths. The char-
acterization of shortest paths consists of the determi-
nation of a local optimality criterion. In this paper,
we perform the characterization of shortest paths for a
directional frictional geodesic (DFG) distance function
on polyhedral surfaces. We derive the local optimality
criterion necessary to solve the corresponding shortest
path problem using the continuous Dijkstra algorithm.
The derivation of this optimality criterion essentially
involves demonstrating the strict convexity of the DFG
distance function.

Section 2 defines the shortest path problem addressed
in this paper and the corresponding distance function
considered in this problem. Section 3 reduces a hierar-
chy of shortest path problems to the DFG shortest path
problem. In section 4, we present the characterization
of geodesics and shortest paths on polyhedral surfaces
according to this distance function. Section 5 has our
concluding remarks.

2 Directional Frictional Shortest Path Problem

Let S be a polyhedral surface, possibly non-convex,
specified by a set of faces, edges, and vertices. We as-
sume that all faces of S are triangles since simple poly-
gons may be triangulated in linear time on the number
of vertices [2]. We consider bounded polyhedral surfaces,
that is, a surface with a finite number of bounded faces.

Based on Newtonian mechanics, we address a shortest
path problem related to a point particle moving on the
surface S according to a path of minimum resistance.
As a distance function, we consider the total amount of
mechanical work that must be done to move the particle
through the path. More specifically, the distance func-
tion considers the work done by an external force F to
move the particle between points on the same face of S.
The forces acting on the particle, besides the external

CCCG 2011, Toronto ON, August 10–12, 2011

309

23rd Canadian Conference on Computational Geometry, 2011

force F , are the weight P (|P | = m.g), the normal N
(|N | = |P | cosαf), and the friction A (|A| = µf |N |),
where m is the mass of the particle, g is the accelera-
tion of gravity, αf is the acute angle corresponding to
the slope between a face f and the horizontal plane, and
µf is the kinetic friction coefficient of face f . We assume
a constant kinetic friction coefficient µf and a constant
slope αf for all points on each face f of S. The static
friction force is ignored. We also assume that µf is fi-
nite and positive. Thus, we do not consider obstacles or
free regions.

The vector sum of the forces weight and normal
(P ⊕ N) results in a force RPN . This force is con-
tained on the face with direction of the gradient, that is,
perpendicular to the intersection between the face and
the horizontal plane (see Fig. 1). The forces weight-
normal RPN and friction A implies in a resulting force
RPNA = RPN ⊕ A according to angle β (see Fig. 1).
We assume the acceleration of the particle is zero (i.e.,
a constant positive speed). Therefore, since the result-
ing force of all forces is null, we conclude that F has the
same direction and size of RPNA, but opposite orienta-
tion. Thus, the size of force F is:

|F | = mg
√

sin2 αf + 2µf sin αf cos αf cos β + µ2
f cos2 αf .

A

N

P

R
PN

δ

δ

R

R
PNA

PN

β

Figure 1: Resulting force acting on the body.

We define the directional frictional geodesic (DFG)
distance function such that each face f is associated
with a kinetic friction coefficient µf > 0 that specifies
the resistance to move on the interior of face f . Sim-
ilarly, each edge e is associated with a kinetic friction
coefficient µe > 0. According to the DFG distance, the
length of a line segment from a point s to a point t in the
edge e is the size of the external force F for β ∈ {0,π}
times the euclidean distance between s and t:

mg|µe cosαe + sinαe cosβ||st|,

where αe is the slope angle between e and its orthogonal
projection into the horizontal plane. The length of a line
segment from a point s to a point t on the interior of
face f is the size of force F times the euclidean distance
between s and t:

mg
√

sin2 αf + 2µf sinαf cosαf cosβ + µ2
f cos2 αf |st|,

where β is the angle between the friction force and the
weight component projected into the plane of the face.

Formally, the DFG shortest path problem is stated
as follows: Given one source point s on a triangulated
polyhedral surface S, an assignment of kinetic friction
coefficients to edges and faces, and an error tolerance
ε > 0; build a structure that allows the computation
of an ε-optimal path (according to the DFG distance
function) from s to any query point t, such that the
path stays on the surface S.

3 A Hierarchy of Shortest Path Problems

Several shortest path problems are reduced to the di-
rectional frictional shortest path problem addressed in
this paper. The most specific shortest path problem
considers the interior of a simple polygon (ISP) [17].
The Euclidean shortest path problem with polygonal
obstacles (EPO) [6] consists of finding shortest paths
in a plane avoiding a set of disjoint simple polygonal
obstacles. This problem generalizes the ISP problem
when the complement of the polygon is considered an
obstacle. A special case of the EPO problem considers
parallel straight line segments (PLS) as obstacles [9].
In a simpler version of the PLS problem, the obstacles
are parallel half-lines (PHL) [18]. Another special case
of the EPO problem consider only polygonal obstacles
with disjoint convex hulls (DCH) [16].

A generalization of the EPO problem consists of find-
ing shortest paths according to the Euclidean metric
on the surface of a (possibly non-convex) polyhedron
[11]. This problem is called the discrete geodesic prob-
lem (DGP). To reduce the EPO problem to the DGP
problem, we construct a surface where each obstacle be-
comes an infinite orthogonal prism whose base is on the
plane. A shortest path on this surface between points in
the plane is fully contained in the plane and avoids all
prisms which corresponds to a shortest path avoiding
obstacles. Another special case of the DGP problem,
is the shortest path problem on the surface of a convex
polyhedron (SCP) [13].

The weighted region problem (WRP) [12] consists of
finding a path in a planar subdivision that minimizes
the total cost according to a weighted Euclidean metric.
The WRP problem generalizes the EPO problem. In
this case, the weights associated with the free space and
obstacles are 1 and +∞, respectively. A special case of
the WRP problem arises when the weights of regions
are 0, 1, or +∞ which has applications to the maximum
concealment problem (MCP).

The DFG problem addressed in this paper generalizes
the DGP problem when there is only one constant force
applied to the particle for the whole polyhedral surface.
In this case, the total work done to move the particle
considers only the weight force. On the other hand, if

23rd Canadian Conference on Computational Geometry, 2011

310

CCCG 2011, Toronto ON, August 10–12, 2011

the polyhedral surface is embedded into a single plane,
the only force applied to the particle is the constant fric-
tion on each face, hence, the WRP problem is a special
case of the DFG problem.

4 Geodesic and Optimal Paths

Assuming that each face has a constant kinetic friction
coefficient and a constant slope, the following lemma
states that geodesic paths are piecewise linear. A piece-
wise linear path is a path whose intersection with any
face is the union of disjoint line segments.

Lemma 1 Let f be a face with µf > 0. Let s and t be
points on the interior of f . A subpath from s to t fully
contained on the interior of f is geodesic if and only if
it is a straight line segment.

Proof. If the subpath from s to t is geodesic, then it
must be locally optimal with regards to the DFG dis-
tance function. We assume that the subpath from s to
t is the arc of a differential parametric curve Φ : I → R2

from an open range I ⊂ R into R2 that represents the
plane of face f , where Φ is a function that leads i ∈ I
to a point Φ(i) = (x(i), y(i)) ∈ R2. The tangent vector
Φ′(i) is the vector (x′(i), y′(i)), where x′(i) is the first
derivative of x(i) in i ∈ I.

The length di0,i1 of the arc of the parametric curve Φ
according to the DFG distance function, from Φ(i0) = s
to Φ(i1) = t, where i0, i1 ∈ I is [3]:

di0,i1 =

∣∣∣∣
∫ i1

i0

Fxi Vx |Φ′(i)| di ⊕
∫ i1

i0

Fyi Vy |Φ′(i)| di

∣∣∣∣ .

The forces Fxi Vx and Fyi Vy are horizontal and ver-
tical components of the external force Fi, where Vx and
Vy are the unit vectors in the direction of the axes. We
denote by |st| the Euclidean length of the straight line
segment st. Therefore, we have the following:

∣∣∣∣
∫ i1

i0

Fxi Vx

∣∣Φ′(i)
∣∣ di

∣∣∣∣ = − |A| cos β |st| ,
∣∣∣∣
∫ i1

i0

Fyi Vy

∣∣Φ′(i)
∣∣ di

∣∣∣∣ = − |RPN |
∫ i1

i0

∣∣Φ′(i)
∣∣ di − |A| sin β |st| ,

where |Φ′(i)| =
√

(x′(i))2 + (y′(i))2 denotes the size
of vector Φ′(i), A is the friction force, and RPN is the
weight and normal resulting force.

The length of the line segment st according to the
DFG distance function is ds,t = |Fx Vx |st| ⊕ Fy Vy |st||,
where

|Fx Vx |st|| = − |A| cosβ |st| ,
|Fy Vy |st|| = − |RPN | |st| − |A| sinβ |st| .

Thus, we must show that ds,t ≤ di0,i1 . However, since

|Fx Vx |st|| =

∣∣∣∣
∫ i1

i0

Fxi Vx |Φ′(i)| di

∣∣∣∣ ,

we need only to demonstrate that |Fy Vy |st|| ≤∣∣∣
∫ i1

i0
Fyi Vy |Φ′(i)| di

∣∣∣. Since |st| ≤
∫ i1

i0
|Φ′(i)| di, we have

|(− |RPN | |st|) Vy| ≤
∣∣∣∣
(

− |RPN |
∫ i1

i0

|Φ′(i)| di

)
Vy

∣∣∣∣ .

Therefore,

|(− |RPN | |st| − |A| sinβ |st|) Vy| ≤
∣∣∣∣
(

− |RPN |
∫ i1

i0

|Φ′(i)| di − |A| sinβ |st|
)

Vy

∣∣∣∣ ,

that is, the length of the line segment st is less than or
equal to the length of the arc of any parametric curve
according to the DFG distance function. Thus, the sub-
path represented by this arc is geodesic if and only if it is
a straight line segment. Furthermore, since the geodesic
subpath is a line segment, we can drop our assumption
that the curve Φ is differential. !
Corollary 4.1 Geodesic paths on polyhedral surfaces
according to the DFG distance function are piecewise
linear.

The locus of points t on a face f with constant dis-
tance δ from a source point s, according to the DFG
distance function, consists of a curve defined by the fol-
lowing polar equation: |st| =

δ

mg
√

µ2
f cos2 αf + 2µf cosαf sinαf cosβt + sin2 αf

,

where βt is the angle between the vector of the force
RPN in the direction of the gradient and the vector of
the friction force A in the direction of the line segment
st. This curve has an oval shape. The curve is a circle
when αf = 0, but it has a degenerated shape when

mg
√

µ2
f cos2 αf + 2µf cosαf sinαf cosβt + sin2 αf =

0. This only occurs when cosβt = −1. In this case,
we have (µf cosαf − sinαf)2 = 0, that is, µf = tanαf .
We assume that µf (= tanαf to avoid this degenerated
case and to guarantee the strict convexity of the DFG
distance function. This locus is a strong evidence of the
convexity of the DFG function. However, the algebraic
proof 1 of this fact is necessary to guarantee that there
exists a local optimality criterion.

The angle of incidence θ is the acute angle between a
segment of a geodesic path that crosses (incoming ray)
the boundary of face f and a vector perpendicular to
the boundary of f . The angle of refraction θ′ is the
acute angle between a segment of a geodesic path that
crosses (outgoing ray) the boundary of face f ′ and a
vector perpendicular to the boundary of f ′.

A geodesic path must pass through the interior of an
edge e according to a local optimality criterion for the
directional frictional geodesic shortest path problem.

1This proof is presented in appendix B.

CCCG 2011, Toronto ON, August 10–12, 2011

311

23rd Canadian Conference on Computational Geometry, 2011

Lemma 2 Let f and f ′ be two faces that share an edge
e. Let s be a point on the interior of f and let t be
a point on the interior of f ′. Let p be a geodesic path
between s and t that passes through only one point x∗

in the interior of e, then x∗ is uniquely defined.

Proof. The proof consists of solving a minimiza-
tion problem on the length of a path from a point
s(0, −y0, z0) on face f to a point t(x1, y1, z1) on face
f ′ passing through only one point x∗ in edge e = f ∩ f ′

according to the DFG distance function (see Fig. 2).
The faces f and f ′ are defined by points s, t, and by
the edge e. The points in the edge e are projected into
the y axis and they have height equal to (ax+ b), where
a and b are constants.

e

β0 s (0, -y0, z0)

q0

f’

f

q1
θ

θ’

x* (x, 0, z)

β
1

t (x1, y1, z1)

Figure 2: Local optimality criterion.

We must find the minimum point x∗ in the following
function 2 with a single real variable x:

√
µ2

f cos2 αf + 2µf cos αf sin αf cos βfx + sin2 αf |sx∗| +
√

µ2
f ′ cos2 αf ′ + 2µf ′ cos αf ′ sin αf ′ cos βf ′

x
+ sin2 αf ′ |x∗t|,

where µf , µf ′ are friction coefficients; αf ,αf ′ are slope
angles between faces and the horizontal plane; and
βfx ,βf ′

x
are the angles between the friction force A in

the direction of the movement and the resulting force
RPN in the direction of the gradient for each face, re-
spectively. Note that the angles 3 βfx and βf ′

x
change

according to x.
The convexity of the DFG distance function between

points on the same face guarantees that there exists a
single point xs (xt) in e whose distance from s (to t) is
minimum. Therefore, the point x∗ must be in the range
[xs, xt]. The determination of the minimum point xs is
achieved using the first derivative of the DFG distance
function from s to x∗. Analogously, we find the point
xt. In appendix C, we get the following expression that

2We prove the strict convexity of this function in appendix B.
3Details about the angles βfx and βf ′

x
are found in appendix A.

specifies xs in function of the angle of incidence θs in
edge e, where cs0 , . . . , cs4 are constants:

cs0 + cs1 sin θs + cs2 sin2 θs + cs3 sin3 θs + cs4 sin4 θs = 0.

The point x∗ is uniquely specified by the first deriva-
tive of the DFG function from s to x∗ added to the DFG
function from x∗ to t (see Exp. 5):

c5(cosβfx∗)
′ |sx∗| + (2c5 cosβfx∗ + c6) (|sx∗|)′

√
2c5 cosβfx∗ + c6

+

c7(cosβf ′
x∗)

′ |x∗t| + (2c7 cosβf ′
x∗ + c8) (|x∗t|)′

√
2c7 cosβf ′

x∗ + c8

= 0,

where c5 = µf cosαf sinαf , c6 = µ2
f cos2 αf + sin2 αf ,

c7 = µf ′ cosαf ′ sinαf ′ , and c8 = µ2
f ′ cos2 αf ′ + sin2 αf ′ .

We simplify the equation above, seeking an equivalent
expression in function of angles θ and θ′ (see Exp. 6):

sin θ(c5 cos βfx∗ + c6) + c9√
2c5 cos βfx∗ + c6

+
sin θ′(c7 cos βf ′

x∗ + c8) + c10
√

2c7 cos βf ′
x∗ + c8

= 0,

(1)

where c9 = c5c4√
1+a2|sq′| , q′ is the intersection of the

straight line passing by s in the same direction of the
vector of the force RPN with the edge e, c10 is a constant
analogous to c9 related to face f ′. Note that cosβfx∗ =
± cosψ cos θ± sinψ sin θ and cosβf ′

x∗ = ± cosψ′ cos θ′ ±
sinψ′ sin θ′, where ψ and ψ′ are constants. Therefore,
the algebraic expression above uniquely specifies x∗. !

The critical angle θf,f ′ for e consists of the angle of
incidence when the angle of refraction θ′ = π

2 . In this
case, the local optimality criterion (see Eq. 1) has the
following form:

sin θf,f ′(c5(± cos ψ cos θf,f ′ ± sin ψ sin θf,f ′) + c6) + c9√
2c5(± cos ψ cos θf,f ′ ± sin ψ sin θf,f ′) + c6

+

±c7 sin ψ′ + c8 + c10√
2c7 sin ψ′ + c8

= 0.

Then, analogously to θs and θt, the critical angle θf,f ′

is given by the expression

cf,f ′
0
+ cf,f ′

1
sin θf,f ′ + cf,f ′

2
sin2 θf,f ′ +

cf,f ′
3
sin3 θf,f ′ + cf,f ′

4
sin4 θf,f ′ = 0,

where cf,f ′
i

are constants for i = 0, . . . , 4 (see Eq. 7).
A geodesic path critically uses part of an edge e when

it reaches the edge e at the critical angle θf,e at a point
q interior to e, travels along edge e for some distance,
and leaves edge e into the interior of f ′ at the critical
angle θe,f ′ at a point r interior to e (see Fig. 3(a)).

A geodesic path is critically reflected by e from face
f when it is incident to edge e at critical angle θf,e at a
point q interior to e, travels along edge e for some dis-
tance, and exits edge e back into face f at a point r in-
terior to e, leaving the edge at angle θe,f (see Fig. 3(b)).

23rd Canadian Conference on Computational Geometry, 2011

312

CCCG 2011, Toronto ON, August 10–12, 2011

s

q

t
f’

f r
e

θ

θ

f, e

e, f’

(a) Critically uses edge.

s

q
f’

r e

θ θ
f, e e, f t

f

(b) Reflected by edge.

Figure 3: Geodesic paths on an edge.

We generalize Lemma 2 to consider critical angles,
that is, paths that can either critically use part of an
edge or be critically reflected. In this case, we have a
two-variable minimization problem.

Lemma 3 A geodesic path crosses edge e = f ∩ f ′ in
one of two ways: either it intersects edge e at one cross-
ing point and satisfies the local optimality criterion at
that point, or it hits edge e at a critical angle θf,e, trav-
els along the edge for some distance, and exits the edge
into the other face (into the same face) at a critical an-
gle θe,f ′ (θe,f).

Proof. The proof consists of solving a convex (non-
linear) programming problem [10] in two real variables x
and x′, where x and x′ are the coordinates of the points
q and r at the x axis, respectively (see Fig. 3). Our goal
is to minimize the function d(x, x′) =

√
µ2

f cos2 αf + 2µf cos αf sin αf cos βfx + sin2 αf |sx∗| +
(µe cos αe − sin αe) |x∗x′∗| +

√
µ2

f ′ cos2 αf ′ + 2µf ′ cos αf ′ sin αf ′ cos βf ′
x

+ sin2 αf ′ |x′∗t|

subject to g(x, x′) = x − x′ ≤ 0. The Karush-
Kuhn-Tucker conditions [8] imply the three relations
∇d(x, x′) + l∇g(x, x′) = 0, l g(x, x′) = 0, l ≥ 0, where
∇d(x, x′) and ∇g(x, x′) are gradient vectors and l is
the Lagrange multiplier. Therefore, if l = 0 we have

∇d(x, x′) =
(

∂d(x,x′)
∂x , ∂d(x,x′)

∂x′

)
= 0, otherwise,

c5(cosβfx)
′ |sx|√

c6 + 2c5 cosβfx

+
√

c6 + 2c5 cosβfx (|sx|)′
+

√
1 + a2(µe cosαe − sinαe) = 0 and

c7(cosβf ′
x′)

′ |x′t|
√

c8 + 2c7 cosβf ′
x′

+
√

c8 + 2c7 cosβf ′
x′ (|x′t|)′ −

√
1 + a2(µe cosαe − sinαe) = 0.

Simplifying in terms of critical angles θf,e and θe,f ′ ,

sin θf,e(c6 + c5 cos βfx) + c9√
c6 + 2c5 cos βfx

+ (µe cos αe − sin αe) = 0 and

sin θe,f ′(c8 + c7 cos βf ′
x′) + c10

√
c8 + 2c7 cos βf ′

x′

− (µe cos αe − sin αe) = 0.

However, the Lagrange multiplier is not zero if and only
if g(x, x′) = 0, that is, x = x′. In this case, the path
crosses the edge at the single crossing point and satisfies
the following local optimality criterion:

(c6 + c5 cos βfx) sin θ + c9√
c6 + 2c5 cos βfx

+
(c8 + c7 cos βf ′

x′
) sin θ′ + c10

√
c8 + 2c7 cos βf ′

x′

= 0.

Depending on the Lagrange multiplier, a geodesic
path either intercepts the edge at a single point (l (= 0),
or travels along the edge and exits at critical angle
θe,f ′ (l = 0) according to the local optimality criterion.
There is a similar proof for critically reflected paths. !

The intersection of a geodesic path p with an edge e
is a set, probably empty, of points and segments. These
points are called crossing points of the edge e for path
p and the segments, shared segments for e and p.

The convexity of the DFG function uniquely specifies
a geodesic path that intercepts an edge sequence.

Lemma 4 If p is a geodesic path from a point s to a
point t that intercepts the edge sequence E = (e1, . . . , ek)
with ei (= ei+1 (so that there are no shared segments),
then p is the unique geodesic path connecting s to t.

Proof. We show that the function that gives the
DFG length of the path from point s to point t inter-
cepting the edge sequence E is a strictly convex function
of the crossing points at each edge (see Fig. 4).

s

e

e

e

e
t

1

2

3

4

q
q

q

q4

3

2

1

Figure 4: A path intercepting edge sequence E.

The DFG function of the length of the path from
point s to point t intercepting the edge sequence E is

given by d(q1, . . . , qk) = d1 +
∑k−1

i=1 di+1 + dk+1 =

√
µ2
1 cos2 α1 + 2µ1 cos α1 sin α1 cos β1 + sin2 α1 |sq1| +

k−1∑

i=1

√
µ2

i+1
cos2 αi+1 + 2µi+1 cos αi+1 sin αi+1 cos βi+1 + sin2 αi+1 |qiqi+1|

+

√
µ2

k+1
cos2 αk+1 + 2µk+1 cos αk+1 sin αk+1 cos βk+1 + sin2 αk+1 |qkt|,

where qi is the crossing point at edge ei. Our goal
is to show that d(q1, . . . , qk) is a strictly convex func-
tion of the crossing points at each edge. According to
theorems in appendix B, the functions d1 and dk+1 are
strictly convex. The function di+1 is strictly convex
in two scalar variables that specify the points qi and
qi+1. This follows from the strict convexity of this func-
tion when one of the points qi or qi+1 is fixed. Thus,

CCCG 2011, Toronto ON, August 10–12, 2011

313

23rd Canadian Conference on Computational Geometry, 2011

the intersection of an orthogonal plane to the horizontal
plane (parallel to x or y axis) with this function implies
a strictly convex curve. Generalizing the direction of
the orthogonal plane, then the function in two variables
is strictly convex.

Since function d(q1, . . . , qk) is a summation of strictly
convex functions, then d(q1, . . . , qk) is strictly convex.
Therefore, function d(q1, . . . , qk) has a unique global
minimum, and any local minimum must be global. Since
p is a local minimum, it is also the unique global mini-
mum intercepting the edge sequence E. !

A critical point of entry of a geodesic path p into face
f consists of a point q (the closer endpoint of a shared
segment to the source s) interior to an edge e = f ∩ f ′

when p hits q from the side of f . Similarly, a critical
point of exit of path p into face f is a point r interior to
(f ∩ f ′) (the further endpoint of a shared segment from
the source s) when p goes from r into face f .

Let v and v′ be consecutive vertices encountered in
the list of points describing a geodesic path p. The char-
acterization of geodesic paths implies that the structure
of the subpath of p between v and v′ is an alternate
list of crossing points and shared segments. A geodesic
path p may be uniquely specified by a list of vertices,
edges, and faces whose interiors contain a portion of p.
Edges and faces may be repeated in this list.

Finally, we have the following characterization of
geodesic and shortest paths on polyhedral surfaces ac-
cording to the DFG function:

Theorem 5 The general form of either a geodesic or a
shortest path is a piecewise linear path that goes through
an alternating sequence of vertices, (possibly empty)
edge sequences, and shared segments, such that the path
satisfies the local optimality criterion at each edge along
any edge sequence and at the endpoints of each shared
segment.

Proof. Follows from Lemmas 2 and 3. !

5 Conclusions

We performed the characterization of shortest paths on
polyhedral surfaces according to the DFG distance func-
tion. We derived the local optimality criterion by show-
ing the strict convexity of this distance function. The
DFG shortest path problem generalizes a hierarchy of
shortest path problem [11, 12]. This implies in a sin-
gle framework to address several shortest path problems
and in the versatility necessary to consider several ap-
plications. Furthermore, this framework finds geomet-
ric structures embedded on polyhedral surfaces (i.e., a
shortest path Voronoi diagram [14])that allows the so-
lution of proximity problems (closest pair of points, all
nearest neighbors, minimum expanding tree) on poly-
hedral surfaces according to the DFG distance.

References

[1] P. Bhattacharya and M. Gavrilova. Roadmap-based
path planning - Using the Voronoi diagram for a
clearance-based shortest path. IEEE Robotics and Au-
tomation Magazine, 15(2):58–66, 2008.

[2] B. Chazelle. Triangulating a simple polygon in linear
time. Discrete Comput. Geom., 6:485–524, 1991.

[3] M. P. do Carmo. Elementos de Geometria Diferencial.
Ao Livro Tecnico S.A., Rio de Janeiro, 1971.

[4] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel.
Path planning for autonomous driving in unknown en-
vironments. Experimental Robotics, 54:55–64, 2009.

[5] R. Geraerts and M. Overmars. The corridor map
method: Real-time high-quality path planning. In
IEEE Int. Conf. on Robotics and Automation, pages
1023–1028, 2007.

[6] J. Hershberger and S. Suri. Efficient computation of
Euclidean shortest paths in the plane. In Proc. 34th An-
nual IEEE Sympos. Found. Comput. Sci. (FOCS 93),
pages 508–517, 1993.

[7] G. Jan, K. Chang, and I. Parberry. Optimal path plan-
ning for mobile robot navigation. IEEE/ASME Trans-
actions on Mechatronics, 13(4):451–460, 2008.

[8] H. W. Kuhn and A. W. Tucker. Linear inequalities and
related systems. Princeton University Press, Princeton,
1956.

[9] D. T. Lee and F. P. Preparata. Euclidean shortest paths
in the presence of rectilinear barriers. Networks, 14:393–
410, 1984.

[10] D. G. Lvenberger. Linear and Nonlinear Programming.
Addison-Wesley Publishing Company, 1937.

[11] J. S. B. Mitchell, D. M. Mount, and C. H. Papadim-
itriou. The discrete geodesic problem. SIAM Journal
on Computing, 16:647–668, 1987.

[12] J. S. B. Mitchell and C. H. Papadimitriou. The weighted
region problem: finding shortest paths through a
weighted planar subdivision. Journal ACM, 38:18–73,
1991.

[13] D. M. Mount. On finding shortest paths on convex
polyhedra. Technical Report 1495, Department of Com-
puter Science, University of Maryland, 1985.

[14] D. M. Mount. Voronoi diagrams on the surface of a
polyhedron. Technical Report 1496, Department of
Computer Science, University of Maryland, 1985.

[15] A. W. Roberts and D. E. Varberg. Convex Functions.
Academic Press, Inc., 1973.

[16] H. Rohnert. Shortest paths in the plane with convex
polygonal obstacles. Information Processing Letters,
23:71–76, 1986.

[17] M. I. Shamos. Computational Geometry. Ph.D. thesis,
Dept. Comput. Sci., Yale Univ., New Haven, CT, 1978.

[18] M. Tompa. An optimal solution to a wire-routing prob-
lem. Journal Comput. Syst. Sci., 23:127–150, 1981.

[19] J. van den Berg and M. Overmars. Planning the short-
est safe path amidst unpredictably moving obstacles.
Tracts in Advanced Robotics, 47:103–118, 2008.

23rd Canadian Conference on Computational Geometry, 2011

314

CCCG 2011, Toronto ON, August 10–12, 2011

Memory-Constrained Algorithms for Shortest Path Problems

Tetsuo Asano∗ Benjamin Doerr†

Abstract

We present an algorithm computing a shortest path
between to vertices in a square grid graph with edge
weights that uses memory less than linear in the num-
ber of vertices (apart from that for storing in the in-
put). For any ε > 0, our algorithm uses a work space of
O(n(1/2)+ε) words and runs in O(nO(1/ε)) time.

1 Introduction

It is well known that given a weighted graph of n ver-
tices, the shortest path between any two vertices can
be computed in O(n2) time using work space of O(n)
words in addition to arrays keeping graph information,
whose total size is O(m + n), where m is the number of
edges and m = O(n2) in general. This is achieved by
the original version of Dijstra’s algorithms [1].

It is known that the shortest path problem is NL-
complete [2]. In other words, it seems hopeless to have
an algorithm for the problem using work space of O(1)
words of O(log n) bits.

What happens if we allow a larger, but sublinear work
space? Surprisingly, nothing is known for this question
as far as the authors know. In this first work on this
problem we prove that there is a sublinear-space algo-
rithm for computing the shortest path in a grid graph
of size

√
n × √

n. Our algorithm uses a work space of
O(n(1/2)+ε) words and runs in O(nO(1/ε)) time for any
fixed ε > 0.

2 Computing the Shortest Path Distance

We first present a space-efficient algorithm for comput-
ing the length of the shortest path in a grid graph of
size

√
n × √

n where the source and target vertices are
located at the lower left corner and upper right corner
of the grid, respectively. Once we know an algorithm
for computing the shortest path distance, we can report
the shortest path by repeatedly applying the algorithm.
Throughout the paper we assume that the length of a
word is long enough to keep the shortest path distance
for any vertex in a given graph.

∗School of Information Science, JAIST, Japan,
t-asano@jaist.ac.jp

†Max-Planck-Institut für Informatik, Germany,
doerr@mpi-inf.mpg.de

Let G = (V |E) be a square grid graph of size
√

n×√
n.

For simplicity, we assume that n is a square number and
thus

√
n is an integer. Two vertices are neighbors if their

L1-distance is one. All edges have positive weights.
First we decompose the grid graph G into k ×

k small square grid graphs called “block graphs”
S1(V1, E1), S2(V2, E2), . . . , Sk2(Vk2 , Ek2) of the same
size (

√
n/k) × (

√
n/k). These block graphs are ordered

arbitrarily as far as every block graph appears exactly
once in the order. The edge sets of these graphs form a
partition of E, i.e., we have

Ei ∩ Ej = ∅, for any i 6= j, and
E1 ∪ E2 ∪ · · · ∪ Ek2 = E.
Each vertex set Vi has O(

√
n/k) boundary vertices

which may be common to some other vertex sets, and
O(n/k2) inner vertices which are contained only in the
vertex set Vi. Since there are k2 squares, the total num-
ber of boundary vertices is O(k2 × √

n/k) = O(k
√

n).
Figure 1 shows an example of a grid graph and its

decomposition into 6×6 squares together with a shortest
path from the lower left corner to the upper right corner.
As is seen in the figure, a shortest path may visit a
square many times.

S0 S1 S3

S4 S5 S6

S7 S8 S9

s

s

w = O(
√

n)

h = O(
√

n)

Figure 1: An example of a grid graph of size k × k and
its decomposition into subgraphs called squares. The
shortest path from the lower left corner to the upper
right corner is also shown.

We are now ready to describe a basic algorithm for
computing the shortest path distance between two arbi-
trarily specified vertices in a given grid graph. We first

CCCG 2011, Toronto ON, August 10–12, 2011

315

23rd Canadian Conference on Computational Geometry, 2011

assume that a source vertex is located at the lower left
corner of the grid and a target vertex at the upper right
corner. This constraint is removed later.

We execute a simple implementation of Dijkstra’s al-
gorithm [1] for small squares again and again. For the
implementation we need an array for storing temporary
distances from the source vertex. We use two different
arrays for this purpose. One is an array C to keep a dis-
tance from the source vertex to each boundary vertex
in the entire graph G. Its size is O(k

√
n). The array is

maintained during the entire algorithm.

The other is an array T to keep a temporary distance
from the source vertex (of the whole grid) to each vertex
in a square including boundary and inner vertices of
the square. It is used for a one-shot implementation of
Dijkstra’s algorithm for a small square (plus the source
vertex of the whole grid). Since each square has the
same shape, we can use the array again and again for
different squares.

Now, we begin with the lower left square S1 with the
source vertex s in it. After initializing the two arrays
C and T with infinity, we set C[s] = 0 for the source
vertex s. Then, using the array T for all vertices in S1,
we apply a simple implementation of Dijkstra’s shortest
path finding algorithm to the square S1. It runs in time
quadratic in the number of vertices, that is, in O(n2/k4)
time. As post-process, we transfer distances of all the
boundary vertices of S1 to the common array C.

Then, we move to the next square S2. The initializa-
tion step is to transfer distances of boundary vertices
of S2 stored in the common array C to the temporary
array T . Distance values for all inner vertices of S2

are initialized to infinity. Then, we implement Dijk-
stra’s algorithm to the square. As is well known, this
algorithm computes a shortest path tree which includes
every shortest path from a single source vertex to all
other vertices. If you needed a source vertex, you could
define an imaginary source vertex and imaginary edges
from it to all the boundary vertices of the square whose
weights are given by the current distance values of those
vertices.

After the square S2, we move to S3, S4, and so on
until the last square Sm. We call the entire process
stated above “a scan over the grid graph.”

What can we expect after a scan over the graph? Let
P be the shortest path. The path P passes through
a number of squares. Suppose P passes through
S1 = Sσ1 , Sσ2 , . . . , SσL in this order. For example, the
shortest path in Figure 1 is characterized by a sequence
(S1, S2, S5, S4, S5, S4, S7, S4, S7, S8, S9, S6, S9, S8, S5, S6,
S3, S6, S3, S6, S9).

How long is the sequence? There are O(k2) squares
and each square is visited by the sequence at most
O(

√
n/k) times (because this is the number of boundary

vertices of a square). Since the shortest path must be

simple, we can conclude that the length L of the path P
is bounded by O(k2) × O(

√
n/k) = O(k

√
n). By induc-

tion, we also see that after the i-th scan over the graph,
we have computed the shortest path distance up to all
boundary vertices of Sσi. Thus, the shortest path dis-
tance must have been computed after O(k

√
n)-th scan.

Each scan is done in O((n/k2)2 × k2) = O(n2/k2) time
using work space of O(k

√
n + n/k2) words.

Algorithm 1 is a formal description of this basic pro-
cedure.

Theorem 1 Given a grid graph of size O(
√

n)×O(
√

n)
with positive edge weights, we can compute the shortest
path distance from the lower left corner to the upper
right corner of the grid in O(n2+1/2/k) time using work
space of O(k

√
n + n/k2) words.

Of course, in an actual implementation of the algo-
rithm we would stop after a whole scan over the grid
graph did not result in improving any shortest path dis-
tances to boundary vertices.

It is not so hard to extend the algorithm so that it
finds the shortest path distance for any two vertices as
far as both of them are boundary vertices. We could
also extend it to allow inner vertices as source and target
vertices.

The work space is minimized to O(n2/3) when k
√

n =
n/k2, that is, when k = n1/6.

3 Reporting the Shortest Path

Once we have computed the shortest path distance
d(s, t) from s to t, we can report the shortest path.
When we have computed d(s, t), we have also computed
the shortest path distance d(s, vi) for every boundary
vertex vi not only in the last square Sm, but also in all
other squares. Keeping the distances in yet another ar-
ray D of size O(n2/3), we execute Dijkstra’s algorithm
to the square Sm with the upper right corner vertex t
as a new source vertex. Now, for each boundary ver-
tex vi we have two distances, the global shortest path
distance D(s, vi) from s to vi and the shortest path dis-
tance d(t, vi) from t to vi within the square Sm. We
choose the boundary vertex vi of the largest value of
d(vi, t) such that

D(s, vi) + d(vi, t) = d(s, t).
Since Dijkstra’s algorithm finds all shortest paths from t
within the square, we can report the shortest path from
t to vi as the last part of the entire shortest path from
s to t.

Our next target is the boundary vertex vi. To re-
port the shortest path from s to vi, we repeat the same
process again with vi as a new target vertex instead of
t within the square containing vi which is adjacent to
the previous square. Forgetting everything we apply the
same algorithm from the scratch again to compute the

23rd Canadian Conference on Computational Geometry, 2011

316

CCCG 2011, Toronto ON, August 10–12, 2011

Algorithm 1: Basic Algorithm for Computing the
Shortest Path Distance between Two Vertices in a
Grid Graph.

Input: A grid graph G defined by a
√

n × √
n grid

with weighted edges, assuming
√

n is an
integer.

Output: The shortest path distance from a source
vertex s located at the lower left corner
to a target vertex t at the upper right
corner.

Decompose the grid into k × k squares
S1, S2, . . . , Sk2 of the same size.;
Let Vi be a set of vertices in a square Si for each
i = 1, . . . , k2.;
// Assume each Vi contains exactly√

n/k × √
n/k = n/k2 vertices.;

Let Bi be a set of vertices of Vi that lie on the
boundary of Si (those vertices shared with other
squares), called boundary vertices of Si.;
// The number of boundary vertices of each square
is O(

√
n/k).;

Let B = B1 ∪ · · · Bk2 be the set of all boundary
vertices.;
// The total number of boundary vertices is
O(k

√
n).;

Define an array C[] for distances to boundary
vertices.;
Define an array T [] for distances to vertices in a
square.;
for each boundary vertex vi do

C[i] = ∞.

C[0] = 0. // v0 is the source vertex s.;
for round = 1 to k

√
n do

for each Square Si do
for each boundary vertex vi,j = vp in Si do

T [j] = C[p].

for each inner vertex vi,j in Si do
T [j] = ∞.

// Dijkstra’s algorithm;
while there is an unselected vertex in Si do

Choose a vertex vi,p such that T [p] > 0
and T [p] is smallest.;
// The source vertex s should be treated
exceptionally. for each vertex vi,q in Si

adjacent to vi,p do
if T [q] > T [p] + w(vi,p, vi,q) then
T [q] = T [p] + w(vi,p, vi,q).;

T [p] = −T [p]. // Mark the vertex

// Transfer the results into the common
array C.;
for each boundary vertex vi,j = vp in Si do

C[p] = −T [j].

return the shortest path distance C[t] of the target
vertex vt at the upper right corner.

shortest path distance from s to vi. In a similar way,
we can report the shortest path from vi to the next in-
termediate vertex vj on the shortest path from vi to s.

Theorem 2 Given a grid graph of size O(
√

n)×O(
√

n)
with positive edge weights, we can output the shortest
path between any two vertices on the grid in O(n3) time
using work space of O(k

√
n+n/k2) words for any value

of k with 2 ≤ k ≤ n/2.

Proof. We only show the time complexity of the al-
gorithm described above. Again, the number of iter-
ations is bounded by O(k

√
n). Since each iteration is

done in O((n2+1/2/k) time, the total time complexity is
O(n3). �

3.1 Some Generalizations

We have assumed that source and target vertices are
fixed to two corner vertices of the grid. It is rather easy
to remove this constraint. Suppose a source vertex s is
an inner vertex of a square Si. Then, we do nothing for
the squares S1, . . . , Si−1 in the first scan over the given
grid graph. Then, we execute Dijkstra’s algorithm to
the square Si after initializing the distance for the inner
vertex s as 0. Then, we can correctly compute distances
from s to all the boundary vertices of Si within the
square. It is just the same for a target vertex. Thus, just
small modifications are enough to adapt the previous
algorithm to apply for general cases where source and
target vertices are arbitrarily specified.

4 Reducing the work space

We have shown that the shortest path distance between
any two vertices in a grid graph of size

√
n × √

n can
be computed in O(n2+1/2/k) time using work space of
O(k

√
n + n/k2) words after decomposing the grid into

k × k equal small squares. We have also shown that the
work space is minimized to O(n2/3) when k = n1/6. Is
it possible to reduce the work space? Our answer is Yes.

A basic idea is to introduce recursion. Given a grid
graph of size

√
n × √

n, we decompose it into k × k
squares of equal dimensions. We further decompose
each square into k × k small squares of equal dimen-
sions.

At the top level, we have k2 squares (called level-1
squares) of dimensions

√
n/k × √

n/k. The number of
boundary vertices of each level-1 square is O(

√
n/k).

Thus, the total number of boundary vertices at level 1
is O(k

√
n).

Each level-1 square is decomposed into k2 small
squares (level-2 squares) of dimensions

√
n/k2 ×√

n/k2.
There are O(

√
n/k2) boundary vertices in each level-2

square, and thus the total number of boundary vertices
at level 2 in a level-1 square is O(

√
n). On the other

CCCG 2011, Toronto ON, August 10–12, 2011

317

23rd Canadian Conference on Computational Geometry, 2011

hand, the number of inner vertice in each level-2 square
is O(n/k4).

√
n

√
n

√
n/k

√
n/k√

n/k2

√
n/k2

level-1 square level-2 square

Figure 2: Hierarchical Decomposition of a grid graph.
An example of a two-level decomposition.

As before, we apply Dijkstra’s algorithm to all level-1
squares in order, but we do not use inner vertices of each
square. We recursively apply the previous algorithm to
each level-1 square to compute distances for all bound-
ary vertices in the square using inner vertices of level-2
smaller squares.

Now, the work space we use consists of all boundary
vertices at level 1, all boundary vertices at level 2 in
the currently active level-1 square and all inner vertices
in the currently active level-2 small square and thus it
amounts to O(k

√
n +

√
n + n/k4). It is minimized to

O(n1/10
√

n) when k
√

n = n/k4, that is, when k = n1/10.
The time complexity increases. If we denote by T2 the
time for each level-2 square, then we have

T2 = O((n/k4)2) = O(n2/k8)
since we apply quadratic-time Dijkstra’s algorithm for
a square of size

√
n/k2 × √

n/k2.
The time for each level-1 square, denoted by T1, is

given by
T1 = O(k2 × T2 × √

n) = O(n5/2/k6)
since we do scan the square just as before. In the similar
way, the time for the entire grid, denoted by T0, is given
by

T0 = O(k2 × T1 × k
√

n) = O(n3/k3).
Therefore, if we set k = O(n1/10), then the work

space is given by O(n1/10
√

n) and the time complex-
ity by O(n3/n1/30).

We can extend the recursion into level ℓ > 1. The
smallest square at level ℓ has dimensions

√
n/kℓ×√

n/kℓ

and contains (
√

n/kℓ)2 = n/k2ℓ inner vertices. When
we apply Dijkstra’s algorithm to the smallest square,
it takes O(n/k2ℓ) work space for inner vertices and
O(n2/k4ℓ) time. For the level i = 0, 1, . . . , ℓ − 1, the
number of boundary vertices in the level is given by

O(
√

n/ki+1) and the time complexity Ti for the level i
is given by

Ti = O(k2 ·Ti+1 ·(√n/ki+1)×k2) = O(
√

n/ki−3Ti+1).
Thus, we have
T0/Tℓ−1 = (T0/T1) · (T1/T2) · · · (Tℓ−2/Tℓ−1) =

n(ℓ−1)/2/kℓ(ℓ+1)/2.
We also have

Tℓ = O((n/k2ℓ)2) = O(n2/k4ℓ),
and

Tℓ−1 = O(k2 · Tℓ · (√n/kℓ) · k2) = O(n5/2/k5ℓ−4).
Combining the above results, we have

T0 = O(
nℓ/2+2

kℓ(ℓ+1)/2
).

On the other hand, the total work space S is given by

S = O(k
√

n +
√

n +

√
n

k
+ · · · +

√
n

kℓ−2
+

n

kℓ
).

This total work space S is minimized to

S = O(n
1

2(ℓ+1)
√

n)

when k = O(n
1

2(ℓ+1)).
Substituting it into T0, we have

T0 = O(n2+ ℓ2+ℓ
4(2ℓ+1))

Theorem 3 Given a grid graph of size O(
√

n)×O(
√

n)
with positive edge weights and an integer ℓ > 0, we
can output the shortest path between any two vertices

on the grid in O(n2+ ℓ2+ℓ
4(2ℓ+1)) time using work space of

O(n
1

2(ℓ+1)
√

n) words.

5 Future Works

One of our future works is to extend the result in this
paper to a more general class of graphs. One target
class is one of maximal planar graphs. How to use a fa-
mous planar separator theorem is important. Another
interesting problem is to design a sublinear-space algo-
rithm for computing the shortest path on the Delaunay
triangulation of a point set in the plane.

References

[1] E. W. Dijkstra, “A note on two problems in connex-
ion with graphs,” Numerische Mathematik 1, 269-271,
1959.

[2] O. Goldreich, “Computational Complexity: A Concep-
tual Perspective,” Cambridge University Press, p. 182,
2008.

23rd Canadian Conference on Computational Geometry, 2011

318

CCCG 2011, Toronto ON, August 10–12, 2011

Finding Optimal Geodesic Bridges Between Two Simple Polygons

Amit M. Bhosle∗ Teofilo F. Gonzalez†

Abstract

Given two simple polygons P and Q we study the prob-
lem of finding an optimal geodesic bridge. The objective
is to find a bridge that minimizes the largest distance
from any point in P to any point in Q. We present an
algorithm that finds an optimal geodesic bridge (of min-
imum weight) in O(n2 log n) time. Our algorithm uses
as a subalgorithm a simpler O(n2 log n) time algorithm
that constructs an optimal geodesic bridge from a point
to a polygon.

1 Introduction

We study the problem of finding optimal connections
between two disjoint simple polygons. The two polygons
may represent islands to be connected by a bridge, the
goal is to identify a point on each of the two polygons
as the end points of the bridge, such that the longest
distance from any point on one island to any point on
the other is minimized. In cases where it is possible
to have flyover-like bridges, the bridge is a straight line
between its two end points (immaterial of whether the
two points are mutually visible or not). In other cases,
the bridge may need to stay outside the interiors of the
two polygons. E.g. if instead of a physical bridge, we
intend to find a route for a ferry that connects the two
islands, the route would need to stay within the water
region that separates the two islands.

In this paper we present an algorithm for the geodesic-
bridge problem that takes O(n2 log n) time. We also
present a simpler algorithm for the case when one of
the polygons is a single point.

Let P and Q be two disjoint polygons. We use ρ(X)
to denote the compact region defined by polygon X ,
and use δ(X) to denote the boundary of X . Note that
ρ(X)∩ δ(X) = δ(X). Formally, for points p ∈ ρ(P) and
q ∈ ρ(Q) we define the weight of the bridge (p, q) as
gd(p, P) + gde(p, q) + gd(q, Q) which is equal to

maxp′∈ρ(P){gd(p′, p)}+gde(p, q)+maxq′∈ρ(Q){gd(q, q′)},
(1)

∗Currently at Amazon.com, 705 5th Ave. S., Seattle, WA -
98144, bhosle@alumni.cs.ucsb.edu

†Department of Computer Science University of California
Santa Barbara, CA 93106, teo@cs.ucsb.edu

where gde(p, q) denotes the length of the shortest
geodesic path from p ∈ ρ(P) to q ∈ ρ(Q) that lies com-
pletely on the boundary and outside the polygons P
and Q, and gd(x, X) is the shortest geodesic distance
between x and the geodesic furthest neighbor of x in
the polygon X (i.e., gd(x, X) = maxx′∈ρ(X){gd(x, x′)},
where gd(x, x′) is the shortest geodesic distance between
x and x′ without leaving polygon X). A pair (p, q)
that minimizes the above expression is called an op-
timal geodesic bridge. An optimal Euclidean bridge is
defined similarly, but replacing in Eq. 1 gde(p, q) by
the Euclidean distance between points p and q, and was
studied in Ref. [4]. We take the liberty of sometimes
using gd(p, q) to denote the actual path (instead of just
its length) from p to q that defines the bridge.

2 Related Work

When the two polygons are convex, an optimal Eu-
clidean bridge is also an optimal geodesic bridge. The
problem was first studied by Cai, Xu and Zhu [5] who
developed an O(n2 log n) time algorithm. They proved
that for this case the optimal bridge is between points on
the boundary of the (convex) polygons which are visible
from each other. Different linear time algorithms have
been presented in Refs. [3, 9, 8]. The high-dimensional
version of the problem has been studied [9, 11].

A 2-approximation algorithm, which finds a bridge
with objective function value at most twice that of the
optimal one, for convex polygons is given in Ref. [5].
Note that this approximation algorithm always gener-
ates a bridge whose endpoints are mutually visible. Ahn,
Cheong, and Shin [1] present a

√
2-approximation algo-

rithm for convex polygons and show that their technique
generalizes to multidimensional space as long as P and
Q are are convex regions.

Bhosle and Gonzalez [4] showed that the end points
of an optimal Euclidean bridge might not be mutually
visible when the polygons are not convex. They es-
tablish that an optimal Euclidean bridge always exists
such that its endpoints lie on the boundaries of the two
polygons. Using this critical property, they developed
an algorithm to find an optimal Euclidean bridge in
O(n2 log n) time. For the case when one of the polygons
degenerates to a point an optimal Euclidean bridge can
be constructed in O(n log n) time [4].

Kim and Shin [8] developed an algorithm for the v-
bridge problem where the bridges are restricted to have

CCCG 2011, Toronto ON, August 10–12, 2011

319

23rd Canadian Conference on Computational Geometry, 2011

their endpoints visible from each other. Note that the
optimal v-bridge problem and the optimal bridge prob-
lem are identical when the polygons are convex; how-
ever, Ref. [4] shows that these problems defined over
simple (non-convex) polygons have different solutions.
This inequivalence holds even for rectilinear polygons
[4]. Currently the fastest algorithm is by Tan [10],
which runs in O(n log3 n) time. This algorithm is quite
complex and it makes substantial use of a hierarchical
structure that consists of segment trees, range trees and
persistent search trees, and a structure that supports
dynamic ray shooting and shortest path queries. A re-
stricted version, where the input polygons are simple,
but rectilinear and the distance between points is mea-
sured by the Manhattan distance or L1 distance, can be
solved in linear time [12].

Kim and Shin [8] show that the approximation strat-
egy given in Ref. [5] also applies to the v-bridge prob-
lem when the polygons are not convex. Kim and Shin
[8] raise the question as to whether or not a better ap-
proximation algorithm exists for the Euclidean bridge
and v-bridge problems. An optimal v-bridge has total
weight within a factor of two times the weight of an op-
timal bridge between the two polygons. Furthermore,
the bound of two is asymptotically best possible [4].

Bhosle and Gonzalez [4] developed approximation
schemes that given any positive integer k construct a
bridge with objective function value within a factor of
1 + 2

k+1 times that of the optimal one. The approxima-
tion algorithms apply to both the versions of the prob-
lem (Euclidean/geodesic bridges). It takes O(kn log kn)
time for the Euclidean bridge problem and O(k2n2) for
the geodesic bride problem. These approximation algo-
rithms introduce k artificial vertices on each line seg-
ment and then find an optimal vertex bridge (both end
points must be vertices of the polygons).

3 Point To Polygon Geodesic Bridges

First we identify a set of points on the boundary of
the polygon which we call anchors and pseudo anchors.
Then we show that an optimal geodesic bridge must
have an endpoint that is a vertex, anchor or pseudo
anchor of the polygon. Our algorithm uses this fact to
narrow down the search for finding an optimal bridge. A
similar approach has been used for the Euclidean bridge
problem in [4], but the pseudo anchors for the geodesic
bridge problem are different from the ones for the Eu-
clidean bridge algorithm [4].

In Figure 1 the furthest neighbors of point q1 inside
Q1 are points r and r′. The thick dashed line segments
indicate the furthest geodesic paths from q1 to r and the
one from q1 to r′. These paths are said to consist of a
sequence of maximal line segments. As we traverse each
of these paths starting at point q1 the first vertex of the

polygon that we visit (after q1) is called the first-vertex
of the corresponding furthest point geodesic path. The
line segment from q1 to the first-vertex is called the first
link. In the polygon Q1 in Figure 1, the vertices a and a′

are the first-vertices, and the line segments (q1, a) and
(q1, a

′) are called the corresponding first-links.
A point q on the boundary of Q is called an anchor

if it is not a vertex of polygon Q, and there are at least
two different vertices that are the first-vertex of geodesic
furthest paths for q. In Figure 1 both q1 ∈ Q1 and
q2 ∈ Q2 are anchors. A point p located immediately to
the left of point q1 (q2) has line segment (p, q1) ((p, q2))
as its geodesic bridge. Note that point q3 ∈ Q3 is not
an anchor point because all the geodesic furthest paths
for point q have the same first-vertex, which is vertex
a. A point p located immediately to the left of point q3

will not have its geodesic bridge being the line segment
(p, q3). Figure 2 illustrates an instance of the problem
of finding an optimal geodesic bridge from a point p to
a polygon Q (defined by the solid lines). The geodesic
furthest point of both q5 and q6 is q4. The first-vertex
of the point q5 is q2, and that of q6 is q7.

r′

a

q1

r r′

q2

q3a

r′′

r′

r

r

a′ aa′
a′′

Q1 Q2

Q3

Figure 1: Points q1 in Q1 and q2 in Q2 are anchors, but
point q3 in Q3 is not an anchor.

gd(q5, Q) = gd(q5, q4)

gd(q6, Q) = gd(q6, q4)

q1

q2

q3

q4

q6

Q
p

q5

q7

Figure 2: Geodesic Bridge from a Point to a Simple
Polygon

In addition to any of the vertices and anchors of Q,

23rd Canadian Conference on Computational Geometry, 2011

320

CCCG 2011, Toronto ON, August 10–12, 2011

points like q5 and q6 (see Figure 2) can also be the end
point at Q of an optimal geodesic bridge. Points of the
type q5 are similar to the pseudo-anchors defined for the
Euclidean bridge problem in Ref. [4], and are defined
as: the first point of intersection of the line connecting
point p to a vertex or anchor y of Q with the bound-
ary of Q. Note that though similar to the definition
of the pseudo-anchors for the Euclidean bridge prob-
lem, such pseudo-anchors for the geodesic bridge prob-
lem differ in that when traversing the line (p, y) from
p to y, in the geodesic bridge cases, the first point of
intersection with Q is a pseudo-anchor of Q where as in
the Euclidean bridge version, the last intersection point
with Q was selected as a pseudo-anchor. Actually, if the
line (p, y) intersects the polygon Q multiple times, then
we can show that none of the intersection points can
support an optimal geodesic bridge. This is because a
pseudo-anchor of Q can support an optimal bridge only
if the vertex (y) of Q that induces the pseudo-anchor
is its first vertex (the first vertex of Q on the path to
its geodesic furthest vertex of Q). Otherwise, a bet-
ter bridge is possible by moving the pseudo-anchor by
a small distance along its edge. E.g. In Figure 2, the
line (p, q7) would intersect Q thrice. But q7 cannot be
the first vertex of the first intersection point (because
they are not mutually visible). Among the other inter-
section points, q7 can be the first vertex of only the last
intersection point. However, by arguments similar to
those in the proof of Theorem 2 in Ref. [4], one can
show that a geodesic bridge ending at such points can
be improved by moving the point by a slight distance in
an appropriate direction along the edge. Although we
do not need to include the pseudo-anchors generated
by these cases (multiple points of intersection with the
polygon), we keep them. This avoids the overhead of
deleting them, while keeping the asymptotic size of the
set of pseudo-anchors the same (O(n2)).

Points of the type q6 had no significance in the Eu-
clidean bride problem, but they are important for the
geodesic bridge problem. Also, these points are inde-
pendent of the point p, and are defined solely by the
polygon Q. Below we formally define these two types of
pseudo-anchors.

Definition 1. External Pseudo Anchors: A point q on
the boundary of Q that is not a vertex of the polygon
nor an anchor point is called an external pseudo-anchor
(induced by the point p) of Q if there is a vertex or
anchor y in Q such that q lies on the line (p, y), and
it is the first point on the boundary of Q hit by a ray
originating at p in the direction (p, y). In other words,
q is the point closest to p among all intersection points
between (p, y) and Q.

Definition 2. Internal Pseudo Anchors: A point q on
the boundary of Q that is not a vertex of the polygon
nor an anchor point is called an internal pseudo-anchor

of Q if there is a vertex x in Q and a vertex or anchor
y, also in Q, such that q lies on the line (x, y), and it
is the first point on the boundary of Q hit by a ray
originating at x in the direction (x, y). In other words,
q is the point closest to x among all intersection points
between (x, y) and Q.

For the geodesic bridge problem, the set of pseudo-
anchors includes external and internal pseudo anchors.
In Figure 2, point q5 is an external pseudo anchor, while
point q6 is an internal pseudo anchor. It is easy to
see that there are O(n2) internal pseudo-anchors that
can be computed in O(n2 log n) using ray-shooting tech-
niques as discussed in Ref. [4]. Similarly, the O(n) ex-
ternal pseudo-anchors can be computed in O(n log n)
time.

Theorem 1 There is an optimal geodesic bridge from
point p to polygon Q whose end point on Q is either a
vertex, anchor, or pseudo-anchor from Q.

Proof. Essentially, one can show that if the end point
q of an optimal geodesic bridge on polygon Q is not a
vertex, anchor or pseudo-anchor of Q, then the bridge
obtained by moving q slightly along the edge (in an
appropriate direction) has smaller weight than the as-
sumed optimal bridge (a contradiction). The same proof
technique is used in the proof for Theorem 2 in Ref. [4]
for the Euclidean bridge problem, but the characteriza-
tion of the set of candidate points for an optimal bridge
differs significantly. �
Corollary 2 An optimal geodesic bridge from a point
p to a simple polygon Q can be computed in O(n2 log n)
time.

Proof. The proof follows from the fact that the anchors
and pseudo-anchors of Q can be found in O(n2 log n)
time. Furthermore, using the geodesic furthest site
Voronoi diagram reported in Ref. [2], the geodesic fur-
thest point for each vertex, anchor or pseudo-anchor
can be found in O(log n) query time per point. The
algorithm first constructs the shortest paths tree of the
point p to the set of O(n2) vertices, anchors and pseudo-
anchors. The algorithm reported in Ref. [6] can be used
to build this shortest paths tree in O(n2 log n) time. For
each candidate bridge end point q that is either a vertex,
anchor or pseudo-anchor of Q, the algorithm computes
the weight of the bridge as gde(p, q, Q)+gd(q, Q), where
gde(p, q, Q) denotes the weight of the geodesic shortest
path from point p to point q in the presence of polygon
Q as an obstacle, and gd(q, Q) denotes the distance from
q to its geodesic furthest vertex in Q. A candidate end
point which minimizes the bridge weight is selected as
the final solution. �

Algorithm Geodesic-Bridge(p,Q) outlines in detail
our procedure.

Procedure Geodesic-Bridge(p,Q): point p and

CCCG 2011, Toronto ON, August 10–12, 2011

321

23rd Canadian Conference on Computational Geometry, 2011

simple polygon Q

Find all the anchors and pseudo anchors in Q;
Compute gd(q, Q), the length of a geodesic furthest

path in Q for each point q that is a vertex, anchor
or pseudo-anchor in Q using the algorithm in [2];

Construct the shortest path tree rooted at p to the
set of vertices, anchors and pseudo anchors of Q
using the algorithm in Ref. [6];

From the tree of shortest paths rooted at p compute
the geodesic distance gde(p, u, Q) from p to each
point u that is a vertex, anchor or pseudo anchor
in Q in the presence of obstacle Q;

for every vertex u that is a vertex, anchor or
pseudo anchor of Q do

Compute the length of the best geodesic bridge with
an endpoint at u (endpoint u has the minimum
value for gde(p, u, Q) + gd(q, Q));

endfor
Return an optimal geodesic bridge;

End Procedure Geodesic-Bridge

3.1 Point To Polygon: Additional Bridge Properties

We now discuss some additional properties of the point-
polygon version of the geodesic bridge problem. Though
these properties do not result in any improvement to the
point-polygon version, they are important for the two-
polygon version of the problem.

Let (p, q) define an optimal geodesic bridge from point
p to the polygon Q. On the geodesic path from p to q,
gde(p, q), let the second last vertex of gde(p, q) be q∗

(we say that the bridge starts at p). I.e., (q∗, q) is the
last edge of the geodesic path gde(p, q). Note that in
some cases, the point q∗ may be the same as the point
p. In others, q∗ will be a vertex of the polygon P or the
polygon Q. By subpath optimality, we know that (q∗, q)
defines an optimal geodesic bridge from the point q∗ to
the polygon Q. Also, the points q∗ and q are mutually
visible (otherwise, since gde(p, q) is a geodesic shortest
path between p and q, q∗ could not have been the second
last vertex on the bridge). Bridges whose end points are
mutually visible are called visible bridges. E.g., (q∗, q)
is a visible bridge. Finally, note that q∗ has to either
be a vertex of Q or be the same as the point p. This
follows from the fact that a geodesic shortest path bends
only at vertices of Q, and not at arbitrary points in the
plane.

Visible bridges between two simple polygons can be
computed in O(n log3 n) time using the algorithm re-
ported by Tan in Ref. [10]. The same algorithm can
be used for the point to polygon problem when one of
the polygons degenerates to a point. However, we use a
simpler algorithm for computing optimal visible bridges
from a point to a polygon in O(n log n) time. Let us

now outline the algorithm.

The algorithm proceeds by computing the O(n) an-
chors of the polygon Q. As discussed in Ref. [4], the
anchor points of Q can be identified from the geodesic
furthest site Voronoi diagram which can be computed
in O(n log n) time using the algorithm in Ref. [2]. For
the visible bridge problem, we need to consider only the
vertices and anchors of Q that are visible from p and the
external pseudo-anchors induced by lines connecting the
point p to the vertices and anchors of Q, all of which
can be found in O(n log n) total time. Now our set of
candidate bridge end points on the polygon Q contains
only O(n) points, and using the techniques described
in the proof of Corollary 2, the optimal visible bridge
can be found in O(n log n) time. Note that an optimal
visible bridge may not be an optimal geodesic bridge.

The algorithm for finding an optimal visible bridge
from a point to a polygon can be combined with the
fact that (q∗, q) (here, q∗ is the second last vertex of
the optimal geodesic bridge (p, q)) is an optimal visible
bridge to provide a new algorithm for finding an optimal
geodesic bridge from a point to a simple polygon. The
algorithm begins by precomputing a set of n+1 optimal
visible bridges. Every visible bridge to polygon Q orig-
inate at the point p, and ends at a vertex of Q. Note
that these n+1 points form our set of candidate second
last vertices of the bridges. Next, the shortest paths tree
rooted at point p to all the vertices of Q is constructed
using the algorithm of Ref. [7] or Ref. [6]. This shortest
paths tree provides us with the geodesic distance from p
to each candidate second last vertex of the bridge. Us-
ing the precomputed value of the optimal visible bridge
from a candidate second last vertex q∗ to the polygon
Q, and the geodesic distance from p to q∗, we can de-
termine the weight of the geodesic bridge which has q∗

as its second last vertex. Finally, the point q∗ which
supports the cheapest geodesic bridge defines the op-
timal geodesic bridge. Note that the time complexity
of this algorithm is O(n2 log n), which is the same as
the previous one (Corollary 2). The time complexity is
dominated by the time required to precompute the op-
timal visible bridges from all the candidate second last
vertices to Q.

4 Geodesic Bridge Between Two Simple Polygons

We now discuss the more general version of the problem
which asks to find an optimal geodesic bridge between
two simple polygons.

Figure 3 illustrates an instance of the problem of find-
ing a geodesic bridge between two simple polygons. The
figure shows two geodesic bridges, (p1, q5) and (p4, q6),
between the polygons P and Q. In this figure, p4 and
q6 are internal pseudo-anchors of P and Q respectively,
while q5 is an external pseudo-anchor of Q.

23rd Canadian Conference on Computational Geometry, 2011

322

CCCG 2011, Toronto ON, August 10–12, 2011

gd(q5, Q) = gd(q5, q4)

gd(q6, Q) = gd(q6, q4)

q3

q4

Q

q6

q1

q2

q5

p3 p1

p2

p4

p5

gd(p4, P) = gd(p4, p5)

p6

P

Figure 3: Geodesic Bridge Between Two Simple Poly-
gons

We define the anchors and internal pseudo-anchors
in the same way as for the point to polygon version
of the problem. As in the Euclidean bridge case, the
set of external psuedo anchors now has O(n2) points as
follows.

Definition 3. External Pseudo Anchors: A point p on
the boundary of P that is not a vertex of the polygon
nor an anchor point is called an external pseudo-anchor
of P if there is a vertex x in P and a vertex or anchor y
in Q such that p lies on the line (x, y), and it is the first
point on the boundary of P hit by a ray originating at
y in the direction (y, x). In other words, p is the point
closest to y among all intersection points between (x, y)
and P .

We define the external pseudo anchors for Q in a simi-
lar way, and use the term pseudo-anchors to refer to the
union of internal and external pseudo anchors.

Note that as in the case of the point to polygon
geodesic bridge problem, if the line (x, y) intersects P
multiple times, none of the intersection points can sup-
port an optimal geodesic bridge. However, to keep the
algorithm simple, we include such points as well (more-
over, the asymptotic size of the set of pseudo-anchors
remains O(n2) even after eliminating them).

We now state the following theorem that limits the set
of points on the boundaries of the two simple polygons
P and Q that can possibly support an optimal geodesic
bridge.

Theorem 3 There is an optimal geodesic bridge whose
end points are vertices, anchors, or pseudo-anchors
from P and Q.

Proof. The proof is a generalization of the proof of
Theorem 1. �

The above theorem directly implies an Õ(n4) time
algorithm for the optimal geodesic bridge1. The al-
gorithm begins by building the geodesic furthest-site

1Õ(f(n)), where f(n) is a polynomial function in n, is used to
denote O(f(n) · polylog(n))

Voronoi diagram for the polygons P and Q. For each
vertex, anchor or pseudo-anchor of P and Q, find their
geodesic furthest neighbors in their respective polygons.
Next, for each vertex, anchor and pseudo-anchor of P ,
build the shortest paths tree to the O(n2) vertices, an-
chors and pseudo-anchors of Q. Finally, for a candidate
pair (p, q), find the weight of the bridge with p and q as
the end points as gd(p, P) + gde(p, q, P, Q) + gd(q, Q),
where gde(p, q, P, Q) denotes the geodesic distance be-
tween p and q in presence of polygonal obstacles P and
Q, and select the pair with the minimum weight. It is
easy to verify that this algorithm runs in Õ(n4) time.

4.1 Algorithm for Finding an Optimal Geodesic
Bridge between Two Simple Polygons

Before we discuss our efficient algorithm for finding an
optimal geodesic bridge connecting two simple polygons
P and Q in O(n2 log n) time, we establish an important
property of optimal geodesic bridges.

Lets go back to the properties discussed in Section
3.1 for the second last vertices of the bridge. Let p∗

and q∗ be the second and second last vertices on the
geodesic bridge defined by points p ∈ P and q ∈ Q,
when traversing the path gde(p, q) from the point p to
the point q. By previous arguments, (p∗, p) is an optimal
visible bridge from the point p∗ to the polygon P , and
(q∗, q) is an optimal visible bridge from the point q∗ to
Q. Note that in some cases, the points p∗ and q∗ may
overlap with the points p and/or q. Also, it may be
possible for the the point p∗ (resp. q∗) to lie on the
polygon Q (resp. P). In general, at least one of the
two points p∗ and q∗ is a vertex. In the only case when
neither of these is a vertex, the optimal geodesic bridge
(p, q) is in fact a visible bridge. The algorithm by Tan
[10] finds an optimal visible bridge in O(n log3 n) time.

The algorithm first precomputes an optimal visible
bridge from each vertex in P and Q to both the poly-
gons P and Q. If r is a vertex of P or Q, let ν(r, X)
denote an optimal visible bridge from r to the polygon
X , for X ∈ {P, Q}. When computing a visible bridge
from r to the polygon X , we consider only the pseudo-
anchors induced by r and the vertices and anchors of X .
Furthermore, if a vertex or anchor of X is not visible
from r (i.e. the line segment connecting r to the vertex
or anchor of the polygon X intersects the other polygon
before intersecting X), we ignore the pseudo-anchor for
the simple reason that r cannot have a visible bridge in
conjunction with this pseudo-anchor. E.g. In Figure 3,
the line segment (p6, q2) intersects P before intersecting
Q, and an optimal visible bridge from p6 to Q cannot
have this pseudo-anchor as the other end point of q6’s
visible bridge. If none of the vertices and anchors of the
polygon X are visible from r, ν(r, X) is considered to
have a weight of ∞.

Every optimal geodesic bridge falls into one of the

CCCG 2011, Toronto ON, August 10–12, 2011

323

23rd Canadian Conference on Computational Geometry, 2011

following three categories.

1. One-link bridges: Such bridges have a single edge in
the geodesic shortest path between its end points.

2. Two-link bridges: Such bridges have two edges in
the geodesic shortest path between its end points.

3. Multi-link bridges: Such bridges have more than
two edges in the geodesic shortest path between its
end points.

Clearly, one-link bridges are visible bridges, and an
optimal visible bridge can be found in O(n log3 n) time
using Tan’s algorithm [10].

In the case of two-link bridges, let v be the vertex of
P or Q where the two edges of gde(p, q) meet. Note that
in such a case, v = p∗ = q∗. By previous arguments,
(v, p) and (v, q) define the optimal visible bridges from
the point v to the polygons P and Q respectively. There
can be at most 2n such bridges - one for each vertex of P
and Q. Once we have precomputed the optimal visible
bridges from each vertex of P and Q to both the poly-
gons P and Q, the weights of these 2n bridges can be
computed in constant time per vertex v. As discussed
earlier, an optimal visible bridge from a point to a poly-
gon can be computed in O(n log n) time. Consequently,
the weights of all these O(n) bridges can be computed
in O(n2 log n) time.

Finally, the multi-link bridges have two distinct p∗

and q∗ points which are respectively the second and sec-
ond last vertices on gde(p, q) when traversing the path
gde(p, q) from p to q. Also, in such bridges, both p∗ and
q∗ are vertices of P or Q. Given the set of 2n vertices,
we can compute the shortest geodesic paths between
each of the O(n2) pairs of points in O(n2 log n) time
using the algorithm reported in Ref. [6]. For each pair
of candidate points p∗ and q∗, the optimal bridge with
these two points as the second and second last vertices
is the better of ν(p∗, P)+gd(p∗, q∗, P, Q)+ν(q∗, Q) and
ν(p∗, Q) + gd(p∗, q∗, P, Q) + ν(q∗, P).

We state below the main theorem of this section.

Theorem 4 Given two simple polygons, P and Q, an
optimal geodesic bridge connecting the two polygons can
be found in O(n2 log n) time.

Proof. Using the above arguments one can establish
that there are O(n2) candidate bridges of the types
one-link, two-link and multi-link. Furthermore, as we
show above these candidate brides can be computed in
O(n2 log n) total time. Therefore, an optimal geodesic
bridge connecting the two simple polygons P and Q is
one of these candidate bridges which has the minimal
total weight. �

Algorithm Geodesic-Bridge(P,Q), is omitted as it
follows from the above discussion.

5 Concluding Remarks

We have presented the first polynomial time algorithm
for finding an optimal geodesic bridge connecting two
simple polygons. The time bound of our algorithm,
O(n2 log n), matches that for the Euclidean bridge prob-
lem [4], though the algorithms are structurally different.

We conjecture that it would be relatively easier to im-
prove the time bound for the Euclidean version of the
problem than the geodesic version. We leave open the
challenging question of improving the O(n2 log n) time
bound. Another interesting problem would be to design
o(n2)-time approximation algorithms for the geodesic
bridge problem. Our algorithms also apply when there
are a constant number of obstacles between the two
polygons.

References

[1] H.-K. Ahn, O. Cheong, , and C.-S. Shin. Building
bridges between convex regions. Computational Geom-
etry: Theory and Applications, 25(1/2):161–170, 2003.

[2] B. Aronov, S. Fortune, and G. Wilfong. The furthest-
site geodesic Voronoi diagram. Discrete Comput.
Geom., 9:217–255, 1993.

[3] B. Bhattacharya and R. Benkoczi. On computing the
optimal bridge between two convex polygons. Inform.
Proc. Lett., 79(5):215–221, 2001.

[4] A. M. Bhosle and T. F. Gonzalez. Exact and approx-
imation algorithms for finding an optimal bridge con-
necting two simple polygons. IJCGA, 15(6):609–630,
2005.

[5] L. Cai, Y. Xu, and B. Zhu. Computing the optimal
bridge between two convex polygons. Inform. Proc.
Lett., 69:127–130, 1999.

[6] J. Hershberger and S. Suri. An optimal algorithm for
euclidean shortest paths in the plane. SIAM J. Com-
put., 28(6):2215–2256, 1999.

[7] S. Kapoor, S. N. Maheshwari, and J. S. B. Mitchell. An
efficient algorithm for euclidean shortest paths among
polygonal obstacles in the plane. Discrete & Computa-
tional Geometry, 18(4):377–383, 1997.

[8] S. K. Kim and C. S. Shin. Computing the optimal
bridge between two polygons. Theory of Computing
Systems, 34(4):337–352, 2001.

[9] X. Tan. On optimal bridges between two convex re-
gions. Inform. Proc. Lett., 76:163–168, 2000.

[10] X. Tan. Finding an optimal bridge between two poly-
gons. IJCGA, 12(3):249–262, 2002.

[11] T. Tokuyama. Efficient algorithm for the minimum di-
ameter bridge problem. LNCS, 2098:362–369, 2001.

[12] D. P. Wang. An optimal algorithm for constructing an
optimal bridge between two simple rectilinear polygons.
Inform. Proc. Lett., 79:229–236, 2001.

23rd Canadian Conference on Computational Geometry, 2011

324

CCCG 2011, Toronto ON, August 10–12, 2011

Approximating Geodesic Distances on 2-Manifolds in R3

Christian Scheffer∗ Jan Vahrenhold†

Abstract

We present an algorithm for approximating geodesic dis-
tances on 2-manifolds in R3. Our algorithm works on an
ε-sample of the underlying manifold and computes ap-
proximate geodesic distances between all pairs of points
in this sample. The approximation error is multiplica-
tive and depends on the density of the sample. For an
ε-sample S, the algorithm has a near-optimal running
time of O

(
|S|2 log |S|

)
, an optimal space requirement of

O
(
|S|2

)
, and approximates the geodesic distances up to

a factor of 1−O (
√
ε) and (1−O (ε))

−1
.

1 Introduction

The study of geodesic (paths and) distances on three-
dimensional objects has a long history both in Differ-
ential and Discrete Geometry, and a recent survey [4]
summarizes the main results and the variety of appli-
cations, e.g., in GIS and Robotics. If the underlying
object is differentiable, methods from Differential Ge-
ometry, e.g. special classes of partial differential, can be
applied. If, on the other hand, the underlying object is
non-differentiable, e.g. polyhedral objects, discretized
versions of algorithms from Differential Geometry or
discrete shortest-paths algorithm have to be used.

The problem setting we focus on can be seen as a hy-
brid between these two extremes: We study the problem
of computing geodesic distances on 2-manifolds in R3

but assume that the input is a set of points sampled from
the considered surface. The task then is to compute
geodesic distances on the manifold between all pairs of
points in the sample. Since the set of sample points can
only approximate the manifold, the algorithm can only
be expected to compute approximate geodesic distances.
Our main contribution is to show that an approximation
with an multiplicative approximation error that only de-
pends on the quality of the point sample with respect
to the manifold can be computed in near-optimal time.

1.1 Shortest Paths on Manifolds

Kimmel and Sethian [7] present the so-called fast march-
ing method to compute geodesics on a discretized (ex-

∗Department of Computer Science, Technische Universität
Dortmund, christian.scheffer@cs.tu-dortmund.de

†Department of Computer Science, Technische Universität
Dortmund, jan.vahrenhold@cs.tu-dortmund.de.

plicitly given) manifold. For the case of computing
distance functions and geodesics on an implicitly given
manifold, we can resort to the theoretical framework of
Mémoli and Sapiro [8]. Their theory is based upon con-
tinuous differential geometry methods, and a discrete
version can be implemented using the fast marching
method which results in a running time of O

(
n2 log n

)

for a discretized manifold consisting of n points. The
algorithm approximates geodesic distances up to an ad-
ditive error term that depends on the granularity of
the discretized manifold (and thus on the number n of
points), also, an upper bound on the local curvature of
the manifold has to be known to the algorithm. While
this latter restriction can be removed using methods we
developed in a companion paper [10], the additive er-
ror seems to be inherent to any approach using the fast
marching method.

1.2 Shortest Paths on Polyhedral Objects

In contrast to the algorithms described in the previ-
ous section, our approach is to first to approximate
the manifold by a polyhedral object and then to com-
pute (exact) geodesics on this approximation. As for
the case of explicitly given manifolds, the fast marching
method of Kimmel and Sethian can be used, see, e.g.,
the work by Mémoli and Sapiro [9], but the analysis
shows that it still results in an additive approximation
error. Efficient exact shortest path computations on
general polyhedra are considered complex and challeng-
ing, and recent surveys [1, 4] conclude that the general
problem is still wide open. The currently best known
results related to shortest path computations on poly-
hedra are due to Chen and Han [5] and Schreiber [11].
Chen and Han [5] present an algorithm based on a con-
tinuous Dijkstra technique that, after O

(
n2
)

prepro-
cessing time, can answer distance queries to a fixed
source in O (q · log n/ log q) time where 1 ≤ q ≤ n is a
trade-off parameter. Since this source has to be known
during preprocessing, using their algorithm as a build-
ing block in an all-pairs geodesics problem results in
O
(
n3
)

running time. The algorithm by Schreiber [11]
solves the single-source shortest path problem in opti-
mal O (n log n) time but assumes that the underlying
polyhedron belongs to one of three classes of polyhedra
where the edge length of adjacent faces do not differ
by more than a constant factor. In the general case
we are considering, this assumption cannot be made.

CCCG 2011, Toronto ON, August 10–12, 2011

325

23rd Canadian Conference on Computational Geometry, 2011

Thus, one of the main contributions of this paper is to
demonstrate that we can transform the polyhedral ap-
proximations of the manifolds we are working with such
that we can both apply Schreiber’s algorithm and at
the same time maintain the asymptotic approximation
quality of the resulting shortest paths. We embed this
algorithm in an approximation context and show that
computing approximate geodesic distances between all
pairs of points can be done in O

(
n2 log n

)
time.

Due to the apparent difficulty of the exact short-
est path problem on general polyhedra (possibly of
genus g ≥ 1), Aleksandrov et al. [1] focus on an-
swering approximate shortest path queries. They
present an (1 ± δ)-approximation algorithm that, af-

ter O
(

(g+1)n2

δ3/2q
log n

δ log4 1
δ

)
preprocessing time, can an-

swer a shortest-path query between an arbitrary pair of
points in time O (q) (again, q is a trade-off parameter,

this time chosen such that 1√
δ

log2 1
δ < q < (g+1)2/3n1/2

√
δ

).

We come back to this algorithm in Section 4.

2 Description of the Algorithm

As discussed in the introduction, our approach is to
work on a point set sampled from the considered surface.
In a nutshell, we (re-)construct a polyhedral object hav-
ing the sample points as its vertices that approximates
the manifold and then use Schreiber’s exact algorithm to
compute geodesic distances between all pairs of points
in the sample. As a consequence, the approximation
quality of our algorithm only depends on the approxi-
mation quality of the point sample S with respect to the
manifold Γ from which the points have been sampled.
This quality can be characterized using a central con-
cept introduced by Amenta and Bern [2] in the context
of reconstructing smooth surfaces from point samples:
For any point x on the manifold Γ, the local feature size
lfs(x) is defined as the distance of x to the medial axis
of Γ. Thus, the local feature size captures the curvature
and the folding of Γ. It is known that the (topologi-
cal) correctness of a reconstruction algorithm depends
on the density of the set S ⊂ Γ of sample points used
for the reconstruction relative to the local feature size.

Definition 1 A discrete subset S a smooth 2-manifold
Γ ⊂ R3 is an ε-sample of Γ if and only if for every point
x ∈ Γ there is a sample point s ∈ S with |xs| ≤ ε · lfs(x).

In the light of the above definition, we present an
algorithm that takes an ε-sample S of a manifold Γ and
computes geodesic distances on a specific polyhedron Π
whose vertex set is derived from S. For any two points
s1, s2 ∈ S, the geodesic distance on Π between s1 and s2
is within a multiplicative factor of the geodesic distance
between these points when measured on (the unknown)
manifold Γ; the approximation error depends only on ε.

2.1 Outline of Our Approach

We start out by giving an algorithm for converting the
input ε-sample S into what we call a self-conforming
sample Sconf (see Definition 5). We then compute the
restricted Delaunay tetrahedrization Del|Γ(Sconf) (see

Definition 3) and prove that Del|Γ(Sconf) is a self-
conforming polyhedron (see Definition 2), i.e., can be
handled by Schreiber’s algorithm in optimal time.

Definition 2 (Schreiber [11], p. 40) A polyhedron
P ⊂ R3 (possibly non-convex) is self-conforming if for
each edge e of ∂P , there is a connected region R(e),
which is the union of O (1) facets of ∂P and whose in-
terior contains e, so that the shortest path distance from
e to any edge e′ of ∂R(e) is at least 2c · max{|e|, |e′|},
where c is some positive constant.

We emphasize that it is sufficient for the algorithm
(and its correctness proof) to know that for each edge e,
some region R(e) with the desired properties exists; it
is not necessary to have an explicit description of this
region available. Thus, to prove that Del|Γ(Sconf) is self-
conforming (see Lemma 16), we only need to show that
Del|Γ(Sconf) has the following properties:

• The degree of each vertex of Del|Γ(Sconf) is upper-
bounded by a constant.

• The minimum inner angle of each facet of
Del|Γ(Sconf) is lower-bounded by a constant.

The above is summarized in the following lemma:

Lemma 1 Let Γ be a smooth 2-manifold in R3 and let
S be an ε-sample of Γ. We can decimate S such that
the restricted Delaunay tetrahedrization Del|Γ(Sconf) of

the decimated set Sconf is a self-conforming polyhedron.

Finally, we show that the (exact) geodesic distances
computed on Del|Γ(Sconf) are within a multiplicative
factor (depending on ε) of the geodesic distances on Γ.

2.2 Construction of a Self-Conforming Sample

Our algorithm computes a self-conforming subset of the
input ε-sample and then constructs a restricted Delau-
nay tetrahedrization. To make the definition of a self-
conforming sample more transparent, we first present
the definition of a restricted Delaunay tetrahedrization:

Definition 3 (Funke and Ramos [6], p. 782) Let
S be a set of points sampled from a manifold Γ ∈ R3.

1. The restricted Voronoi diagram Vor|Γ(S) consists
of cells Vor(s) ∩ Γ, s ∈ S.

2. The restricted Delaunay tetrahedrization Del|Γ(S)
is the dual to Vor|Γ(S).

23rd Canadian Conference on Computational Geometry, 2011

326

CCCG 2011, Toronto ON, August 10–12, 2011

Since the manifold Γ is unknown to the algorithm, it
is impossible to exactly compute the intersection of a
Voronoi cell with the manifold. Amenta and Bern [2]
and (building upon their work) Funke and Ramos [6]
presented the following approach to approximating this
intersection: For each point s ∈ S, compute its re-
stricted Voronoi cell by intersecting the full-dimensional
cell with an approximation of the plane tangent to Γ
in s. Computing of all approximate tangent planes takes
O (|S| log |S|) time [6], but the approximation quality
has been analyzed in an asymptotic sense only; this is
mainly due to the fact that – to achieve a near-linear
running time – several trade-offs need to be made.

In the situation of our algorithm, we need an ex-
act bound on the approximation quality (to derive the
bounds for vertex degrees and inner angles mentioned
above). What we do not need, however, is a running
time better than Θ

(
|S|2 log |S|

)
, and thus we can use

exact textbook algorithms for computing the Voronoi
diagram and computing the intersection of the faces of
a cell with the respective (approximation of the) tangent
planes. With some technical effort, but using elemen-
tary trigonometry only, we then can prove the following
non-asymptotic bound on the approximation quality:

Lemma 2 Let ε ≤ 1
22 be a constant and let s be an

arbitrary sample point in an ε-sample of a 2-manifold
Γ. Let x′ be the furthest point (from s) in Vor |Γ(s), and
let v be to the furthest vertex (from s) in the intersection
of Vor(s) and the approximate tangent plane computed
by the above algorithm. Then |sx′| ≤ 1.0005 · |sv| holds.

Similarly, since neither Γ nor its medial axis are
known, an exact computation of the local feature size
is impossible. Instead, Funke and Ramos [6] discuss
how to compute a (pointwise) lower bound for ε · lfs(·).
This lower bound is derived from the distance of a point
s ∈ S to the furthest vertex of its restricted Voronoi cell.
Again, this bound is given in an asymptotic sense only.
To be able to prove the above-mentioned bounds on the
degree of each vertex in Del|Γ(Sconf) and on the mini-

mum inner angle of each facet of Del|Γ(Sconf), we need
to know the constants hidden in the Big-Oh notation.
In a companion paper [10], we prove the following result:

Theorem 3 For an ε-sample S of a 2-manifold Γ in R3

we can compute, in quadratic time, a function φ(s) for
each s ∈ S as the distance of s to the furthest Voronoi
vertex v of the intersection of the approximation of the
plane tangent to Γ in s and Vor(s). For this function
holds that φ(s) ≤ 1.135 · ε

1−ε · lfs (s).

If we define φ′(s) := 1.0005 · φ(s) and assume that
ε ≤ 1

22 holds, we have the following result:

Corollary 4 Let s be a point in an ε-sample S of a 2-
manifold Γ in R3. Then, φ′(s) ≤ 1.0005 · 1.135 · ε

1−ε ·

lfs(s) < 1.19 · ε · lfs(s) holds. Furthermore, Vor|Γ(s) is
contained in Bφ′(s)(s), i.e. the ball centered at s with
radius φ′(s).

2.2.1 Definition of a Self-Conforming Point Sample

We are now almost ready to define what constitutes a
self-conforming point sample. One property of the local
feature size that is crucial for most proofs is that the
local feature size is a 1-Lipschitz function [2]:

Definition 4 For α ∈ R+, a non-negative, real-valued
function f is α-Lipschitz if f(x) ≤ f(x′) + α · |xx′| for
all x, x′ ∈ dom(f).

Incorporating this property into the requirement that
the point sample should be locally not too dense yields
the following definition:

Definition 5 A subset S′ ⊂ S is self-conforming, if
there is a control function f : S → R+ and constants
0 < α, β < 1 such that the following holds:

1. The function f is α-Lipschitz.

2. For each s ∈ S′, we have Bβ·f(s)(s) ∩ S′ = {s}.

We note that a self-conforming point sample is de-
fined similarly to a locally uniform point sample (see
Funke and Ramos [6]). The latter definition requires
more properties for the point set but allows for an ap-
proximate control function. Since our proofs require a
subset of the properties of a locally uniform point sam-
ple and since we can afford to compute an exact control
function, we consider it instructive to (introduce and)
use this new definition.

2.2.2 Construction of a Lipschitz Control Function

As noted by Funke and Ramos [6, p. 785], a “natural”
way to make a function α-Lipschitz is to encode the
maximum distance to any other point in the domain.
Using the constants derived in the previous paragraph,
we define the function ψ as follows:

ψ(s) : S → R, s 7→ max
s′∈S

{
φ′(s′)− 1.19 · 1

22
· |ss′|

}
(1)

We note that the domain of ψ could be extended to
Γ in the following way: For each Voronoi cell Vor(s),
s ∈ S, and each point x ∈ Vor|Γ(s), define ψ(x) := ψ(s)
(breaking ties for the boundary of Vor|Γ(s) arbitrarily).
Doing so allows us to prove that 2.056 ·ψ is an approxi-
mate control function in the sense of Funke and Ramos’
definition (local unifomity), but increases all constants
in the following by a factor of roughly two.

Lemma 5 The function ψ is a 1
18 -Lipschitz function.

CCCG 2011, Toronto ON, August 10–12, 2011

327

23rd Canadian Conference on Computational Geometry, 2011

2.2.3 Decimation of the ε-Sample

To derive a sample Sconf that leads to a self-conforming
polyhedron, we use the “Decimation Step” algorithm
from Funke and Ramos [6, p. 789] (Algorithm 1).
In contrast to their setting, we can afford to spend
quadratic time during preprocessing, and thus this step
can be implemented straightforward, i.e. without the
need for approximate range-reporting structures.

Algorithm 1 Coarsening an input ε-sample [6].

1: function Decimate(Points S, Function ψ)
2: Sconf = ∅, Sdense = S.
3: while Sdense 6= ∅ do
4: Let s be an arbitrary point in Sdense.
5: Sconf = Sconf ∪ {s}.
6: Sdense = Sdense \

(
Sdense ∩Bψ(s)(s)

)
.

7: Return Sconf.

This approach allows to prove the following lemma:

Lemma 6 For s ∈ Sconf, B 17
18 ·ψ(s)(s) ∩ S

conf = {s}.

Lemmas 5 and 6 together imply that ψ is a control
function in the sense of Definition 5:

Corollary 7 For an ε-sample S of a 2-manifold Γ, we
can derive a self-conforming sample Sconf with control
function ψ and α = 1

18 , β = 17
18 in O

(
|S|2

)
time.

2.3 Construction of Del|Γ(Sconf
ssrc)

We first observe that no point x ∈ Γ is “too far” away
from a point s of the self-conforming sample Sconf.

Lemma 8 For each x ∈ Γ, there is some s ∈ Sconf such
that |xs| ≤ 2.056 · ψ(s).

Using this property, we can prove that in a restricted
Delaunay tetrahedrization of a self-conforming sample
the edge lengths of a single face are bounded relative
to each other and that all faces have a minimum inner
angle lower-bounded by a constant. First, we prove:

Lemma 9 For each edge s1s2 in Del|Γ(Sconf), |s1s2| is
upper-bounded by 4.112 ·min{ψ(s1), ψ(s2)}.

For the estimation of the approximation quality of
our algorithm, we will also need to relate the length of
the Delaunay edges to the local feature size.

Lemma 10 For each point s in the input ε-sample S,
ψ(s) ≤ 1.19 · ε · lfs(s).

Since ψ ist fixed before the decimation, Lemma 10
also holds for each s ∈ Sconf.

Corollary 11 For each edge s1s2 in Del|Γ(Sconf),
|s1s2| is upper-bounded by 5 · ε ·min{lfs(s1), lfs(s2)}.

An immediate implication is that the degree of each
vertex in Del|Γ(Sconf) is bounded by a constant.

Lemma 12 The degree of each vertex in Del|Γ(Sconf)
is bounded by 3925.

If, for each point s ∈ Sconf, we have its 3925 nearest
neighbors at hand, Lemma 12 ensures that we can com-
pute Vor|Γ(Sconf) and thus Del|Γ(Sconf) in O (|S| log |S|)
time (the first step of the algorithm provides us with
the approximations of the planes tangent to Γ needed
for restricting the Voronoi diagram).

In comparison, Funke and Ramos [6] also prove
that a locally uniform sample admits a constant-degree
tetrahedrization. Again, however, the bound is only
given asymptotically, i.e. depending on 1/ε. Since our
algorithm needs an upper bound on the number of
Voronoi neighbors (to ensure that no relevant neighbor
is missed), the upper bound on ε, i.e. the lower bound
on 1/ε is not sufficient for our purpose.

2.4 Intermediate Summary

As mentioned in Section 2.1, our approach is to com-
pute a self-conforming polyhedron such that we can use
Schreiber’s algorithm to efficiently compute shortest-
path maps with respect to each point in the input sam-
ple. The above description indicates that a crucial step
for doing this is to decimate the input sample. On the
other hand, when computing a shortest path map with
respect to some point ssrc, this point needs to be present
in the decimated sample. Since the decimation step is
computationally expensive, we cannot afford to repeat
it a linear number of times. Thus, we decimate the
sample once and then, in each iteration, ensure that the
point ssrc with respect to which the shortest-path map
is computed is present in the set for which the restricted
Delaunay tetrahedrization is computed.

It should be pointed out that the set Sconf
ssrc := Sconf ∪

{ssrc} for which the restricted Delaunay tetrahedriza-
tion is computed may no longer be a self-conforming set
if ssrc /∈ Sconf, since ssrc may violate Property (2) of Def-
inition 5. Except for Lemma 12, however, no Lemma in
the previous section relies on this property, so all other
Lemmas are still valid. For Lemma 12, we observe that
the introduction of ssrc may increase each other vertex’s
degree by one (thus, the constant needs to be adjusted
accordingly). A close look at the proof of Lemma 12,
however, shows that Property (2) of Definition 5 is not
needed for the point s whose degree is to be bounded
but only for the points inside B4.112·ψ(s)(s). Thus, the
statement of Lemma 12 also holds for the point ssrc. For
ease of exposition we thus assume that the degree of all
vertices in Sconf

ssrc is bounded by 3925. Also, we assume
that the computation of Del|Γ(s) for each s ∈ Sconf

ssrc takes
ssrc into account when computing Vor|Γ(s) based upon
its nearest neighbors. This results in Algorithm 2.

23rd Canadian Conference on Computational Geometry, 2011

328

CCCG 2011, Toronto ON, August 10–12, 2011

Algorithm 2 Approximating geodesic distances between points of an ε-sample S.

1: function ApproximateGeodesicDistances(Points S)
2: Let Distance be an |S| × |S|-matrix, each entry of which is initialized with +∞.
3: Compute φ(s) and tangent plane for each s ∈ S. . Use the algorithm by Scheffer and Vahrenhold [10].
4: Compute ψ from φ (Lipschitziation). . See Section 2.2.2.
5: Sconf = Decimate(S, ψ). . Use Algorithm 1.
6: Compute for each point in Sconf its 3925 nearest neighbors. . Use the brute-force algorithm.
7: Compute for each point in S \ Sconf its nearest neighbor in Sconf. . Use the brute-force algorithm.
8: for each ssrc ∈ S do
9: Sconf

ssrc := Sconf ∪ {ssrc}.
10: Compute Del|Γ(Sconf

ssrc). . See Section 2.3.

11: SPMap = SchreibersPreprocessing(Del|Γ(Sconf
ssrc), ssrc). . Use the algorithm by Schreiber [11].

12: for each s ∈ S do
13: if s ∈ Sconf

ssrc then
14: Distance[ssrc, s] = SchreibersQuery(SPMap, s). . Use the algorithm by Schreiber [11].
15: else
16: Let s′ be s’s nearest neighbor in Sconf

ssrc .
17: for each face f of the O (1) faces adjacent to s′ do
18: Let s′′ be the point on f closest to s.
19: Distance[ssrc, s] = min{Distance[ssrc, s],SchreibersQuery(SPMap, s′′)}.

. Use the algorithm by Schreiber [11].

20: Return Distance.

e

s2

∂R (e)

s1

s1 = s

s2

∂R (R (e))

e
s1

s

s2

∂R (R (R (e)))

e

(a) ssrc /∈ R(e) (b) ssrc ∈ e (c) ssrc ∈ R(e) \ {e}

Figure 1: Region Rstrip(e) for an edge e ∈ Del|Γ(Sconf
ssrc).

Lemma 13 Assuming that Del|Γ(Sconf
ssrc) is self-con-

forming, Algorithm 2 runs in O
(
|S|2 log |S|

)
time.

2.5 Properties of Del|Γ(Sconf
ssrc)

To show that Del|Γ(Sconf
ssrc) is self-conforming in accor-

dance to Definition 2, we need to show that for each
edge e of a facet of Del|Γ(Sconf

ssrc), there is a constant-size
region Rstrip(e) containing e so that the shortest-path
distance from e to any edge e′ of ∂Rstrip(e) is at least
2c ·max{|e|, |e′|}, where c is a positive constant.

Intuitively, we define Rstrip(e) as a (constant-size, yet
not necessary minimal) triangle patch surrounding e
such that if ssrc lies inside Rstrip(e), it is neither a vertex
of ∂Rstrip(e) nor adjacent to a vertex of ∂Rstrip(e).

Definition 6 Let e be an edge of a facet of Del|Γ(Sconf
ssrc)

and define R(e) as the set of facets adjacent to e. If
ssrc /∈ R(e), define Rstrip(e) := R(e)—see Figure 1(a).
Otherwise, depending on whether ssrc ∈ e or ssrc ∈
R(e)\{e}, define Rstrip(e) := R(R(e)) (see Figure 1(b))
or Rstrip(e) := R(R(R(e))) (see Figure 1(c)), where
R(R(e)) consists of R(e) and all facets adjacent to R(e)
and where R(R(R(e))) is defined analogously.

By Lemma 12, each vertex of Rstrip(e) has constant
degree, and thus Rstrip(e) consists of O (1) facets. To
bound the shortest-path distance in Rstrip(e), we need
the following technical lemma that relates the edge
lengths on the boundary of ∂Rstrip(e) and the boundary
of the “next inner” strip, i.e., ∂R(R(e)), ∂R(e), or e.

Lemma 14 Let ∆ be a facet of Del|Γ(Sconf
ssrc) such that

ssrc is no vertex of ∆. Then, for any two edges e, e′ of
∆, we have 1

6 ≤
|e|
|e′| ≤ 6 and for any vertex s and any

edge e of ∆, we have 2
6 · |e| ≤ 2.056 · ψ(s) ≤ 6

2 · |e|.
Using Lemma 14 and elementary trigonometry, we

can prove the following:

Lemma 15 Let ∆ be a facet of Del|Γ(Sconf
ssrc) such that

ssrc is no vertex of ∆. Then, each angle of ∆ is of size
at least π/20.

The constant factor of 4.112 in the upper bound for
the edge length in Del|Γ(Sconf) (Lemma 9), the “edge-
length” ratio of 1:6 (Lemma 14), and the minimum angle
of π/20 (Lemma 15) allow to determine the constant c
needed in the definition of a self-conforming polyhedron.

Lemma 16 Let e be an edge of a facet of Del|Γ(Sconf
ssrc).

Then the shortest path distance from e to any edge
e′ of ∂Rstrip(e) is at least c · max{|e|, |e′|} for c :=(

1− 1
18 · 4.112 ·

(
2 + 1

18 · 4.112 +
(
1 + 1

18 · 4.112
)2)) ·

sin
(
π
20

)
· 1
63 .

Corollary 17 Del|Γ(Sconf
ssrc) is self-conforming.

Corollary 18 Algorithm 2 takes O
(
|S|2 log |S|

)
time.

CCCG 2011, Toronto ON, August 10–12, 2011

329

23rd Canadian Conference on Computational Geometry, 2011

3 Analysis of the Approximation Quality

We fix two points s1, s2 in the original ε-sample S and
use LDel = LDel(s1, s2) to denote their geodesic distance
as returned by Algorithm 2 and LΓ = LΓ(s1, s2) to de-
note their (unknown) geodesic distance on Γ.

The following lemma needed to bound the approxima-
tion quality is derived from Bernstein et al. [3, Cor. 4].

Lemma 19 Let x1 and x2 be two arbitrary points on Γ
with |x1x2| ≤

√
ε−1 · max {lfs (x1) , lfs (x2)}. Then we

have LDel(x1, x2) ≥ (1−O (ε)) · LΓ(x1, x2).

For the lower bound for LDel relative to LΓ we iter-
atively partition the geodesic path on Del|Γ(Sconf

ssrc) be-
tween s1 and s2 into subpaths whose endpoints fulfill
the assumptions of Lemma 19. With rather technical
computations synchronized over all subpaths we obtain
the following lemma.

Lemma 20
(

1−O
(
ε

1
2

))
· LΓ ≤ LDel.

For the upper bound for LDel we first establish a bi-
jection between the facets of Del|Γ(Sconf

ssrc) and patches
on Γ. We then replace each subpath of the (un-
known) geodesic path on Γ between s1 and s2 that
crosses a patch in Γ by a path along the boundary of
the corresponding facet of Del|Γ(Sconf

ssrc). Exploiting the
lower bound on the minimum inner angle of the facets
(Lemma 15) and the approximation quality of the facet
w.r.t. the patch on Γ, we obtain the following result.

Lemma 21 (1−O (ε))
−1 · LΓ ≥ LDel.

4 Using Aleksandrov et al.’s Algorithm

The algorithm of Aleksandrov et al. [1] is a (1 ± δ)-
approximation algorithm for all-pair shortest distance
queries which could also be applied instead of repeat-
edly using Schreiber’s (involved) algorithm. Lemma 22
shows that this leads to either the same running time
and strictly worse approximation quality or to the same
approximation quality and strictly worse running time.

Since an ε-sample S can be augmented by arbitrarily
many points while still remaining an ε-sample, we need
to restrict ourselves to tight ε-samples when comparing
the dependence between |S|, the running time, and the
approximation quality for the two algorithms. A tight
ε-sample is an ε-sample S for which there is a positive
constant η such that Bη·ε·lfs(s)(s) ∩ S = {s} for s ∈ S.

Lemma 22 Let S be a tight ε-sample of a 2-manifold Γ
and assume that we use the Algorithm of Alexandrov
et al. as part of Algorithm 2 to compute approximate
shortest paths on Del|Γ(Sconf

ssrc).

1. If the running time of Algorithm 2 is to remain in
O
(
|S|2 log |S|

)
, LΓ and LDel relate as follows:

(a)
(
1− Ω

(
ε0.427

))
· LΓ ≤ LDel.

(b)
(

1−O
(
ε

1
1.08

))−1
· LΓ ≥ LDel.

2. If the approximation quality of Algorithm 2 is to re-
main as given in Lemmas 20 and 21, a tight sample
of a higher density than S is required. The size of

this sample implies a running time of ω
(
|S| 198

)
.

References

[1] L. Aleksandrov, H. N. Djidjev, H. Guo, A. Mahesh-
wari, D. Nussbaum, and J.-R. Sack. Algorithms
for approximate shortest path queries on weighted
polyhedral surfaces. Discrete & Computational Ge-
ometry, 44:762–801, 2010.

[2] N. Amenta and M. Bern. Surface reconstruction by
Voronoi filtering. Discrete & Computational Geom-
etry, 22(4):481–504, Dec. 1999.

[3] M. Bernstein, V. de Silva, J. C. Langford, and J. B.
Tenenbaum. Graph approximations to geodesics
on embedded manifolds. Unpublished, http://

isomap.stanford.edu/BdSLT.pdf, Dec. 2000.

[4] P. Bose, A. Maheshwari, C. Shu, and S. Wuhrer.
A survey of geodesic paths on 3D surfaces. Sub-
mitted, a technical report version is available from
http://arxiv.org/abs/0904.2550, Aug. 2009.

[5] J. Chen and Y. Han. Shortest paths on a polyhe-
dron. International Journal of Computational Ge-
ometry and Applications, 6:127–144, 1996.

[6] S. Funke and E. A. Ramos. Smooth-surface recon-
struction in near-linear time. In Proc. Thirteenth
Symp. on Discrete Algorithms, pp. 781–790, 2002

[7] R. Kimmel and J. Sethian. Computing geodesic
paths on manifolds. Proceedings of the National
Academy of Science, 95(15):8431–8435, July 1998.

[8] F. Mémoli and G. Sapiro. Fast computation of
weighted distance functions and geodesics on im-
plicit hyper-surfaces. Journal of Computational
Physics, 173(2):730–764, 2001.

[9] F. Mémoli and G. Sapiro. Distance functions
and geodesics on submanifolds of Rd and point
clouds. SIAM Journal of Applied Mathematics,
65(4):1227–1260, 2005.

[10] C. Scheffer and J. Vahrenhold. Learning a 2-
manifold with a boundary in R3. In M. Hoffmann,
editor, Proceedings of the 27th European Workshop
on Computational Geometry, pp. 213–216, 2011.

[11] Y. Schreiber. An optimal-time algorithm for short-
est paths on realistic polyhedra. Discrete & Com-
putational Geometry, 43:21–53, 2010.

23rd Canadian Conference on Computational Geometry, 2011

330

CCCG 2011, Toronto ON, August 10–12, 2011

An In-Place Priority Search Tree∗

Minati De† Anil Maheshwari‡ Subhas C. Nandy† Michiel Smid‡

Abstract

One of the classic data structures for storing point sets
in R2 is the priority search tree, introduced by Mc-
Creight in 1985. We show that this data structure can
be made in-place, i.e., it can be stored in an array such
that each entry only stores one point of the point set.
We show that the standard query operations can be an-
swered within the same time bounds as for the original
priority search tree, while using only O(1) extra space.

1 Introduction

Let P be a set of n points in R2. A priority search tree,
as introduced by McCreight [2], is a binary tree T with
exactly one node for each point of P and that has the
following two properties:

• For each non-root node u, the point stored at u has
a smaller y-coordinate than the y-coordinate stored
at the parent of u.

• For each internal node u, all points in the left sub-
tree of u have an x-coordinate which is less than
the x-coordinate of any point in the right subtree
of u.

The first property implies that T is a max-heap on the y-
coordinates of the points in P . The second property im-
plies that T is a binary search tree on the x-coordinates
of the points in P , except that there is no relation be-
tween the x-coordinates of the points stored at u and
any of its children.

In order to use T as a binary search tree on the x-
coordinates, McCreight stored at each internal node u
one additional point pu of P , viz., the point in the left
subtree of u whose x-coordinate is maximum. Thus,
the data structure uses O(n) space and, by taking for
T a balanced tree, several types of range queries can be
answered efficiently:

• HighestNE(x0, y0): report the highest point of
P in the north-east quadrant of the query point
(x0, y0).

∗Research supported by NSERC and the Commonwealth
Scholarship Program of DFAIT.
†Indian Statistical Institute, Kolkata, India. Part of this work

was done while M.D. was visiting Carleton University, Ottawa,
Canada. minati.isi@gmail.com
‡School of Computer Science, Carleton University, Ottawa,

Canada.

• LeftMostNE(x0, y0): report the leftmost point
of P in the north-east quadrant of the query point
(x0, y0).

• Highest3Sided(x0, x1, y0); report the highest
point of P in the 3-sided query range [x0, x1] ×
[y0,∞).

• Enumerate3Sided(x0, x1, y0); report all points of
P in the 3-sided query range [x0, x1]× [y0,∞).

The first three queries can be answered in O(log n) time,
whereas the fourth query takes O(log n+m) time, where
m is the number of points of P that are in the query
range.

In this paper, we show that these results can also be
obtained without storing the “splitting” points pu at
the internal nodes of the tree. Thus, any node of the
tree stores exactly one point of P and, as a result, we
obtain an in-place implementation of the priority search
tree: We take for T a binary tree of height h = blog nc,
such that the levels1 0, 1, . . . , h − 1 are full and level h
consists of n − (2h − 1) nodes which are aligned as far
as possible to the left. This allows us to store the tree,
like in a standard heap, in an array P [1 . . . n]; the root
is stored at P [1], its left and right children in P [2] and
P [3], etc.

In the rest of this paper, we will present algorithms
for constructing the in-place priority search tree and
answering the above queries. Each of these algorithms
uses, besides the array P [1 . . . n], only O(1) extra space,
in the sense that a constant number of variables are
used, each one being an integer of O(log n) bits. The
main result of this paper is the following:

Theorem 1 Let P be a set of n points in R2.

1. The in-place priority search tree can be constructed
in O(n log n) time using O(1) extra space.

2. Each of the queries HighestNE, LeftMostNE,
and Highest3Sided can be answered in O(log n)
time using O(1) extra space.

3. The query Enumerate3Sided can be answered in
O(log n+m) time using O(1) extra space, where m
is the number of points of P that are in the query
range.

1The root is at level 0.

CCCG 2011, Toronto ON, August 10–12, 2011

331

23d Canadian Conference on Computational Geometry, 2011

For ease of presentation, we assume that no two
points in the set P have the same x-coordinates and
no two points in P have the same y-coordinates. The
x- and y-coordinates of a point p in R2 will be denoted
by x(p) and y(p), respectively.

2 Constructing the in-place priority search tree

Let h = blog nc be the height of the priority search
tree. Our algorithm constructs the tree level by level
and maintains the following invariant:

• The subarray P [1 . . . 2i−1] stores levels 0, 1, . . . , i−
1 of the tree, and the points in the subarray
P [2i . . . n] are sorted by their x-coordinates.

Algorithm 1: ConstructPST

Input: An array P [1 . . . n] of points in R2.
Output: The priority search tree of those points

stored in P .
1 h = blog nc; A = n− (2h − 1);
2 HeapSort(1, n);
3 for i = 0 to h− 1 do
4 k = bA/2h−ic;
5 K1 = 2h+1−i − 1;

6 K2 = 2h−i − 1 +A− k2h−i;
7 K3 = 2h−i − 1;
8 for j = 1 to k do
9 ` = index in

{2i + (j − 1)K1, . . . , 2
i + jK1 − 1} such that

y(P [`]) is maximum;
10 swap P [`] and P [2i + j − 1] ;

11 if k < 2i then
12 ` = index in

{2i + kK1, . . . , 2
i + kK1 +K2 − 1} such that

y(P [`]) is maximum;
13 swap P [`] and P [2i + k];
14 m = 2i + kK1 +K2;
15 for j = 1 to 2i − k − 1 do
16 ` = index in

{m+ (j − 1)K3, . . . ,m+ jK3 − 1} such
that y(P [`]) is maximum;

17 swap P [`] and P [2i + k + j];

18 HeapSort(2i+1, n);

The algorithm starts by sorting the array P [1 . . . n]
by x-coordinates. After this sorting step, the invariant
holds with i = 0.

Let i be an index with 0 ≤ i < h, and consider the i-th
step of the algorithm. Let A = n− (2h−1) be the num-
ber of nodes at level h of the tree, and let k = bA/2h−ic.
Level i consists of 2i nodes. If k = 2i, then each of these
nodes is the root of a subtree of size 2h+1−i − 1. Oth-
erwise, we have k < 2i, in which case level i consists of,
from left to right,

1. k nodes, which are roots of subtrees, each of size
K1 = 2h+1−i − 1,

2. one node, which is the root of a subtree of size
K2 = 2h−i − 1 +A− k2h−i,

3. 2i − 1− k nodes, which are roots of subtrees, each
of size K3 = 2h−i − 1.

We divide the subarray P [2i . . . n] into 2i blocks: If
k = 2i, then there are k blocks of size 2h+1−i − 1. Oth-
erwise, there are, from left to right, (i) k blocks of size
K1, (ii) one block of size K2, and (iii) 2i − 1− k blocks
of size K3.

The algorithm scans the subarray P [2i . . . n] and
in each of the 2i blocks, finds the highest point.
These highest points are swapped with the subarray
P [2i . . . 2i+1 − 1]. At this moment, level i of the tree
has been constructed, but the elements in the subarray
P [2i+1 . . . n] may not be sorted by their x-coordinates.
Therefore, the algorithm runs the heapsort algorithm
on this subarray.

The complete algorithm for constructing the in-place
priority search tree is given in Algorithm 1. It uses
algorithm HeapSort(m,n), which runs the heapsort
algorithm on the subarray P [m. . . n].

The correctness of this algorithm follows by observing
that the invariant is correctly maintained. The initial
sorting in line 2 takes O(n log n) time using O(1) extra
space. Each of the h = blog nc iterations of the main
for-loop takes O(n log n) time and O(1) extra space. We
can use one extra variable to maintain the value 2i, so
that it does not have to be recomputed during the for-
loop. Thus, the entire algorithm ConstructPST takes
O(n log2 n) time and uses O(1) extra space.2

3 Queries on the in-place priority search tree

In this section, we present the algorithms for the query
problems mentioned in Section 1. For ease of presenta-
tion, we describe the algorithms using the terminology
of trees. We will denote by T the priority search tree
that is implicitly defined by the array P [1 . . . n] that
results by running algorithm ConstructPST. Recall
that the root of T , denoted by root(T), is stored at P [1].
Consider a node whose index in P is i. If 2i ≤ n, then
this node has a left child, which is stored at P [2i]. If
2i + 1 ≤ n, then this node has a right child, which is
stored at P [2i + 1]. This node is a leaf if and only if
2i > n. We will identify each node in T with the point
of P stored at that node. For any p in P , we denote by
Tp the subtree rooted at p. Furthermore, the left and

2Using the in-place algorithm of Katajainen and Pasanen [1]
that stably sorts a sequence of n bits in O(n) time, the running
time can be improved to O(n logn) with O(1) extra space. The
details will be given in the full paper.

23rd Canadian Conference on Computational Geometry, 2011

332

CCCG 2011, Toronto ON, August 10–12, 2011

right children of p (if they exist) are denoted by pl and
pr, respectively.

3.1 HighestNE(x0, y0)

For two given real numbers x0 and y0, let Q = [x0,∞)×
[y0,∞) be the north-east quadrant of the point (x0, y0).
If Q ∩ P 6= ∅, define p∗ to be the highest point of P in
Q. If Q ∩ P = ∅, define p∗ to be the point (∞,−∞).
Algorithm HighestNE(x0, y0) will return the point p∗.

The algorithm uses two variables best and p, which
satisfy the following invariant:

• If Q ∩ P 6= ∅, then p∗ ∈ {best} ∪ Tp.

• If Q ∩ P = ∅, then p∗ = best .

The algorithm initializes best = (∞,−∞) and p =
root(T). During the algorithm, p moves down the tree
according to the relative positions of p, its children, and
the quadrant Q. The algorithm is given in Algorithm 2.
It uses the procedure UpdateHighest(t), which takes
as input a point t and does the following: If t ∈ Q and
y(t) > y(best) then it assigns best = t.

Algorithm 2: HighestNE(x0, y0)

Input: Real numbers x0 and y0 defining the
north-east quadrant Q.

Output: The highest point p∗ in Q ∩ P , if it
exists; otherwise the point (∞,−∞).

1 best = (∞,−∞); p = root(T);
2 while p is not a leaf do
3 if p ∈ Q then
4 UpdateHighest(p); p = pl;
5 else if y(p) < y0 then
6 p = pl;
7 else if p has one child then
8 p = pl;
9 else if x(pr) ≤ x0 then

10 p = pr;
11 else if x(pl) ≥ x0 then
12 p = higher among pl and pr;
13 else if y(pr) < y0 then
14 p = pl;
15 else
16 UpdateHighest(pr); p = pl;

17 UpdateHighest(p);
18 return best ;

The correctness of this algorithm follows from the fact
that the invariant is correctly maintained. Since in each
iteration, p moves down the tree, the while-loop makes
O(log n) iterations, each one taking O(1) time. Thus,
the total time for algorithm HighestNE is O(log n). It
follows from the algorithm that it uses O(1) extra space.

p q

prp` q`

qr

(a)

p q

pr
p`

q`

qr

(b)

Figure 1: Two cases for LeftMostNE(x0, y0).

3.2 LeftMostNE(x0, y0)

As before, let Q = [x0,∞) × [y0,∞) be the north-east
quadrant of the point (x0, y0). If Q∩P 6= ∅, define p∗ to
be the leftmost point of P inQ. IfQ∩P = ∅, define p∗ to
be the point (∞,∞). Algorithm LeftMostNE(x0, y0)
will return the point p∗.

The algorithm uses three variables best , p, and q,
which satisfy the following invariant:

• If Q ∩ P 6= ∅, then p∗ ∈ {best} ∪ Tp ∪ Tq.

• If Q ∩ P = ∅, then p∗ = best .

• p and q are at the same level of T and x(p) ≤ x(q).

The algorithm starts by initializing best = (∞,∞),
p = root(T), and q = root(T). During the algorithm,
p and q move down the tree according to the relative
positions of their children and the quadrant Q. The
algorithm is given in Algorithm 3. It uses the procedure
UpdateLeftMost(t), which takes as input a point t
and does the following: If t ∈ Q and x(t) < x(best) then
it assigns best = t.

It follows by a careful case analysis that the invariant
is correctly maintained, implying the correctness of the
algorithm. In each iteration of the while-loop, p and
q move down the tree, except in line 12. In the latter
case, however, p will become a leaf in the next iteration.
As a result, the while-loop makes O(log n) iterations.
Since each iteration takes O(1) time, the total time for
algorithm LeftMostNE is O(log n). It follows from
the algorithm that it uses O(1) extra space.

3.3 Highest3Sided(x0, x1, y0)

The three real numbers x0, x1, and y0 define the three-
sided range Q = [x0, x1] × [y0,∞). If Q ∩ P 6= ∅,
define p∗ to be the highest point of P in Q. If
Q ∩ P = ∅, define p∗ to be the point (∞,−∞). Al-
gorithm Highest3Sided(x0, x1, y0) returns the point
p∗.

The algorithm uses two bits L and R, and three vari-
ables best , p, and q. As before, best stores the highest
point in Q found so far. The bit L indicates whether or
not p∗ may be in the subtree of p; if L = 1, then p is to
the left of Q. Similarly, the bit R indicates whether or
not p∗ may be in the subtree of q; if R = 1, then q is to

CCCG 2011, Toronto ON, August 10–12, 2011

333

23d Canadian Conference on Computational Geometry, 2011

Algorithm 3: LeftMostNE(x0, y0)

Input: Real numbers x0 and y0 defining the
north-east quadrant Q.

Output: The leftmost point p∗ in Q ∩ P , if it
exists; otherwise the point (∞,∞).

1 best = (∞,∞); p = root(T); q = root(T);
2 while p is not a leaf do
3 UpdateLeftMost(p); UpdateLeftMost(q);
4 if p = q then
5 if p has one child then
6 q = pl; p = pl;
7 else
8 q = pr; p = pl;

9 else
10 // p 6= q
11 if q is leaf then
12 q = p;
13 else if q has one child then
14 if y(ql) < y0 then
15 q = pr; p = pl;
16 else if y(pr) < y0 then
17 p = pl; q = ql;
18 else if x(ql) < x0 then
19 p = ql; q = ql;
20 else if x(pr) < x0 then
21 p = pr; q = ql;
22 else
23 q = pr; p = pl;

24 else
25 // q has two children

26 if x(pr) ≥ x0 and y(pr) ≥ y0 then
27 q = pr;p = pl; // Fig. 1(a)

28 else if x(pr) < x0; then
29 if x(ql) < x0 then
30 p = ql; q = qr;
31 else if y(ql) < y0 then
32 p = pr; q = qr;
33 else
34 p = pr; q = ql;

35 else
36 // x(pr) ≥ x0 and y(pr) < y0
37 if y(pl) < y0 then
38 p = ql; q = qr; // Fig. 1(b)

39 else
40 p = pl;
41 if y(ql) ≥ y0 then
42 q = ql
43 else
44 q = qr
45 UpdateLeftMost(p); UpdateLeftMostq;
46 return best ;

the right of Q. More formally, the variables satisfy the
following invariant:

• If L = 1 then x(p) < x0.

• If R = 1 then x(q) > x1.

• If Q∩P 6= ∅, then p∗ ∈ {best}∪
(
∪z∈ITN(z)

)
, where

I = {z ∈ {L,R}|z = 1} and

N(z) =

{
p if z = L,
q if z = R.

• If Q ∩ P = ∅, then best = (∞,−∞).

The algorithm is given in Algorithm 4. In the initial-
ization, the variables L, R, best , p, and q are assigned
depending on the position of the root of T with respect
to the query region Q.

At any moment during the algorithm, if L = 1, then
we say that p is an observing point. Similarly, if R = 1,
we say that q is an observing point.

Consider one iteration of the while-loop. The algo-
rithm chooses an observing point that is closest to the
root of T . (For ease of presentation, our pseudocode
does not explicitly maintain the levels in T of p and q.)
If this point is p, algorithm CheckLeft(p) is called;
otherwise, algorithm CheckRight(q) is called.

Algorithm 4: Highest3Sided(x0, x1, y0)

Input: Real numbers x0, x1, and y0 defining the
region Q = [x0, x1]× [y0,∞).

Output: The highest point p∗ in Q ∩ P , if it
exists; otherwise the point (∞,−∞).

1 best = (∞,−∞);
2 if x0 ≤ x(root(T)) ≤ x1 then
3 L = 0; R = 0;
4 if y(root(T)) ≥ y0 then
5 best = root(T)

6 else if x(root(T)) < x0 then
7 p = root(T); L = 1; R = 0;
8 else
9 q = root(T); L = 0; R = 1

10 while L = 1 ∨R = 1 do
11 I = {z ∈ {L,R}|z = 1};
12 z = element of I for which level(N(z)) is

minimum;
13 if z = L then
14 CheckLeft(p);
15 else
16 CheckRight(q);

17 return best ;

We describe the procedure for CheckLeft(p) in Al-
gorithm 5. The procedure for CheckRight(q) is sym-
metric and omitted from this paper. Both these pro-
cedures use algorithm UpdateHighest(t), which takes

23rd Canadian Conference on Computational Geometry, 2011

334

CCCG 2011, Toronto ON, August 10–12, 2011

as input a point t and does the following: If t ∈ Q and
y(t) > y(best) then it assigns best = t.

Algorithm 5: CheckLeft(p)

Input: A node p such that x(p) < x0.
1 if p is a leaf then
2 L = 0
3 else if p has one child then
4 if x0 ≤ x(pl) ≤ x1 then
5 UpdateHighest(pl); L = 0;
6 else if x(pl) < x0 then
7 p = pl
8 else
9 q = pl; R = 1; L = 0

10 else
11 // p has two children

12 if x(pl) < x0 then
13 if x(pr) < x0 then
14 p = pr
15 else if x(pr) ≤ x1 then
16 UpdateHighest(pr);
17 p = pl;

18 else
19 q = pr; p = pl; R = 1

20 else if x(pl) ≤ x1 then
21 UpdateHighest(pl); L = 0 ;
22 if x(pr) > x1 then
23 q = pr; R = 1;
24 else
25 UpdateHighest(pr);

26 else
27 q = pl; L = 0; R = 1

Consider the set I and the value of ` = level(N(z)) in
lines 11 and 12 of algorithm Highest3Sided. Assume
that algorithm CheckLeft(p) is called. During this
algorithm, either p moves one level down in the tree T
or the bit L is set to 0. In addition, the point q either
stays the same or it becomes a child of (the original) p.
Therefore, in one iteration of the while-loop in algorithm
Highest3Sided, the value of ` = level(N(z)) either in-
creases, or ` does not change in which case the size of the
set {z′ ∈ I|level(N(z′)) = `} decreases. It follows that
the number of iterations of the while-loop of algorithm
Highest3Sided is at most twice the height of T , i.e.,
O(log n). Since each iteration takes O(1) time, it fol-
lows that the total time for algorithm Highest3Sided
is O(log n). It follows from the algorithm that it uses
O(1) extra space.

3.4 Enumerate3Sided(x0, x1, y0)

Given three real numbers x0, x1, and y0, define the
three-sided range Q = [x0, x1] × [y0,∞). Algorithm
Enumerate3Sided(x0, x1, y0) returns all elements of
Q ∩ P . This algorithm uses the same approach as al-

gorithm Highest3Sided. Besides the two bits L and
R, it uses two additional bits L′ and R′. Each of these
four bits L, L′, R, and R′ corresponds to a subtree of T
rooted at the points p, p′, q, and q′, respectively; if the
bit is equal to one, then the subtree may contain points
that are in the query region Q.

Algorithm 6: Enumerate3Sided(x0, x1, y0)

Input: Real numbers x0, x1, and y0 defining the
region Q = [x0, x1]× [y0,∞).

Output: All elements of Q ∩ P .
1 if y(root(T)) < y0 then
2 L = L′ = R = R′ = 0
3 else if x(root(T)) < x0 then
4 p = root(T) ; L = 1; L′ = R = R′ = 0
5 else if x(root(T)) < x1 then
6 p′ = root(T); L′ = 1; L = R = R′ = 0
7 else
8 q = root(T); R = 1; L = L′ = R′ = 0
9 while L = 1 ∨ L′ = 1 ∨R = 1 ∨R′ = 1 do

10 I = {z ∈ {L,L′, R,R}|z = 1};
11 z = element of I for which level(N(z)) is

minimum;
12 if z = L then
13 EnumerateLeft(p);
14 else if z = L′ then
15 EnumerateLeftIn(p′);
16 else if z = R then
17 EnumerateRight(q);
18 else
19 EnumerateRightIn(q′);

The following invariant will be maintained:

• If L = 1 then x(p) < x0.

• If L′ = 1 then x0 ≤ x(p′) ≤ x1.

• If R = 1 then x(q) > x1.

• If R′ = 1 then x0 ≤ x(q′) ≤ x1.

• If L′ = 1 and R′ = 1 then x(p′) ≤ x(q′).

• All points in (Q ∩ P) \
(
∪z∈ITN(z)

)
have been re-

ported, where I = {z ∈ {L,L′, R,R′}|z = 1} and

N(z) =

p if z = L,
p′ if z = L′,
q if z = R,
q′ if z = R′.

The algorithm is given in Algorithm 6. In one
iteration of the while-loop, the algorithm chooses an
observing point that is closest to the root. Depending
on this point, one of the procedures EnumerateLeft,
EnumerateLeftIn, EnumerateRight, and

CCCG 2011, Toronto ON, August 10–12, 2011

335

23d Canadian Conference on Computational Geometry, 2011

EnumerateRightIn is called. The first two pro-
cedures are given in Algorithms 7 and 8; the other two
are symmetric and omitted from this paper.

Algorithm 7: EnumerateLeft(p)

Input: A node p such that x(p) < x0.
1 if p is a leaf then
2 L = 0
3 else if p has one child then
4 if x0 ≤ x(pl) ≤ x1 then
5 if L′ = 1 ∧R′ = 1 then
6 Explore(p′);
7 else if L′ = 1 then
8 q′ = p′; R′ = 1
9 p′ = pl; L

′ = 1; L = 0;

10 else if x(pl) < x0 then
11 p = pl
12 else
13 q = pl; R = 1; L = 0

14 else
15 /* p has two children */

16 if x(pl) < x0 then
17 if x(pr) < x0 then
18 p = pr
19 else if x(pr) ≤ x1 then
20 if L′ = 1 ∧R′ = 1 then
21 Explore(p′);
22 else if L′ = 1 then
23 q′ = p′; R′ = 1
24 p′ = pr; p = pl; L

′ = 1

25 else
26 q = pr; p = pl; R = 1

27 else if x(pl) ≤ x1 then
28 if x(pr) > x1 then
29 q = pr; p

′ = pl; L = 0; L′ = R = 1;
30 else
31 if R′ = 1 ∧ L′ = 1 then
32 Explore(p′); Explore(pr);
33 else if L′ = 1 then
34 Explore(pr); q

′ = p′; R′ = 1
35 else if R′ = 1 then
36 Explore(pr); L

′ = 1
37 else
38 q′ = pr; L

′ = R′ = 1
39 p′ = pl; L = 0

40 else
41 q = pl; L = 0; R = 1

These procedures use algorithm Explore(t), which
takes as input a node t in T and reports all points in
Tt whose y-coordinates are at least y0. This algorithm
does an in-order traversal of Tt, using O(1) extra space,
and runs in time O(1 + |Q ∩ Tt|).

As in Section 3.3, it can be shown that the
number of iterations of the while-loop of algorithm

Enumerate3Sided is at most four times the height
of T , i.e., O(log n). It follows that the total time for
algorithm Highest3Sided is O(log n+ |Q∩P |). It fol-
lows from the algorithm that it uses O(1) extra space.

Algorithm 8: EnumerateLeftIn(p′)

Input: A node p′ such that x0 ≤ x(p′) ≤ x1.
1 if y(p′) ≥ y0 then
2 report p′;
3 if p′ is a leaf then
4 L′ = 0
5 else if p′ has one child then
6 if x0 ≤ x(p′l) ≤ x1 then
7 p′ = p′l;
8 else if x(p′l) < x0 then
9 p = p′l; L

′ = 0; L = 1
10 else
11 q = p′l; R = 1; L′ = 0

12 else
13 // p′ has two children

14 if x(p′l) < x0 then
15 if x(p′r) < x0 then
16 p = p′r; L = 1; L′ = 0
17 else if x(p′r) ≤ x1 then
18 p = p′l; p

′ = p′r; L = 1;
19 else
20 q = p′r; p = p′l; R = 1; L = 1; L′ = 0

21 else if x(p′l) ≤ x1 then
22 if x(p′r) > x1 then
23 q = p′r; p

′ = p′l; R = 1;
24 else
25 if R′ = 1 then
26 Explore(p′r); p

′ = p′l
27 else
28 q′ = p′r; p

′ = p′l; R
′ = 1

29 else
30 q = p′l; L

′ = 0; R = 1

4 Conclusion

Our motivation for creating an in-place priority search
tree was for designing an in-place algorithm for finding
the maximum area axis-parallel empty rectangle among
a set of n point obstacles in a rectangular region. It can
be shown that using our in-place priority search tree
one can recognize the desired rectangle in O(m log n)
time using O(1) extra-space, where m is the number
of all possible maximal empty rectangles. It will be
worthwhile to find other applications where this tree
may help in saving space.

References

[1] J. Katajainen and T. Pasanen. Stable minimum space
partitioning in linear time. BIT, 32(4):580–585, 1992.

[2] E. M. McCreight. Priority search trees. SIAM J. Com-
put., 14(2):257–276, 1985.

23rd Canadian Conference on Computational Geometry, 2011

336

CCCG 2011, Toronto ON, August 10–12, 2011

Orthogonal Range Search using a Distributed Computing Model

Pouya Bisadi∗ Bradford G. Nickerson†

Abstract

We present a novel approach for distributed orthogonal
range search on a set of N points stored on n nodes. The
non-redundant rainbow skip graph [Goodrich et al [12]
is used to coordinate message passing among nodes. We
show that the maximum number of levels L in such a
graph is L = W (n ln 2)/ ln 2, where W is the lambertW
function. Experimental validation is performed using
24 nodes, with N = 2.4 × 107 points distributed in a
uniform random fashion in a [0, 1]2 space. Each node
stores an equal number of points, with the distribution
of points among nodes controlled by point x coordinates.
The experiments were implemented using the Message
Passing Interface (MPI) communication model running
on a high performance computer cluster. Our results
show that the expected number of messages required to
answer a point query originating from any node matches
the theoretical bound of Θ(log n) messages.

1 Introduction

We wish to preprocess a set S of N points into a data
structure, so that for an axis aligned rectangle range
query γ, the points in S ∩ γ can be reported or counted
efficiently [3]. Increased reliability arises if multiple
copies of the data are stored in multiple locations. In ad-
dition, increased flexibility (e.g. for access control) can
arise for data maintenance by different organizations at
each of the different locations. Distributed data struc-
tures are useful in these settings.

The performance measure of a data structure is re-
lated to the model of computation in which it is defined.
Range search complexity is the number of memory ac-
cesses in the RAM and pointer-machine models, and
the number of I/Os in the I/O model [3]. In the dis-
tributed computing model it is assumed that the cost of
sending a message is higher than the cost of an I/O, so
the number of messages exchanged when answering a
query becomes the complexity measure.

For the last four decades, orthogonal range search was
and continues to be one of the most important prob-
lems in data structures, and many people worked on it
[10]. The most efficient data structure for worst case

∗Faculty of Computer Science, University of New Brunswick,
j3ngr@unb.ca

†Faculty of Computer Science, University of New Brunswick,
bgn@unb.ca

2-dimensional range queries in the RAM model is a
modified version of the layered range tree, described by
Chazelle [6]. Chazelle succeeded in improving the stor-
age to O(N log N

log log N) with query time of O(log N + k), for

k points reported in range. Chazelle [7, 8] also proved
that this time and space bound are optimal in the worst
case. Arge et al [4] provided a two dimensional I/O-
efficient structure for general range searching which oc-

cupies O(N
B

log(N/B)
log logB N) disk blocks and answers queries

in O(logB N + T
B) I/Os, which are optimal in the worst

case. Afshani et al [2] presented a space optimal pointer
machine data structure for 3-d orthogonal range report-
ing that answers queries in O(log N + k) time.

None of these optimum solutions considers a dis-
tributed model where reducing node congestion and
improving fault tolerance are important. Sridhar et.
al. [18] presented a parallel algorithm to report the
in-range set of points in a rectangular range-search in
O(log N) time, with O(log2 N) processors on an EREW-
PRAM model (Exclusive-Read-Exclusive-Write Parallel
Random Access Model). A shared memory model pre-
sented by Sridhar et. al. [18] can be used in a network,
but they did not consider fault tolerance and reliability
because their model is for a single machine with multi-
ple processors. Hash functions do not preserve the or-
der of keys and methods like Chord [19] and CAN [17]
which use distributed hash tables (DHT) are good for
lookup (single point) queries. Aspnes and G. Shah [5]
have presented a distributed data structure which sup-
ports range queries along single atribute 1-D. However,
the Skip Graph stores log n pointers for each node and
asigning one point to each node requires n log n space
which is not practical.

For range search using a distributed model, the basic
idea is to divide S into n subsets (maybe with overlap)
and to distribute them among n nodes. Each one of
these nodes can be a representative of a host in a phys-
ical network. Generally, in a distributed data structure
each node has a key (or name) m and an address a (like
an IP address), so a pointer to a node is a pair (m, a).
A lookup query in these data structures can be inter-
preted as “What is the address of the node that has the
key m?”. In the case of range search, the question is a
bit different; i.e. “What are the addresses of the nodes
storing points intersecting with the range query γ?”. We
would like to find the answer to this question by send-
ing the minimum number of messages. The query can

CCCG 2011, Toronto ON, August 10–12, 2011

337

23rd Canadian Conference on Computational Geometry, 2011

be issued from any node u among the n nodes. Once
the destination nodes are found, within-node search can
be performed using e.g. an I/O-efficient data structure
supporting range search.

Many distributed data structures have been presented
for general applications in a distributed model. The skip
graph [5], family tree [20] and rainbow skip graph [12]
are a few of them. Zatloukal and Harvey [20] use a
modified SkipNet [15] to construct a structure they call
the family tree, achieving O(log n) expected messages
for search and update, while restricting required space
(number of stored pointers) for each node to be O(1),
which is optimal.

Goodrich et al [12] presented a peer-to-peer data
structure called the rainbow skip graph that achieves
high fault-tolerance, constant-sized nodes, and fast up-
date and query times for ordered data. In this paper, a
non-redundant rainbow skip graph [12] is used for rout-
ing purposes.

2 Our Results

We utilized the non-redundant rainbow skip graph to
implement an orthogonal range search structure. To
our knowledge, this is the first implementation of this
routing data structure for range search on spatial data.
In this data structure, the cost of search is independent
of the query issuer. Our experimental results support
this statement. We prove that the maximum number

of levels in a rainbow skip graph is L = W (n ln 2)
ln 2 where

W is the lambertW [9] function and n is the number of
nodes in the non-redundant rainbow skip graph [12].

3 Data Structure and Search Algorithm

3.1 Non-Redundant Rainbow Skip Graphs

A skip graph [5] is a distributed data structure which
consists of skip lists [16]. It has all the functionality of a
balanced tree in a distributed system and its algorithms
for insertion and deletion are the same as a skip list
(see Figure 1). The search algorithm in a skip graph
is almost the same as searching a skip list. The main
difference is that every node is in every level of a skip
graph.

To implement a distributed orthogonal range search
data structure, a non-redundant rainbow skip graph is
used because it provides all the features necessary for a
general purpose peer–to–peer data structure. Based on
the Goodrich et al [12] definition, a non-redundant rain-
bow skip graph on n nodes consists of a skip graph [5]
on Θ(n

log n) supernodes, where a supernode consists of

Θ(log n) nodes that are maintained in a doubly-linked
list called the core list of the supernode. As explained in
the next section, Θ(log n) is not the optimum size of su-
pernodes. The keys of the nodes of each supernode are

Figure 1: An example of skip graph from [11]. The
levels are separated by dashed lines.

a contiguous subsequence of the ordered sequence of all
keys. The smallest key of each supernode V is referred
to as the key of V , and the skip graph is defined over
these keys. For each supernode V , a different member of
V is associated with each level i of the skip graph, and
this member is the level i representative of V , which is
denoted as Vi. The level i list to which V belongs con-
tains Vi. These lists of the skip graph are called the level
lists. Vi, which can be chosen arbitrarily from among
the elements of V , is connected to Vi+1 and Vi−1, which
respectively are called the parent and child of Vi. These
vertical connections form another linked list associated
with supernode V that is referred as the tower list of
V . Each supernode has one tower list. Each element of
a supernode is a member of at most three lists; the core
list, the tower list, and one level list. Figure 2 shows a
rainbow skip graph created over the same data shown
in Figure 1. For example, to search for the key 19 from
node 2, nodes 2, 5, 22, 16, 27, 16, 22 are visited to find
that key 19 is not in the graph.

Figure 2: Nine nodes are grouped into four supernodes
to create a rainbow skip graph with two levels and four
tower lists.

3.2 Supernode Size

Lemma 1 Considering that a node cannot be in multi-
ple level lists, the maximum number of levels for a non-

23rd Canadian Conference on Computational Geometry, 2011

338

CCCG 2011, Toronto ON, August 10–12, 2011

redundant rainbow skip graph with n nodes is when the
size of all supernodes are equal to the number of levels.

Proof. A non-redundant rainbow skip graph is the re-
sult of creating a skip graph from supernodes (groups
of nodes) with each supernode belongs to many level
lists. There are two constraints: First, at each level i a
different member of a supernode is the supernode rep-
resentative Vi in that level, and a supernode cannot be
a member of level i + 1 if it is not a member of level
i. If the number of nodes in a supernode is less than
the number of levels in the skip graph, this supernode
cannot be in all the levels.

As the second constraint, the number of supernodes
is n

|V | and the number of levels is related to the number

of supernodes. Therefore the number of levels log2
n

|V |
is related to size of the supernodes. If |V | goes up, the
number of levels goes down.

Therefore, the number of levels is always the minu-
mim of |V | and log2

n
|V | (see Figure 3). �

Figure 3: Relationship of the size of supernodes |V | and
number of levels L when n = 24.

Theorem 2 The maximum number of levels L for a
non-redundant rainbow skip graph is

L =
W (n ln 2)

ln 2
(1)

where n is the number of nodes and W is the lambertW
function which is the inverse function of z = WeW .

Proof. When every node is a member of a level list,
there is no node that is just in the core list of its supern-
ode. In other words, to maximize the value of L from
Lemma 1, the size of supernode V and the number of
levels L should be equal. Such a rainbow skip graph
has L levels and each of its supernodes has L members
as their level representative. Consequently, there are 2L

supernodes with a size of L. As a result, the number
of all nodes is L × 2L = n. Solving this equation for L
gives the value for n which is based on the lambertW [9]
function shown in equation (1). �

3.3 Data Distribution

Routing in the non-redundant rainbow skip graph re-
quires a set of keys having a total order relation. Having
a total order relation [13] on the set of keys makes it pos-
sible for each node to determine whether the requested
node of a query is one of the successor or predecessor
nodes without knowledge about the whole data struc-
ture. Therefore, each node can route the received query
message in the correct direction.

Figure 4: A distribution of a 2D space among 5 nodes.
The hatched area is a rectangular query. Also, the lower
and upper bounds L2 and U2 of the second node region
are labelled.

To use the non-redundant rainbow skip graph, the en-
tire space must be split into regions in such a way that
a total order binary relation [13] (here denoted by ≤) is
definable on this set of regions. The simplest distribu-
tion is splitting points based on one of their coordinates
(e.g. x) which is shown in Figure 4. For example, a
suitable key for the presented distribution in Figure 4
can be m(Li, Ui) where i is the node number, and Li

and Ui are the lower and upper x coordinate bounds of
node region, respectively. In this way, the key set has a
total order based on the x coordinate.

In orthogonal range search, if a point is not in the
query range in one dimension, its coordinate value (in
that dimension) is either greater or lower than all the
points in the query range. As the distribution of points
is based on one dimension, if the query range has in-
tersection with nodes i − 1 and i + 1, it has intersec-
tion with node i for sure. Consequently, having the
address of node i whose region intersects the query
γ([Lx, Ux], [Ly, Uy]), node i − 1 should be checked too
unless Li ≤ Lx ≤ Ui and node i + 1 should be checked
unless Li ≤ Ux ≤ Ui.

CCCG 2011, Toronto ON, August 10–12, 2011

339

23rd Canadian Conference on Computational Geometry, 2011

3.4 Range Search

We created a non-redundant rainbow skip graph using
the lower bound of each node region as its key. The
rainbow skip graph normal routing algorithm is used
to find the node whose region covers Lx. In order to
answer a query γ([Lx, Ux], [Ly, Uy]) from node u, the
rainbow skip graph search algorithm [12] is used to find
the node that stores the lower bound of γ. First we find
the top level representative of the supernode of node u.
Then, by a standard skip graph [5] search, we find the
supernode whose key (x lower bound) is the maximum
key lower than Lx. The next step is performing a linear
scan through the core list to find the first node that
stores points in range query γ. Then, this node reports
the points to u (the query issuer) and passes the query
to its successor node if the upper bound of the query
(Ux) is outside its region; the next node does the same.
Each of these steps (except the reporting part) requires
O(log n) messages, then the complexity of point search
using the non-redundant rainbow skip graph is O(log n)
messages.

In the distributed computing model, the notion of
failed nodes is important. If no messages are received
in response to a query, we assume the nodes intersecting
the query range have failed. In the worst case, a query
intersects all n regions, but finds no points in range. A
message indicating this empty set is required at each
queried node. This leads to O(n) messages for range
search on a set of N points distributed on n nodes of
a non-redundant rainbow skip graph. The same worst
case search complexity holds if k > 0 and we assume
O(1) messages can hold the k points reported in range.

4 Experimental Validation

To test this data structure, 2.4 × 107 two dimensional
points drawn from a uniform random distribution ∈
[0, 1]2 are distributed based on their x coordinate among
24 nodes. Therefore each node covered around 4% of the
whole area. Around 2,400 queries (see Figure 6) were
randomly generated such that:

- query center (xi, yi) ∈ [0.1, 0.9]2

- lower bound (xL, yL) = (xi, yi) − (∆xi, ∆yi)

- upper bound (xU , yU) = (xi, yi) + (∆xi, ∆yi)

- ∆xi and ∆yi are uniform random ∈ [0.0, 0.1]

The experiments used the Message Passing Interface
[14] (MPI) on the Atlantic Computational Excellence
Network [1](ACEnet). Figure 5 shows the implemented
data structure. This structure consists of three levels
and each supernode has 3 nodes which are its repre-
sentatives in different levels. Notice that in this figure,
levels are shown by different dashed lines for their links.

Figure 5: The rainbow skip graph which is used for
experimental validation. Level lists are shown by curved
lines. There are 8 supernodes, each containing three
nodes.

As the tower list is exactly the same as the core list,
the maximum number of connections for each node is
4. The program uses 25 slots, the first one (index 0) as
the test harness and the rest as the nodes. Node 0 ran-
domly sent commands for issuing queries to nodes and
collected the data. We made the simplifying assump-
tion that messages are big enough for nodes to report
back all the points in their intersection with γ in one
message.

Figure 6: The center and size of query rectangles are
generated from a uniform random distribution function.

As shown in Figure 7, each query was answered by
passing an average of 13 messages through the network,
with the number of passed messages averaging no more
than 16 and no less than 11.

Figure 8 and 9 show two graphs representing the re-
lationship between query cost and size of query rectan-
gles. Each dot in figures 8- 11 represents one of the
2,400 range query results. As expected, the number of
messages is independent of the height of query rectan-
gles because each node covers the height of the total
area. The cost for responding to queries rises linearly
with increasing query rectangle width.

As shown in Figure 10, the query cost is from 1 to
24 messages when the area of the query is small (see

23rd Canadian Conference on Computational Geometry, 2011

340

CCCG 2011, Toronto ON, August 10–12, 2011

Figure 7: The average number of messages for answering
queries issued from each node.

Figure 8: The number of messages for answering queries
is not related to the height of query rectangles. The
black line is a linear trendline for the number of mes-
sages.

Figure 9: Number of messages increases linearly with
increasing query rectangle width. The black line is a
linear trendline for the number of messages.

Figure 10). The maximum messages arising on the left
of Figure 10 is high as a very thin horizontal query
rectangle requires a lot of message passing to answer
even if it has a relatively small area.

The maximum cost of queries with aspect ratio less
than one is lower than the queries with aspect ratio >
1 (see Figure 11). There is a higher probability for low

Figure 10: Number of messages increases with growth
of the query size since the size is dependent on query
width. The black line is a linear trendline for the num-
ber of messages.

aspect ratio query rectangles to have a smaller width
and thus intersect with fewer node regions.

Figure 11: Number of messages rises linearly with in-
creasing query rectangle aspect ratio.

5 Simulation

We performed a simulation of the performance of the
non-redundant rainbow skip graph for n = 24, 36, 48,
64, 80 and 96. The results are shown in Figure 12. The
average cost to find the first node in range corresponds
to a point search issued from any node. As Figure 12
shows, a point search costs < 2 log2 n messages, which
matches the expected number of messages reported in
[12]. Figure 12 also shows the average cost that includes
messages sent to report the points in range.

6 Conclusion

The aim of using a distributed model for orthogonal
range search is to provide reliability, flexibility and ro-
bustness to the data structure. In this paper we pre-
sented a novel approach for distributed orthogonal range
search using the non-redundant rainbow skip graph.

CCCG 2011, Toronto ON, August 10–12, 2011

341

23rd Canadian Conference on Computational Geometry, 2011

Figure 12: Average number of messages to answer one
query based on the number of nodes.

We proved that the maximum number of levels in a
non-redundant rainbow skip graph occurs when the
size of each supernode is equal to number of levels.

The maximum number of levels L = W (n log 2)
log 2 . We

also showed experimentally that a point search cost re-
quires Θ(log n) messages, which matches the expected
results in Goodrich et al [12]. The experimental results
showed that distributed range search cost using the non-
redundant rainbow skip graph was independent of which
node issued the query. In addition we showed that the
number of messages required to answer a range query
increased linearly with increasing query rectangle width.

It remains to determine the optimum size of a supern-
ode in the non-redundant rainbow skip graph such that
the number of messages passed to answer a range query
is minimized.

7 Acknowledgements

The authors would like to acknowledge the support of
the Natural Sciences and Engineering Research Council
(NSERC) of Canada and the UNB Faculty of Computer
Science.

References

[1] The atlantic computational excellence network
(http://www.ace-net.ca/wiki/acenet).

[2] P. Afshani, L. Arge, and K. Larsen. Orthogonal range
reporting: query lower bounds, optimal structures in
3-d, and higher-dimensional improvements. In Proceed-
ings of the 2010 annual symposium on Computational
geometry, pages 240–246. ACM, 2010.

[3] P. K. Agarwal. Range searching. CRC Handbook of Dis-
crete and Computational Geometry. CRC Press, Inc.,
2004.

[4] L. Arge, V. Samoladas, and J. Vitter. On two-
dimensional indexability and optimal range search

indexing. In Proceedings of the eighteenth ACM
SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 346–357. ACM, 1999.

[5] J. Aspnes and G. Shah. Skip graphs. ACM Transactions
on Algorithms, 3(4), 2007.

[6] B. Chazelle. Filtering search: A new approach to query-
answering. SIAM J. Comput., 15(3):703–724, 1986.

[7] B. Chazelle. Lower bounds for orthogonal range search-
ing: I. the reporting case. J. ACM, 37(2):200–212, 1990.

[8] B. Chazelle. Lower bounds for orthogonal range search-
ing: Ii. the arithmetic model. J. ACM, 37(3):439–463,
1990.

[9] R. Corless, G. Gonnet, D. Hare, D. Jeffrey, and
D. Knuth. On the lambertw function. Advances in
Computational mathematics, 5(1):329–359, 1996.

[10] M. de Berg, O. Cheong, M. van Kreveld, and M. Over-
mars. Computational Geometry. Springer, 2008.

[11] M. Goodrich, M. Nelson, and J. Sun. The rainbow
skip graph: a fault-tolerant constant-degree distributed
data structure. In Proceedings of the seventeenth annual
ACM-SIAM symposium on Discrete algorithm, pages
384–393. ACM, 2006.

[12] M. Goodrich, M. Nelson, and J. Sun. The rainbow
skip graph: A fault-tolerant constant-degree p2p relay
structure. pages 384–393, New York, NY, USA, 2009.
ACM.

[13] G. Gratzer. Lattice theory. WH Freeman, 1971.

[14] W. Gropp, E. Lusk, and A. Skjellum. Using MPI:
portable parallel programming with the message pass-
ing interface. 1999.

[15] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer,
and A. Wolman. Skipnet: a scalable overlay net-
work with practical locality properties. In USITS’03:
Proceedings of the 4th conference on USENIX Sympo-
sium on Internet Technologies and Systems, pages 9–9,
Berkeley, CA, USA, 2003. USENIX Association.

[16] W. Pugh. Skip lists: a probabilistic alternative to bal-
anced trees. Communications of the ACM, 33(6):668–
676, 1990.

[17] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network.
pages 161–172, 2001.

[18] R. Sridhar, S. Iyengar, and S. Rajanarayanan.
Range search in parallel using distributed data struc-
tures. Journal of Parallel And Distributed Computing,
15(1):70–74, 1992.

[19] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. ACM SIG-
COMM Computer Communication Review, 31(4):149–
160, 2001.

[20] K. C. Zatloukal and N. J. A. Harvey. Family trees: an
ordered dictionary with optimal congestion, locality, de-
gree, and search time. In SODA ’04: Proceedings of the
fifteenth annual ACM-SIAM symposium on Discrete al-
gorithms, pages 308–317, Philadelphia, PA, USA, 2004.
Society for Industrial and Applied Mathematics.

23rd Canadian Conference on Computational Geometry, 2011

342

CCCG 2011, Toronto ON, August 10–12, 2011

On Finding Skyline Points for Range Queries in Plane

Anil Kishore Kalavagattu ∗ Ananda Swarup Das † Kishore Kothapalli ‡ Kannan Srinathan §

Abstract

We consider the dominating point set reporting prob-
lem in two-dimension. We propose a data structure for
finding the set of dominating points inside a given or-
thogonal query rectangle. Given a set of n points in the
plane, it supports 4-sided queries in O(log n+k), where
k is size of the output, using O(n log n) space. This work
can be of application when range queries are generated
using mobile devices with limited display capacity.

1 Introduction

Range searching is one of the widely studied topics in
computational geometry. As stated in [1], the fascina-
tion for range searching is due to the fact that it has
wide applications in geographic information systems,
CAD tools, database retrieval, etc. Informally range
aggregate is defined as follows: We are given a set S of
objects which can be points or line segments and the
like. We need to preprocess the data set into a data
structure such that given a query object q, we can ef-
ficiently return the objects in S ∩ q, the objects that
belong to both S and q. A careful note of the above
definition reflects that in a traditional range aggregate
query, an algorithm designer is more focused in find-
ing the result set efficiently and is not much bothered
about the size of the result set. But this cannot be true
any further. The advancement of technology has in-
troduced the era of information revolution which led to
information explosion. Imagine a user who is accessing
a database in a server through his mobile device whose
computing power as well as display model mechanism
is sufficiently limited. Computation can be outsourced
to server but returning the entire result set may not be
a clever decision. Rahul et al. [7] have proposed an
algorithm to return the top k answers of the result set.
But for this purpose, our points in the data set have
to be weighted by means of a preference function. But
in practice, finding a good preference function is not an

∗International Institute of Information Technology , Hyder-
abad, India, anilkishore@research.iiit.ac.in
†International Institute of Information Technology , Hyder-

abad, India, anandaswarup@gmail.com
‡International Institute of Information Technology , Hyder-

abad, India, kkishore@iiit.ac.in
§International Institute of Information Technology , Hyder-

abad, India, srinathan@iiit.ac.in

easy task. To address the issue, we borrow the concept
of skyline query from the database community.

2 Definitions

We are given a set of n points P = {p1, . . . , pn} in
R2. Assuming all the points have distinct coordinates
in each dimension, a point pi is said to dominate a point
pj if pi(x) > pj(x) and pi(y) > pj(y). The set P ′ (⊆ P)
of all the points, each of which is not dominated by any
other point in P is called the dominating set of P . They
are also called maximal elements, or maxima, of the
set P [2]. In the database terminology, these maximal
points are also known as skyline points. A skyline query
is then, given a set of points P , report the skyline points
of P . The skyline point set P ′ forms a sample (repre-
sentation) for the set P . In practice, often |P ′| < |P |.
However in the worst case scenario, |P ′| = |P |. More
information about skyline queries can be found in [6].

3 The Problem

Figure 1: The nodes filled black are not dominated by
any other point. a.) skyline of all the points. b.) skyline
of points in the query rectangle (dotted border).

In this work, we study the following problem.

Problem 1 We are given a set S of n points in R2.
We wish to pre-process S into a data structure such that
given an orthogonal query rectangle q, we can efficiently
report the skyline points of S ∩ q, where S ∩ q is the set
of points in both S and q.

Consider Fig 1.a There are ten points and among them
only four points are not dominated by any other point.
The same set of points are queried with an orthogonal
rectangle, as shown in Fig 1.b and its easy to see that

CCCG 2011, Toronto ON, August 10–12, 2011

343

23rd Canadian Conference on Computational Geometry, 2011

the result can contain points which may not be in the
skyline point set obtained by considering all the points.
In rest of the paper, whenever we say size of result, we
actually mean number of skyline points inside the query
rectangle.

4 The General Algorithm

Figure 2: The query rectangle is q = [P1(x), P2(x)] ×
[P1(y), P2(y)] and the point P3 = (P3(x), P3(y)) is the
point with the largest x coordinate inside q.

A sketch of solution for the problem is as follows:

1. Let the set of points in the plane be S and the query
rectangle be q = [P1(x), P2(x)]× [P1(y), P2(y)].

2. Find the point with the largest x coordinate in S∩q.
Let the point be P3 = (P3(x), P3(y)). Add P3 to
the skyline point set.

3. Create a new rectangle q′ = [P1(x), P3(x)] ×
[P3(y), P2(y)] and update q ← q′. See Fig. 2.

4. Repeat the steps 2, 3 until we get a rectangle q′

such that S ∩ q′ = ∅. All the intermediate query
rectangles encountered are also shown in Fig. 2.

As can be seen, our algorithm depends on a solution
of range successor problem in plane. Range successor
problem is widely studied in literature and Yu et al. in
[9] proposed a data structure of size O(n) using which
range successor queries can be efficiently answered in
O(logn

log logn) time. Let k be the size of output, then a
solution which repeatedly uses range successor query in
step 2 above, will have a query time of O(k logn

log logn). We

propose a data structure of size O(n log n) using which
our algorithm will have a query time of O(log n + k).
Clearly using the proposed data structure, our algo-
rithm will perform better whenever k ≥ O(log n). Here
we considered the static version of the problem, where
the input points are fixed. A dynamic version of this
problem with O(log2 n+ k) query time using O(n log n)
space and O(log2 n) time per update is studied in [4].

5 The Data Structure

5.1 Preprocessing

The data structure is a standard layered range tree [3]
in which the main tree stores the points sorted by x-
coordinates. Each secondary structure is an array stor-
ing y-coordinates in sorted order (decreasing), along
with the corresponding point. This can be constructed
by carrying out merge sort using y-coordinates as keys.
In order to speed up query time, we use fractional cas-
cading [3] at the cost of storing additional pointers at
each node. Let w and v be the two children of µ. While
merging the secondary arrays Aw and Av to construct
Aµ, we create and store pointers as follows. Each in-
dex i of Aµ stores a pointer to the smallest value in Aw
which is greater than or equal to Aµ[i] and a pointer to
the largest value in Aw which is smaller than or equal
to Aµ[i]. Similarly, two more such pointers are stored
pointing to elements of Av. Also, each index of Aw and
Av has a pointer to its corresponding position in the par-
ent array Aµ. Each of these arrays A is preprocessed for
range maxima queries [10] such that given two indices
i, j of Aµ, we can find the point with maximum x coor-
dinate among the points whose y coordinates are stored
between Aµ[i] and Aµ[j] in O(1) time.

Lemma 1 The storage space needed for the data struc-
ture is O(n log n).The preprocessing time needed to con-
struct the data structure is O(n log n).

This data structure is similar to the data structure used
in [5] [8].

5.2 The Query Algorithm

Figure 3: The dark nodes are the ones to which the
segment [a, b] of the query q = [a, b]× [c, d] is allocated.

After we construct the data structure, the query algo-
rithm for a query rectangle q = [a, b]×[c, d] is as follows.

23rd Canadian Conference on Computational Geometry, 2011

344

CCCG 2011, Toronto ON, August 10–12, 2011

1. The range of x-coordinates in [a, b] can be ex-
pressed as the disjoint union of l = O(log n) canon-
ical subsets. Let the canonical subsets of nodes
be ν1, ν2, . . . , νl from left to right in that order, as
shown in Fig. 3.

2. Find the node νsplit, which is the least common
ancestor of ν1 and νl. Find the largest sub-range of
y-coordinates ∈ [c, d] in Aνsplit using binary search
and store the indices of the two ends.

3. Process the canonical nodes in reverse order, start-
ing from νl back to ν1, as follows. Initialize i ← l,
ylow ← c and yhigh ← d.

4. Consider the node νi. Find the smallest index lt
and the largest index rt such that yhigh ≥ Aνi [lt] ≥
Aνi [rt] ≥ ylow. Note that the y-coordinates are
sorted in decreasing order in Aνi . This can be done
by following the pointers from Aνi+1

along the path
to the node νi. For the starting node νl, follow the
pointers from Aνsplit found in step 2.

5. Find the point with the largest x coordinate in
Aνi [lt . . rt] using a range maxima query. Let this
point be p′ and its y-coordinate be p′(y). Report
the point p′ and move rt to the position of the array
just before p′ and update ylow ← p′(y).

6. While there are points still left in Aνi [lt . . rt], i.e.,
lt ≤ rt, repeat the above step.

7. At this point, we processed the nodes
νl, νl−1, . . . , νi and also have two pointers to
the current limits on the y-coordinate [ylow, yhigh]
at νi.

8. Set i ← i − 1. If i ≥ 1, move to the node νi along
with the pointers and repeat from step 4 , else exit.

Lemma 2 The time needed for the query algorithm
above is O(log n+ k).

Proof : At each of the O(log n) levels of the tree, at
most two nodes are visited [3]. Among them, each
canonical node with all its x-coordinates ∈ [a, b] is vis-
ited at most once and each of the other nodes along the
path traversed is visited at most three times, first time
from its parent and at most one more time from each of
its two children �

Using the above lemma, we can now conclude the
section stating the following theorem.

Theorem 3 A set S of n points in R2 can be prepro-
cessed into a data structure of size O(n log n) such that
given an orthogonal query rectangle q, we can efficiently
report the set of points in S ∩ q not dominated by any
other point in S ∩ q in O(log n+ k) time where k is the
size of the output.

Our solution can be easily modified to report the top-
m sky line points having largest(or smallest) y(or x)
coordinates in O(log n+m) time.

6 Conclusion

In this work we studied the problem of finding the dom-
inating set of points inside a query rectangle. Our so-
lution is static and restricted to the plane. It will be
interesting to see dynamic version of this problem and
in higher dimensions.

7 Acknowledgements

We would like to thank the reviewers for their helpful
and positive comments which have improved the paper
and for pointing to [4] which handles the dynamic ver-
sion of the problem discussed in this paper.

References

[1] P. Agarwal, S. Govindrajan, S. Muthukrishnan. Range
Searching in Categorical Data: Colored Range Search-
ing on Grid. In Proceedings of ESA, pp. 17–28, 2002

[2] Jon Louis Bentley. Multidimensional divide-and-
conquer. Communications of the ACM, v.23 n.4, p.214-
229, April 1980

[3] M. de. Berg, M. van Kreveld, M. Overmars, O.
Schwarzkopf. Computational Geometry: Algorithms
and Applications. ISBN 3-540-65620-0, Springer Ver-
lag, 2000

[4] G. S. Brodal, K. Tsakalidis. Dynamic Planar Range
Maxima Queries. In Proc. 38th International Collo-
quium on Automata, Languages, and Programming, vol
6755 of LNCS, pp. 256-267. Springer Verlag, Berlin,
2011

[5] A. S. Das, P. Gupta, K. Srinathan, K. Kothapalli.
Finding Maximum Density Axes Parallel Regions for
Weighted Point Sets. submitted to CCCG 2011

[6] D. Kossmann, F. Ramsak, S. Rost. Shooting Stars
in the Sky: An Online Algorithm for Skyline Queries.
In Proc. International Conference on Very Large Data
Bases, pp. 275-286, 2002

[7] S. Rahul, P. Gupta, R. Janardan, K. S. Rajan. Effi-
cient top-k queries for orthogonal ranges. In Proc. In-
ternational Workshop on Algorithms and Computation,
Springer Verlag LNCS No. 6552, pp. 110–121

[8] Sanjeev Saxena. Dominance made simple. Information
Processing Letters, v.109 n.9, p.419-421, April, 2009

[9] C. C. Yu, W. K. Hon, B. F. Wang. Improved Data
Structures for Orthogonal Range Successor Queries.
Computational Geometry: Theory and Applications 44
, pp. 148– 159, 2011

[10] H. Yuan, M. Atallah. Data Structures for Range Mini-
mum Queries in Multidimensional Arrays. In Proceed-
ings of SODA, pp. 150–160, 2010

CCCG 2011, Toronto ON, August 10–12, 2011

345

23rd Canadian Conference on Computational Geometry, 2011

346

CCCG 2011, Toronto ON, August 10–12, 2011

Space-efficient Algorithms for Empty Space Recognition
among a Point Set in 2D and 3D

Minati De∗† Subhas C. Nandy∗

Abstract

In this paper, we consider the problem of designing
in-place algorithms for computing the maximum area
empty rectangle of arbitrary orientation among a set
of points in 2D, and the maximum volume empty axis-
parallel cuboid among a set of points in 3D. If n points
are given in an array of size n, the worst case time com-
plexity of our proposed algorithms for both the prob-
lems is O(n3); both the algorithms use O(1) extra space
in addition to the array containing the input points.

1 Introduction

Designing low memory algorithms is considered to be an
important paradigm for the data-streaming and data-
mining applications. Here the amount of data available
is huge, and it is wise to consider as much data as pos-
sible to get precise result. In other areas also, the low
memory algorithms are important in spite of the fact
that computer hardware has become extremely cheap
now-a-days. For an example, consider the VLSI phys-
ical design applications, where the number of circuit
modules in a VLSI chip are rapidly growing day by day,
and running the standard routing, placement, verifica-
tion algorithms, are becoming impossible even in the
modern computers due to the size of data. In sensor
network applications, it is often found that in order to
get precise information, a huge number of sensors are
deployed. Moreover in tiny devices, for example, sen-
sors, GPS systems, mobile hand-sets, small robots, etc,
in order to maintain its size, one needs to lower down
the memory size. For all these reasons, designing low-
memory algorithms for practical problems have become
a challenging task to the algorithm researchers.

In computational geometry, in-place algorithms are
studied for a very few problems. For the convex hull
problem in 2D, the best known result is an O(n log h)
algorithm with O(1) extra space [5]. Bronnimann et al.
[4] showed that the upper hull of a set of n points in 3D
can be computed in O(n log3 n) time using O(1) extra
space. The best known algorithm for this problem runs
in O(n log n) expected time [8]. Bose et al. [3] used

∗Indian Statistical Institute, Kolkata, India.
†Presently visiting Carleton University, Canada.

minati.isi@gmail.com

an in-place divide and conquer technique to solve the
following problems in 2D using O(1) extra space: (i)
a deterministic O(n log n) time algorithm for the clos-
est pair problem, (ii) a randomized expected O(n log n)
time algorithm for the bichromatic closest pair problem,
and (iii) a deterministicO(n log n+k) time algorithm for
computing the intersections among orthogonal line seg-
ments. For computing the intersections among arbitrary
line segments, two algorithms are available in [7]. If the
input array can be used for storing intermediate results,
then the problem can be solved in O((n+ k) log n) time
and O(1) space. but, if the input array is not allowed
to be destroyed, then the time complexity increases by
a factor of log n; it also requires O(log2 n) extra space.

Vahrenhold [15] proposed an O(n
3
2 log n) time and O(1)

extra space algorithm for the Klee’s measure problem,
where the objective is to compute the union of n axis-
parallel rectangles of arbitrary sizes. Asano and Rote
[2] showed that all the Delaunay triangles among a set
of n points can be computed in O(n2) time using O(1)
space. This, in turn, recognizes the largest empty circle
among a point set with the same time complexity.

We will now consider the algorithms for recognizing
the maximum area empty rectangle among a set of n
points in a region R in 2D. The axis-parallel version
of the problem was first introduced by Namaad et al.
[13]. They introduced the concept of maximal empty
rectangle (MER). It is an empty rectangle, not prop-
erly contained in any other empty rectangle. They
showed that the number of MERs (m) among a set of n
points may be Ω(n2) in the worst case; but if the points
are randomly placed, then the expected value of m is
O(n log n). In the same paper, an O(min(n2,m log n))
time algorithm for identifying the largest MER was also
proposed. Orlowski [14] proposed an O(m + n log n)
time algorithm for finding the largest MER that in-
spects all the MERs present in R, and identifies the
largest one. The best known algorithm for this prob-
lem runs in O(n log2 n) time in the worst case [1]. All
these algorithms use O(n) extra space. The worst case
time and space complexities for computing the largest
empty rectangle of arbitrary orientation among a set
of n points are O(n3) and O(n2) respectively [6]. Re-
cently, an in-place algorithm for recognizing the largest
empty axis-parallel rectangle is proposed that runs in
O((m+ n) log n) time and uses O(1) extra space in ad-

CCCG 2011, Toronto ON, August 10–12, 2011

347

23rd Canadian Conference on Computational Geometry, 2011

dition to the array containing the input points [9]. It
uses a novel way of maintaining priority search tree in an
in-place manner. In 3D, the largest empty axis-parallel
cuboid among a set of n points in an axis-parallel cuboid
region R can be computed in O(C+n2 log n) time with
O(n) extra space, where C is the number of maximal
empty axis-parallel cuboids in R, which may be O(n3)
in worst case [12].

We first describe an in-place algorithm for computing
the maximum area empty rectangle of any arbitrary ori-
entation among a set of n points in a 2D rectangular
region. We will also consider a simplified 3D version
of the problem, where the objective is to identify the
maximum volume empty axis-parallel cuboid among a
set of n points in a 3D axis-parallel region. The time
complexity of both the algorithms is O(n3), and they
need O(1) space in addition to the input array.

2 Computing largest MER of arbitrary orientation

We now propose an in-place algorithm for finding max-
imum area empty rectangle of arbitrary orientation
among a set of points P inside a rectangular region R.
The problem was addressed by Chaudhuri et al. [6].
They introduced the concept of PMER. A PMER, de-
fined by four points pi, pj , pk, p` ∈ P , is the maximum
area rectangle of any arbitrary orientation whose four
sides pass through pi, pj , pk and p`, and the interior of
the rectangle does not contain any member of P . It is
shown that the number of PMERs is bounded above by
O(n3). It follows from the following observation:

Observation 1 [6] At least one side of a PMER must
contain two points from P , and other three sides either
contain at least one point of P or the boundary of R.

2.1 Algorithm

Observation 1 plays the central role in our algorithm.
We consider each pair of points p, q ∈ P , and compute
all the PMERs with one side passing through p, q. We
use geometric duality for solving this problem. The du-
ality transform in 2D maps a point p = (α, β) in the
primal plane into a line p′ = αx − β in the dual plane
and maps a non-vertical line ` : y = mx−c in the primal
plane into the point `′ = (m, c) in the dual plane. For
the standard properties of duality transform, see [10].

Observation 2 Let v be a point on a vertical line L in
the dual plane, and q′1, q

′
2, . . . , q

′
m be m lines in the dual

plane that intersect L in one side (above or below) of v,
and are arranged in increasing order of their distances
from v along L. Now, all the points q1, q2, . . . qm are in
one side (below or above) of the line v′ in the primal

plane and the perpendicular distances of q1, q2, . . . , qm
from the line v′ are also in increasing order.

We will consider the arrangement A(P) of the set of
dual lines corresponding to all the points in the array
P . Its each vertex vij obtained by the intersection of the
dual lines p′i and p′j , corresponds to the line `ij passing
through pi, pj ∈ P in the primal plane. Thus, in order
to get the lines passing through each pair of points in
P , we need to visit all the vertices in A(P).

Note that, each element of P corresponding to an input
point also represents the corresponding dual line. We
first identify the left-most vertex in A(P) by comput-
ing the intersections of all the O(n2) pairs of dual lines.
Now, a vertical line L starts sweeping from that posi-
tion. We execute a sorting step to arrange the members
in P such that the y-coordinates of the points of in-
tersection of those dual lines and the sweep line L are
in increasing order. Thus, P also serves the role of the
sweep line status array. During the sweep, this property
of P is always maintained. Here the two lines, say p′

and q′, incident to the next vertex v ∈ A(P) will remain
consecutive, say at P [i] and P [i+1]. All the lines below
(resp. above) v are to the right of P [i+ 1] (resp. left of
P [i]) in the array P , and are in increasing order of their
distances from the point v along the line L. We pro-
cess v to compute all the MERs whose one side passes
through (p, q) using the procedure process(p, q). The
procedure get next vertex computes the next vertex
of A(P) that L faces to the right of v during the sweep.

2.1.1 get next event

After processing a vertex v (intersection of a pair of dual
lines p′ and q′ stored at P [i] and P [i+ 1] respectively),
when L moves to the right of v, p′ and q′ are swapped
in P for maintaining their order along L. We do not
maintain the event queue. At each step, we compute
the next vertex in A(P) to be processed.

Observation 3 [11] At any instant of time during the
sweep, the vertex closest to L to its right side is the point
of intersection of a pair of dual lines that are consecutive
in the ordered list of dual lines.

We compute the intersection of each pair of consecutive
dual lines in the array P . If it is to the right of L, then
it is a feasible intersection point (FIP). By Observation
3, The next vertex of A(P) to the right of L corresponds
the left-most FIP. If no such FIP is obtained, the sweep
stops. Thus, the time complexity for getting the next
vertex of A(P) for processing is O(n).

23rd Canadian Conference on Computational Geometry, 2011

348

CCCG 2011, Toronto ON, August 10–12, 2011

2.1.2 Process(p, q)

Let v be the vertex in A(P) under process. It corre-
sponds to the pair of points p, q ∈ P stored at P [i] and
P [i + 1] respectively. Let λ be the straight line pass-
ing through p, q. By Observation 2 the points below
λ are Π1 = {P [i + 2], P [i + 3], . . . , P [n]} in increasing
order of their distances from λ. We now describe the
method of computing all the PMERs with (p, q) at its
top boundary. The method of computing all the PMERs
with (p, q) at their bottom boundary with the points
Π2 = {P [i− 1], P [i− 2], . . . p[1]} is the same.

Our algorithm considers a curtain whose two sides are
bounded by the boundary of R, and top boundary is
attached to both p, q. The curtain falls in a manner
parallel to the line λ. As soon as it hits a point a ∈ Π1

it reports a PMER. This point is easily obtained from
the sorted list Π1. If the projection a∗ of the point a
on λ lies inside the interval [p, q], the processing of λ
stops. Otherwise, the curtain is truncated at a∗, and
the process continues to process the next point in Π1.

2.2 Complexity analysis

We have considered all the O(n2) vertices ofA(P). Gen-
eration of each vertex v needs O(n) time with O(1) ad-
ditional space. The time required for processing the
vertex v for computing all the PMERs with one side
passing through the pair of points (p, q) corresponding
to the vertex v is also O(n), and it needs O(1) extra
work-space. The algorithm needs to maintain a global
counter to store the maximum area/perimeter PMER.

Theorem 1 Given an array with n points, the maxi-
mum area/perimeter rectangle of arbitrary orientation
can be computed in O(n3) time with O(1) extra space.

Corollary 1.1 The method proposed in process(p, q)
can also be used to compute the largest empty axis-
parallel rectangle in O(n2) time.

Proof. For computing the largest empty axis-parallel
rectangle, we need not have to consider the duals of the
points in P . Here for each point pi ∈ P , we need to
execute four line sweep passes as follows:

• Sweep a horizontal line upwards (resp. downwards)
to get the largest axis-parallel MER with bottom (resp.
top) boundary passing through pi, and

• Sweep a vertical line towards left (resp. right) to get
the largest axis-parallel MER with right (resp. left)
boundary passing through pi.

To execute the horizontal (resp. vertical) line sweep
for all the points, we need to sort the points in P with
respect to their y-coordinates (resp. x-coordinates) once

only. Then the time complexity of the line sweep for
each point pi ∈ P is O(n). �

3 Computing largest axis-parallel MEC

We now describe the method of computing the largest
empty cuboid among a set of points P = {p1, p2, . . . , pn}
in a 3D axis-parallel parallelopiped (cuboid) R bounded
by six axis-parallel planes. The coordinate of the point
pi is denoted by (xi, yi, zi). A maximal empty cuboid
(MEC) is a cuboid whose each face either coincides with
a face of R or passes through a point in P , and its
interior does not contain any point in P . The objective
is to identify an MEC of maximum volume. There are
three types of MECs’ inside R.

type-1: the MEC with both top and bottom faces
aligned with the top and bottom faces of R,

type-2: the MEC whose top face is aligned with the
top face of R, but bottom face passes through a
point in P , and

type-3: the MEC whose top face passes through some
point in P . Bottom face may pass through a point
in P or may coincide with the bottom face of R.

Theorem 2 [12] The number of type-1, type-2 and
type-3 MECs’ inside R are O(n2), O(n2) and O(n3)
respectively in the worst case.

From now onwards, we use P to denote the array of
size n containing the input points. We show that the
methods proposed in [12] for identifying the largest type-
1, type-2 and type-3 MECs can be made in-place with
O(1) extra work-space in addition to the input array.

3.1 Computation of largest type-1 MEC

Consider the projections of the points in P on the top
face H of R. Note that, each maximal empty axis-
parallel rectangle (MER) on H corresponds to a type-1
MEC. Since the height of all these MECs’ are the same,
the problem reduces to computing the maximum area
MER in H. Corollary 1.1 suggests the following result:

Lemma 3 The largest empty type-1 MEC can be com-
puted in O(n2) time using O(1) extra work-space.

3.2 Computation of largest type-2 MEC

We assume that the points in P are sorted in decreas-
ing order of their z-coordinates. We consider each point
pi ∈ P in order, and compute MEC(pi), the largest
type-2 MEC whose bottom face passes through pi. Let
H(pi) be the horizontal plane passing through pi, and

CCCG 2011, Toronto ON, August 10–12, 2011

349

23rd Canadian Conference on Computational Geometry, 2011

pi

Figure 1: Empty orthoconvex polygon around pi

Pi = {p1, p2, . . . , pk} be the set of points strictly above
H(pi). Note that, MEC(pi) corresponds to the largest
MER on H(pi) containing the point pi among the pro-
jections of the points in Pi on H(pi) as obstacles.

Let us partition the plane H(pi) into four quadrants by
drawing two mutually perpendicular axis-parallel lines
passing through pi. In O(n) time, we will be able to
partition the portion of the array P [1, 2, . . . , k] into four
parts, namely P θi , θ = 1, 2, 3, 4, where P θi denote the
points in the θ-th quadrant. The members in P θi are in
consecutive positions in the array P .

In each quadrant θ, we define the maximal closest stair
STAIRθ around pi with a subset of points of P θi as in
[12]. STAIRθ is unique in the θ-th quadrant. The con-
catenation of these four stairs describe an empty axis-
parallel orthoconvex polygon OP (see Figure 1 for il-
lustration). The problem of locating the largest type-2
MEC with pi on its bottom face reduces to finding the
largest MER inside OP containing the point pi. We
explain the method of computing STAIR1. The other
stairs are computed in a similar manner. Next, we ex-
plain the method of computing MER(pi) in OP .

3.2.1 Computation of STAIR1

We sort the points in P 1
i in increasing order of their

y-coordinates. Now, sweep a line parallel to the x-axis
on H(pi) to identify STAIR1. The points in STAIR1

are maintained at the begining of the array P 1
i , and the

points in P 1
i that are not in STAIR1, are stored at the

end of P 1
i . The points in STAIR1 are stored in decreas-

ing order of their x-coordinates. Two index variables α
and β are maintained during the execution; α indicates
the index of the point in P 1

i under processing, and β
indicates the index of the last point in STAIR1 (i.e.,
having minimum x-coordinate among the ones identi-
fied so far). During the sweep, if pα = (xα, yα, zα) ∈ P 1

i

satisfies xα > xβ , then pα does not appear on STAIR1.
However, if xα < xβ , then pα appears in STAIR1. In
such a case, if α = β + 1, then both α and β are in-
cremented by 1. But, if α > β + 1, then (i) β is incre-
mented, (ii) P 1

i [α] and P 1
i [β] are swapped, and (iii) α is

incremented to process the next point of P 1
i .

3.2.2 Computation of MER(pi)

It is easy to observe that, for every MER inside the
orthoconvex polygon OP , its north side will contain
a point in STAIR1 ∪ STAIR2, and its south side will
contain a point STAIR3 ∪ STAIR4. In our algorithm
for computing MER(pi), we will consider each point
in STAIR1 ∪ STAIR2, and compute all the MERs with
north side passing through it.

The MERs with north side touching a point pj ∈
STAIR1 are obtained as follows. We draw the projec-
tions q1 and q2 of pj on STAIR2 and STAIR4 respec-
tively as shown in Figure 2. Let q1 lies on the vertical
line passing through pα ∈ STAIR2 and q2 lies on the
horizontal line passing through pβ ∈ STAIR4. Thus, pα
satisfies y(q1) ∈ [y(pα′), y(pα)], where pα and pα′ are
two consecutive points on STAIR2. Thus, q1 can be
obtained by performing binary search in STAIR2. Sim-
ilarly, q2 can be obtained by performing binary search
in STAIR4. Now, we compute the projections of q1 and
q2 on STAIR3. Let these two points be q3 and q4 re-
spectively. Now, two situations may arise:

[y(q3) ≤ y(q4):] Here only one MER with pj on its
north boundary is possible. Its west and south sides
will contain pα and pβ respectively; its east side will
contain a point p′j ∈ STAIR1 adjacent to pj to the right
side (y(p′j) < y(pj)) or a point q ∈ STAIR4 adjacent to
q2 to the right side (y(q) > y(q2)). See Figure 2(a).

[y(q3) > y(q4):] Here more than one MER with pj
on its north boundary may exist (Figure 2(b)). Let
µ1, µ2, . . . , µm be the consecutive points in STAIR3 with
y(µ1) < y(µ2) < . . . < y(µm), and y(µr) ∈ [y(q3), y(q4)]
for r = 1, 2, . . . ,m. Similarly, ν1, ν2, . . . , ν` are consecu-
tive points in STAIR4 with y(ν1) < y(ν2) < . . . < y(ν`),
and y(νr) ∈ [y(q3), y(q4] for r = 1, 2, . . . , `. Here,
`+m+1 MERs are possible with north boundary passing
through pj . Their south boundaries will pass through
q2, µ1, µ2, . . . , µk, ν1, ν2, . . . , ν` respectively. The east
and west sides of these MERs are uniquely defined, and
are obtained by traversing the stairs in four quadrants.

Lemma 4 The time complexity of computing the
largest type-2 MEC is O(n2 log n) with O(1) extra space.

Proof. We prove this lemma by showing that the time
complexity of generating all the type-2 MECs with pi
on its bottom face is O(Ci + n log n); Ci is the number
of such MECs present in R. Processing of the point pi
consists of the following three steps:

[Step 1:] Partitioning the points above pi into P θi , for
θ = 1, 2, 3, 4. This needs O(n) time in the worst case.

[Step 2:] Computing STAIRθ, θ = 1, 2, 3, 4. This needs
O(n log n) time since a sorting step among the points

23rd Canadian Conference on Computational Geometry, 2011

350

CCCG 2011, Toronto ON, August 10–12, 2011

pi

q1

q2

(a)

q3

q4

pi

q1

q2

(b)

q3

q4

Figure 2: Computation of MER(pi)

in P θi with respect to their y-coordinates is involved
here. After the sorting, the line sweep for constructing
STAIRθ needs O(n) time.

[Step 3:] Computing MER(pi). This needs O(Ci +
n log n) time. The second component in the time com-
plexity appears due to the fact that for each point
pj ∈ STAIR1 ∪ STAIR2, we need to execute binary
searches for computing its projections q1 and q2 in the
adjacent stairs. Again we may need two binary searches
to get the set of feasible points in STAIR3 that may ap-
pear in the south boundary of the generated MERs.

Since (i) we need to process all the points pi ∈ P , (ii)
C =

∑n
i=1 Ci, and (iii) |C| = O(n2) in the worst case

(see Theorem 2), the time complexity result follows.

We have used four integer locations n1, n2, n3, n4, six
index variables q1, q2, q3, q4, α, β, and a space for swap
operation. Thus, the space complexity follows. �

3.3 Computation of largest type-3 MEC

Here we describe the method of generating all the type-
3 MECs with top face passing through a point pi ∈ P .
Let the points in P be in decreasing order of their z-
coordinates. Consider the horizontal plane H(pi) pass-
ing through pi and sweep it downwards. When the
sweeping plane hits a point pj ∈ P , the points inside
the two horizontal planes H(pi) and H(pj) will partici-
pate in computing the MECs with top and bottom faces
passing through pi and pj respectively.

As in Subsection 3.2.1, here also we use P θi to de-
note the subset of points in P that lie in θ-th quad-
rant, θ = 1, 2, 3, 4, determined by the horizontal and
vertical lines through the point pi on H(pi). The

points in
⋃4
θ=1 P

θ
i are stored in the array-positions

P [i + 1], P [i + 2], . . . , P [n]. The members in P θi are in
the consecutive locations of the array P in decreasing
order of their z-coordinates. We maintain four integer
variables nθ and four index variables χθ, θ = 1, 2, 3, 4.
nθ denotes |P θi | and χθ indicates the last point hit by
the sweeping plane in the θ-th quadrant. At an in-
stant of time the point hit by the sweeping plane is

obtained by comparing the z-coordinates of the points
{P [χθ + 1], θ = 1, 2, 3, 4}.
Let the point pj be under process. The empty orthocon-
vex polygon OP around the point pi is determined by
four stairs {STAIRθ, θ = 1, 2, 3, 4} using the points lying
inside the horizontal slab bounded by H(pi) and H(pj)
(but not including pi and pj). The points determining
STAIRθ are stored at the begining of the subarray P θi
in order of their y-coordinates.

In order to compute the largest MEC with top and bot-
tom faces passing through pi and pj respectively, we
need to compute MER(pi, pj), the largest MER in the
orthoonvex polygon OP that contains both pi and pro-
jection p′j of pj on H(pi). Here, the following two tasks
need to be performed: (i) Computing all the MERs in
OP that contains both pi and p′j , and (ii) updating OP
by inserting p′j for processing the next point pj+1.

3.3.1 Computing MER(pi, pj)

Without loss of generality, assume that p′j is in the first
quadrant. If p′j is in some other quadrant, the situation
is similarly tackled. We now determine the subset of
points in STAIR1∪STAIR2 that can appear in the north
boundary of an MER containing both pi and p′j .

Let STAIR1 = {qk, k = 1, 2 . . . ,m} ⊆ P 1
i , and the

points in Q = {qα, qα+1, . . . , qβ} ⊆ STAIR1 satisfy
x(qk) > x(pj) and y(qk) > y(pj). All the MERs
in OP with north boundary passing through qk, k =
α, α+ 1, . . . , β + 1 and containing pi in its proper inte-
rior will contain p′j also. We draw the projections of p′j
and qβ on STAIR2. Let these two points be µ and ν re-
spectively. If x(µ) = x(ν), then no point on STAIR2 can
appear on the north boundary of a desired MER. But if
x(µ) < x(ν), then all the points q′ ∈ STAIR2 satisfying
x(µ) < x(q′) < x(ν) can appear on the north bound-
ary of a desired MER. In Figure 3, the set of points
that can appear on the north boundary of an MER are
marked with empty dots. The method of computing an
MER with a point qk ∈ STAIR1 ∪ STAIR2 on its north
boundary is same as that in Subsection 3.2.2.

CCCG 2011, Toronto ON, August 10–12, 2011

351

23rd Canadian Conference on Computational Geometry, 2011

pi

p′j

qα

qβ

µ

ν

Figure 3: Computation of type-3 MEC

3.3.2 Updating OP

After computing the set of MERs in OP containing pi
and p′j in its interior, we update OP by inserting p′j
in the respective stair. We have already assumed that
p′j lies in the first quadrant, and each member qk ∈ Q
satisfies x(qk) > x(pj) and y(qk) > y(pj). In order to
insert p′j in STAIR1, we need to remove the members in
Q from STAIR1. We maintain two index variables α and
β; α indicates the last point of STAIR1 observed so far,
and β indicates the point pj under consideration in P 1

i ,
α ≤ β−1. If α < β−1, then the points in the positions
α+ 1, . . . , β − 1 of P 1

i are already considered, but their
projections are not present in STAIR1. While inserting
p′j in STAIR1, we place pj in its desired location as
follows: (i) swap P [β+1] and P [α], and then (ii) execute
a sequence of swap swap(P [r], P [r − 1]) starting from
r = β + 1 until a point P [r] ∈ STAIR1 is found such
that y(P [r]) < y(P [r − 1]). Now, if |Q| > 0, then we
remove the members in Q using two index variables r
and s. We start with r = γ + 1 and s = γ + |Q|+ 1. At
each step, we execute swap(P [r], P [s]) and increment r
and s by 1 until s = β. This needs O(max(|Q|, (β−γ)))
time which may be O(|P 1

i |) in the worst case.

After computing the largest type-3 MEC with pi on its
top boundary, we need to sort the points again with
respect to their z-coordinates. This is required for pro-
cessing pi+1. Thus we have the following result:

Lemma 5 The time required for processing pi is O(n2+
C ′i) in the worst case, where C ′i is the number of type-3
MECs with pi on its top boundary.

Proof. The time required for computing MER(pi, pj)
may be O(|Pij | + Cij), where Pij denotes the number
of points inside the horizontal slab bounded by H(pi)
and H(pj), and Cij denotes the number of MERs con-
taining both pi and p′j inside OP with the projection
of points Pij on H(pi). In order to compute the largest
type-3 MEC with pi on its top boundary, we need to
compute MER(pi, pj) for all j > i, C ′i =

∑n
j=i+1 Cij ,

and
∑n
j=i+1 |Pij | = O((n − i)2). Finally after the pro-

cessing of pi, the sorting step takes O(n log n) time. �

Theorem 6 The worst case time complexity of our in-
place algorithm for computing the largest MEC is O(n3),
and it takes O(1) extra space.

Proof. The time complexity for computing the largest
type-1 MEC is O(n2) (see Corollary 1.1). Lemma 4 and
the fact that the number of type-2 MECs is O(n2) in
the worst case [12], indicate that the worst case time
complexity of computing the largest type-2 MEC is alo
O(n2 log n). Finally, Lemma 5 says that the worst case
time complexity of computing the largest type-3 MEC
is O(n3). Needless to mention that we have used only
few index variables, four integer variables to maintain
the number of points in the four quadrants on H(pi),
and a temporary variable for the swap operation. �

References

[1] A. Aggarwal and S. Suri. Fast algorithm for comput-
ing the largest empty rectangle. In Symp. on Comput.
Geom., pages 278-290, 1987.

[2] T. Asano and G. Rote. Constant working-space algo-
rithms for geometric problems. In Canad. Conf. on
Comput. Geom., pages 87-90, 2009.

[3] P. Bose, A. Maheshwari, P. Morin, J. Morrison, M. H.
M. Smid and J. Vahrenhold. Space-efficient geometric
divide-and-conquer algorithms. Computational Geome-
try, 37(3):209-227, 2007.

[4] H. Brönnimann, T. M. Chan and E. Y. Chen. Towards
in-place geometric algorithms and data structures. In
Symp. on Comput. Geom., pages 239-246, 2004.

[5] H. Brönnimann, J. Iacono, J. Katajainen, P. Morin, J.
Morrison and G. T. Toussaint. Space-efficient planar
convex hull algorithms. Theoretical Computer Science,
321(1):25-40, 2004.

[6] J. Chaudhuri, S. C. Nandy and S. Das. Largest empty
rectangle among a point set. J. Algorithms, 46(1):54-78,
2003.

[7] E. Y. Chen and T. M. Chan. A space-efficient algorithm
for segment intersection. In Canad. Conf. on Comput.
Geom., pages 68-71, 2003.

[8] T. M. Chan, E. Y. Chen. Optimal in-place algorithms
for 3-D convex hulls and 2-D segment intersection. In
ACM Symp. on Comput. Geom., pages 80-87, 2009.

[9] M. De, A. Maheswari, S. C. Nandy and M.Smid. An in-
place min-max priority search tree. Manuscript, 2011.

[10] H. Edelsbrunner. Algorithms in Combinatorial Geometry,
Springer, Berlin, 1987.

[11] R. Janardan and F. P. Preparata. Widest corridor prob-
lem. Nordic J. Computing. 1(2):231-245, 1994.

[12] S. C. Nandy and B. B. Bhattacharya. Maximal empty
cuboids among points and blocks. Computers and math-
ematics with Applications, 36(3):11-20, 1998.

[13] A. Naamad, D. T. Lee and W. -L. Hsu. On the maxi-
mum empty rectangle problem. Discrete Applied Math-
ematics, 8(3):267-277, 1984.

23rd Canadian Conference on Computational Geometry, 2011

352

CCCG 2011, Toronto ON, August 10–12, 2011

[14] M. Orlowski. A new algorithm for the largest empty
rectangle problem. Algorithmica, 5(1-4):65-73, 1990.

[15] J. Vahrenhold. An in-place algorithm for Klee’s mea-
sure problem in two dimensions. Information Process-
ing Letters, 102(4):169-174, 2007.

CCCG 2011, Toronto ON, August 10–12, 2011

353

23rd Canadian Conference on Computational Geometry, 2011

354

CCCG 2011, Toronto ON, August 10–12, 2011

Realizing Site Permutations∗

Stephane Durocher† Saeed Mehrabi† Debajyoti Mondal† Matthew Skala†

Abstract

Given n fixed sites on the plane, there are several ways
to determine a permutation of the sites as a function of a
unit vector u or a vantage point v. Given such a scheme
and a permutation π, we can ask whether there is any
unit vector or vantage point for which the permutation
is π. We give linear-time algorithms for this realization
problem under three schemes for determining permuta-
tions: sweeping a line across the sites in a direction u;
expanding a circle starting from a vantage point v; and
sweeping a ray from v to give a cyclic permutation.

1 Introduction

Given an arrangement of points called sites on the
plane, there are several ways to choose a permutation of
the sites. For instance, we could sweep a line across the
arrangement and enumerate the sites in the order the
line touches them. We could start from some vantage
point and consider the sites in order of increasing dis-
tance from the vantage point. We could instead sweep a
ray from the vantage point radially through all possible
angles and consider the circular ordering of the sites it
encounters. Other rules are also possible. Given a set
of sites S and a geometric rule for defining a permuta-
tion of S as a function of a sweep direction or vantage
point, some permutations can be realized by some choice
of sweep direction or vantage point, and other permu-
tations cannot be realized. In this work we consider
the algorithmic problem of recognizing realizable per-
mutations, and describe linear-time algorithms for this
problem under three different geometric rules.

Problems of this type have applications in settings
that involve computing the position of an observer such
as a robot [8] within its environment relative to a se-
quence of observations made using a directional sensor
(such as a sonar, radar, or camera).

2 Definitions and notation

Let S = {s1, s2, . . . , sn} be a set of points on the Eu-
clidean plane, called the sites. Let S1 represent the set
of directions, or unit vectors, in the plane. Assume that

∗Work supported in part by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC).
†Department of Computer Science, University of Manitoba,

{durocher,mehrabi,jyoti,mskala}@cs.umanitoba.ca

all points and directions in the problem are in general
position: that is, no two points are coincident; no three
points are collinear; no point is equidistant from two
others; no four points w, x, y, and z have the relation-
ship that the line wx is parallel to the line yz; and (in
the case of sweep-line permutations) the given sweep di-
rection u is not orthogonal to the line connecting any
two points.

For any unit vector u ∈ S1 in general position relative
to S, let the sweep-line permutation of u be the permu-
tation of sites determined by sweeping a line orthogonal
to u across the sites in the direction u and enumerating
the sites in the order encountered. It would be equiva-
lent to say that we project all the sites onto a directed
line parallel to u and define the permutation by the or-
der of the projected sites along the line.

Instead of sweeping a line in a direction, we might
start from a point v called the vantage point and enu-
merate the sites in order of increasing distance from v
to form a distance permutation. This derivation can be
imagined as expanding a circle centred on v and enumer-
ating the sites in the order encountered; or as sending
out a sonar ping and recording the order of the echoes
received.

Another way of determining a permutation would be
by taking a ray starting from v and sweeping it counter-
clockwise through a complete rotation of 360◦, enumer-
ating the sites in the order the ray encounters them.1

Then we obtain a cyclic permutation; that is, an equiv-
alence class of permutations up to rotation. This radial
permutation is analogous to scanning the sites with a
rotating search light or radar beam, and recording the
order in which we see them without regard for the angles
or the starting orientation of the sweep.

Figure 1 illustrates the three kinds of site permuta-
tions we consider. In the figure, a line swept in the
direction u encounters the sites in the order dcba. An
expanding circle starting at v encounters the sites in
the order bdac; and a ray originating at v and swept
counterclockwise encounters them in the order cdba, up
to a rotation that depends on the starting orientation
of the sweep. For any of these schemes, given a per-
mutation or cyclic permutation π and a set of sites, a
unit vector u or vantage point v is said to realize π if π
is the permutation determined by u or v for the given

1We describe angles using degrees to avoid confusion with the
symbol π used for a generic permutation.

CCCG 2011, Toronto ON, August 10–12, 2011

355

23d Canadian Conference on Computational Geometry, 2011

A
u

C

a

b

c

d

v

B

Figure 1: A. sweep-line permutation in direction u:
dcba. B. distance permutation centred at v: bdac. C.
radial permutation centred at v: cdba.

scheme and sites. Then π is said to be realizable if and
only if there is a vantage point or unit vector realizing
it. In this work we consider the problem of deciding
whether a permutation π is realizable and, if so, com-
puting a corresponding unit vector u or vantage point v
that realizes π.

If the vantage point v is sufficiently far from the sites
in the direction opposite to u, then the expanding circle
centred on v when it passes over the sites is equivalent
to a line orthogonal to u and sweeping in the direction
u. Similarly, if the vantage point v is sufficiently far
from the sites in a direction 90◦ counterclockwise from
u, then the sweeping ray from v when it passes over the
sites is equivalent a line sweeping in the direction u. We
can thus make the following observation.

Observation 1 Every sweep-line permutation for an
arrangement of sites is also realized as a distance per-
mutation and a radial permutation.

Throughout our algorithmic results we assume a real
RAM model of computation, in which we can perform
basic arithmetic operations in unit time. This is a
standard assumption for computational geometry algo-
rithms in general; and in particular, the linear-time lin-
ear programming algorithm of Megiddo [5], which we
use, is only linear-time under the assumption it can
complete in constant time the multiplication and divi-
sion operations needed to find the intersections of lines
given as input. Analysing the algorithms under some
other model to force a superlinear result would be pri-
marily an exploration of the complexity of arithmetic in
general without giving specific insight into these algo-
rithms.

3 Previous work

The cyclic sequence of sweep-line permutations formed
by a site arrangement as we rotate the sweep direc-
tion through a full circle is called an allowable sequence,
and allowable sequences are well-studied. Goodman and
Pollack pioneered the use of allowable sequences in char-
acterizing the order type of the sites [4]. The allowable
sequence for a site arrangement is closely connected to
the oriented matroid associated with the site arrange-
ment, and that connection leads to many combinatorial
insights [2].

Chávez, Figueroa, and Navarro introduced distance
permutations in a database context, as a way of classi-
fying points in high-dimensional general metric spaces
to support efficient proximity queries [3]. Note that this
kind of permutation (possibly with a tiebreaking as-
sumption added to handle degenerate cases) is defined
for any space with a real distance function—it need not
even be a metric. Skala proved bounds on the number of
distinct distance permutations that can occur as a func-
tion of the number of sites in various spaces, including
an exact count for Euclidean spaces [6].

Bieri and Schmidt studied radial permutations as well
as sweep-line permutations and a variation on radial
permutations in which a line is swept instead of a ray [1].
Noting that the number of radial permutations realized
by a site arrangement is Θ(n4) (which follows from the
number of bisectors and the fact that k lines in general
position on the plane divide the plane into Θ(k2) cells),
they give an algorithm to generate all the permutations
in Θ(n4) time—interesting because the naive size of the
output would be Θ(n5). To achieve the faster running
time, they order the permutations in such a way that
each except the first differs from some previous permu-
tation by one swap of adjacent elements; then the swaps
can be found in O(n4) time. Tovar, Freda, and LaValle
studied radial permutations in the context of robot nav-
igation; assuming a robot with a sensor that detects the
radial permutation of landmarks as seen from its current
location, they show how the robot can achieve naviga-
tional goals [8].

4 Bisectors and Voronoi diagrams

The sweep-line method of finding a permutation implic-
itly divides the set of possible directions into intervals
corresponding to the realizable permutations. Similarly,
the distance and radial permutations correspond to cells
of a Voronoi-like diagram in the plane. These divisions
are shown in Figure 2. Note that the unbounded cells
for distance and radial permutations correspond to the
permutations realized by points at infinity, and thus to
the sweep-line permutations (Observation 1).

Every pair of sites si and sj determines a bisector :
a set of points where the ordering of si and sj is not

23rd Canadian Conference on Computational Geometry, 2011

356

CCCG 2011, Toronto ON, August 10–12, 2011

a

b c

bac

bcacba

cab

acb abc

a

b c

cab

acbabc

bac

bca cba

a

b

c

abc

acb

acb acb

(a) (b) (c)

Figure 2: Division of space by permutation schemes: (a) sweep-line, (b) distance, (c) radial.

uniquely defined. If we imagine a point wandering con-
tinuously through the space (like Tovar, Freda, and
LaValle’s robot [8]), the permutation it observes will
change by a swap of adjacent elements each time it
crosses a bisector. For sweep-line permutations, the
bisector of si and sj consists of the two unit vectors
parallel to the line between si and sj . For distance per-
mutations, it is the set of all points equidistant from
si and sj , which is the line orthogonally bisecting the
segment that connects the two sites. For radial per-
mutations, it is the line connecting si and sj , with the
segment between them removed. The radial bisector is
unusual because it can be said to cut the plane into just
one piece: with two sites, only one permutation exists
up to rotation, so there is only one cell. Radial bisectors
become more meaningful once there are three or more
sites.

Examination of these divisions of space leads to sim-
ple counts or bounds on the number of permutations re-
alized. For sweep-line permutations, the bisectors each
consist of two points, and distinct bisectors never coin-
cide when sites are in general position, so it is trivial
that the number of intervals and thus permutations for
n sites is 2

(
n
2

)
. For distance permutations,

(
n
2

)
bisectors

and the quadratic bound on number of cells formed by
lines in general position gives an upper bound of O(n4)
permutations; Skala notes that bisectors are not in gen-
eral position because of transitivity, and gives an exact
recurrence for the number of permutations, as well as
generalizing the question to higher dimensions of Eu-
clidean space; in d dimensions the number of permuta-
tions is shown to be Θ(n2d) [6]. For radial permutations,
the same kind of argument gives an obvious O(n4) up-
per bound, but the possibility for a permutation’s cell to
be non-convex or even disconnected (as in Figure 2(c))
complicates matters. Bieri and Schmidt state as a the-
orem (without detailed proof) that the upper bound is
achieved by some arrangement of n sites for every n [1].

5 Radial permutations in the dual space

For each site si in s1, s2, . . . , sn, define a line s∗i as fol-
lows: let (xi, yi) be the coordinates of si, and then let
s∗i be the line dual to si, defined by y = x · xi − yi.

Let v = xv, yv be a point in the plane, not equal to
any of the sites, and similarly define its dual line v∗

by y = x · xv − yv. These points and lines are shown
in Figure 3. The vantage point v was chosen to be
the origin for convenience in making and understanding
the figure; its image in dual space is the x axis. The
sorted sequence of the segments (v, si) around v corre-
sponds to an ordered sequence of intersections between
the lines v∗ and s∗i , as a line connecting two points in
primal space corresponds to the intersection of two lines
in dual space.

Let L be the vertical line passing through v. L di-
vides the plane into two half-planes. In Figure 3(a),
the right half-plane contains s3, s5, and s6, and the left
half-plane contains s1, s2, and s4. In Figure 3(b), the
crossing points for s∗3, s∗5, and s∗6 (shown in white) ap-
pear consecutively right to left. Similarly, the crossing
points for s∗1, s∗2, and s∗4 (shown in black) appear consec-
utively left to right. We can concatenate the two lists
to obtain a radial permutation π of the sites around v:
s1, s2, s4, s3, s5, s6.

The dual space naturally suggests another sequence
of the sites, that found by examining all the crossings
(not black and white separately) along the line. From
right to left that sequence is s∗1, s

∗
2, s
∗
3, s
∗
5, s
∗
4, s
∗
6. In the

primal space it corresponds to rotating a line, not a ray,
passing through v, starting at vertical and then 180◦

counterclockwise until it becomes vertical again, and
enumerating the sites in the order the line encounters
them. This variation of radial permutations corresponds
to the undirected stars described by Streinu [7]. If we
add a sign to each element in the sequence describing
whether it was hit by the head or the tail of the line
during the radial sweep, the result is a directed star (or
simply a star) as described by Streinu; in Figure 3, using
Streinu’s notation, the star would be 123̄5̄46̄, where x
and x̄ denote that element x was met by the head or tail
end, respectively, of the rotating line. Given a directed
star, it is straightforward to construct the corresponding
radial permutation in linear time.

CCCG 2011, Toronto ON, August 10–12, 2011

357

23d Canadian Conference on Computational Geometry, 2011

v

s1
s2

s3

s4

s5

s6

v∗

s∗1s∗2s∗3

s∗4

s∗5s∗6

(a) (b)

Figure 3: A radial permutation in (a) primal and (b) dual spaces.

6 Results

The bisectors for sweep-line permutations suggest a sim-
ple linear-time algorithm for realizing permutations; in
fact, because the cells are simply intervals around the
circle, we not only compute a single unit vector to re-
alize the permutation, but also completely describe the
set of all such vectors in the same asymptotic time.

Theorem 1 There exists a linear-time algorithm that
given sites s1, s2, . . . , sn and a permutation π on the
indices, finds the set of all directions u for which the
sweep-line permutation is π.

Proof. By transitivity, it suffices to enforce the n − 1
constraints that the sweep line reaches sπ(1) before sπ(2),
sπ(2) before sπ(3), and so on. Each of those constraints
corresponds to an interval of allowed values for u in S1.
Each interval is open and has length 180◦; therefore
the intersection of any two of them is a single, possibly
smaller, interval; and by associativity we can compute
the intersection of all of them in O(n) time. �

In the case of distance permutations, linear time does
not allow us to examine all of the quadratic number of
bisectors; but because the bisectors correspond to the
transitive “less than” relation on distances, we can ob-
tain all the necessary information by examining a linear-
sized subset of them.

Theorem 2 There exists a linear-time algorithm that
given sites s1, s2, . . . , sn and a permutation π on the
indices, finds a vantage point v for which the distance
permutation is π, if such a v exists.

Proof. By transitivity, it suffices to enforce the n − 1
constraints that v is closer to sπ(1) than to sπ(2), closer
to sπ(2) than to sπ(3), and so on. Each of those corre-
sponds to a half-plane (linear) constraint. By the linear-
time two-dimensional linear programming algorithm of
Megiddo [5], we can find a point v satisfying all the
constraints in O(n) time. �

Radial permutations present a greater challenge, pri-
marily because we are seeking not a single permutation

θ1θ2

θ3

sπ(1)

sπ(2)

sπ(3)

v

Figure 4: Angles measured around v.

but an equivalence class of permutations. We begin by
proving a connection between the realization problem
and linear programming.

Lemma 3 There exists a linear-time algorithm that
given sites s1, s2, . . . , sn and a permutation π on the
indices, constructs a set of linear constraints such that
any vantage point v for which the radial permutation
is π up to rotation satisfies all, or all but one, of the
constraints.

Proof. Where v is the vantage point, for each integer
1 ≤ i ≤ n, let θi denote the angle measured counter-
clockwise around v from the ray pointing at sπ(i) to the
ray pointing at sπ(j), where j = (i mod n)+1, as shown
in Figure 4. Let Θ =

∑n
i=1 θi, that is, the sum of all

the θi.
For each pair of successive sites sπ(i) and sπ(j) where

θi < 180◦, it must be that v, sπ(i), and sπ(j) form a tri-
angle in counterclockwise order, like v, sπ(1), and sπ(2)
in Figure 4. That is equivalent to the statement that
v is on the left side of the directed line from sπ(i) to
sπ(j), and we can express that statement as a half-plane
constraint. We create such a constraint for each pair of
successive sites.

One way v might realize π would be if it were in the
kernel of a star-shaped polygon formed by the sites in
the order described by π; then every θi < 180◦ and all
the linear constraints would be satisfied. This situation
is illustrated in Figure 5(a).

23rd Canadian Conference on Computational Geometry, 2011

358

CCCG 2011, Toronto ON, August 10–12, 2011

s5

s6

s1

s2
s3

s4

v

s4
s5

s6

s1
s2

s3

v

(a) (b)

Figure 5: Realizing a permutation while violating (a) zero or (b) one of the linear constraints (π is the identity).

It is also possible for the vantage point v to lie out-
side the kernel of the star-shaped polygon, as shown in
Figure 5(b). However, if v realizes π, then summing all
the θi corresponds to making one full sweep around v;
Θ = 360◦. Thus, at most one of the θi can be greater
than 180◦, corresponding to a violated constraint; all
the others must be satisfied. Therefore, at most one of
the constraints can be violated. �

To actually solve the realization problem we must not
only perform linear programming but also determine
which constraint to violate, if any. Here we exploit the
special properties of Megiddo’s linear programming al-
gorithm [5], which either finds a solution to the realiza-
tion problem immediately, or gives us a clue to where
the permutation must start.

Theorem 4 There exists a linear-time algorithm that
given sites s1, s2, . . . , sn and a permutation π on the
indices, finds a vantage point v for which the radial per-
mutation is π up to rotation, if such a v exists.

Proof. We invoke the linear-time two-dimensional lin-
ear programming algorithm of Megiddo [5] to find a
point satisfying all the constraints of Lemma 3, if possi-
ble. We can then distinguish two cases: (1) such a point
exists; or (2) no such point exists.

Case 1. It is possible that a point v could satisfy all
the constraints but not realize the permutation π, if the
sequence of sites described by π winds more than once
around v. An example demonstrating this situation is
shown in Figure 6. When the linear program returns
a solution v, it is easy to test in linear time whether
v realizes the permutation π. If it does, the algorithm
returns it immediately.

Suppose v does not realize π. The cumulative angle
Θ must be an integer multiple of 360◦; and when v is
a solution to the linear program but does not realize
the desired permutation, it must be at least 720◦. Re-
moving one constraint (changing the polygon to a path,

which might still be self-intersecting) reduces the sum
for the remaining pairs of sites by strictly less than 360◦,
leaving it strictly greater than 360◦. Now suppose we
start our ray sweep with a ray pointing from v′, a solu-
tion to the linear program with one constraint relaxed,
to the site at the start of the path. If we sweep to each
successive site on the path in turn, we will complete a
full angle (360◦) and see the start of the path again,
before we complete the sweep at the end of the path.
That means we must already have seen the end of the
path, before its proper place at the end of the sweep.
Therefore v′ cannot realize the permutation π. In intu-
itive terms, if the polygon wraps more than once around
some solution, it must wrap at least twice, and then
the path formed by deleting one edge from the polygon
(which subtracts less than 360◦) must still wrap more
than once around every solution.

We have that if there exists a vantage point v that is
a solution to the linear program but does not realize the
permutation π, then no point v′ which is a solution to
any linear program formed by relaxing one of the orig-
inal constraints, can realize the permutation π. Since
every point realizing π must be a solution to our origi-
nal linear program with at most one constraint relaxed,
then there can be no point realizing π at all. Thus, in
Case 1, where the linear program is feasible, it suffices
to test whether the solution v realizes π, return it if it
does realize π, and return failure if it does not.

Case 2. If the first linear program is infeasible, then
any v realizing π must be a solution to the linear pro-
gram with exactly one constraint relaxed. Megiddo’s al-
gorithm [5] works by examining constant-sized subsets
of the input constraints and, at each one, attempting to
prove that at least one of the constraints is unnecessary
for the optimal solution. His analysis shows that in each
of the subsets at least one constraint can always be re-
moved if the input is feasible, allowing the algorithm to
stop after a linear number of steps with either a solution
or a proof of infeasibility. That approach has the impor-

CCCG 2011, Toronto ON, August 10–12, 2011

359

23d Canadian Conference on Computational Geometry, 2011

s1 s2

s3

s4

s5
s6

s7

s8

s9

s10

s11

v

Figure 6: The sites wind more than once around v (π is
the identity).

Figure 7: An infeasibility certificate.

tant consequence that in case of an infeasible input, the
algorithm actually finds a constant-sized certificate of
infeasibility, namely the last subset of input constraints
it examined before halting. The algorithm can easily
be modified to produce the certificate as output, in the
form of at most three constraints that cannot all be sat-
isfied. In general those constraints will be arranged as
shown in Figure 7; with input not in general position
a certificate consisting of two non-intersecting parallel
half-planes would also be possible.

In order to be a vantage point realizing the desired
radial permutation, v would have to satisfy all except
at most one of the constraints in the original linear
programming problem. If v can satisfy all except one,
but not all of the constraints, then every infeasible sub-
set of the constraints must include that one constraint,
so it must be among the at most three returned when
Megiddo’s algorithm failed. By invoking Megiddo’s al-
gorithm at most three more times, with each constraint
from the certificate removed in turn, we can find a value
for v that realizes the permutation π, if any exists. �

7 Conclusion

In this paper, we considered the problem of realizing
a permutation π on a set of n sites in the plane. We

gave three linear-time algorithms for this kind of prob-
lem, corresponding to three schemes of determining per-
mutations: sweeping a line in direction u, measuring
distance from a vantage point v, and sweeping a ray
counterclockwise around v. One obvious direction for
future work is to consider other ways of determining a
permutation; for example, rotating a line through v in-
stead of a ray starting at v. We might also consider
more general kinds of constraint satisfaction involving
site permutations; for instance, finding a point that re-
alizes any permutation containing a given contiguous
subsequence.

Acknowledgments

We wish to thank Pak Ching Li and Jason Morrison for
insightful discussions on these and related problems.

References

[1] H. Bieri and P.-M. Schmidt. On the permutations gen-
erated by rotational sweeps of planar point sets. In Pro-
ceedings of the 8th Canadian Conference on Computa-
tional Geometry, Ottawa, Canada (CCCG 1996), pages
179–184, August 12–15 1996.

[2] A. Björner, M. L. Vergnas, B. Sturmfels, N. White, and
G. M. Ziegler. Oriented Matroids. Cambridge University
Press, 2nd edition, 1999.

[3] E. Chávez, K. Figueroa, and G. Navarro. Proximity
searching in high dimensional spaces with a proximity
preserving order. In Proceedings of the 4th Mexican In-
ternational Conference on Artificial Intelligence (MICAI
2005), Monterrey, Mexico, volume 3789 of Lecture Notes
in Computer Science, pages 405–414. Springer, Novem-
ber 14–18 2005.

[4] J. E. Goodman. On the combinatorial classification of
nondegenerate configurations in the plane. Journal of
Combinatorial Theory, Series A, 29(2):220–235, Septem-
ber 1980.

[5] N. Megiddo. Linear-time algorithms for linear program-
ming in R3 and related problems. SIAM Journal on
Computing, 12(4):759–776, November 1983.

[6] M. Skala. Counting distance permutations. Journal of
Discrete Algorithms, 7(1):49–61, March 2009.

[7] I. Streinu. Clusters of stars. In Proceedings of the 13th
Annual Symposium on Computational Geometry (SCG
1997), Nice, France, pages 439–441, June 4–6 1997.

[8] B. Tovar, L. Freda, and S. M. LaValle. Learning com-
binatorial map information from permutations of land-
marks. International Journal of Robotics Research, Oc-
tober 2010.

23rd Canadian Conference on Computational Geometry, 2011

360

CCCG 2011, Toronto ON, August 10–12, 2011

Establishing Strong Connectivity using Optimal Radius Half-Disk Antennas

Greg Aloupis∗ Mirela Damian† Robin Flatland‡ Matias Korman§ Özgür Özkan¶

David Rappaport‖ Stefanie Wuhrer∗∗

Abstract

Given a set S of points in the plane representing wireless
devices, each point equipped with a directional antenna
of radius r and aperture angle α ≥ 180◦, our goal is to
find orientations and a minimum r for these antennas
such that the induced communication graph is strongly
connected. We show that r =

√
3 suffices to establish

strong connectivity, assuming that the longest edge in
the Euclidean minimum spanning tree for S is 1. This
result is optimal in the sense that r =

√
3 is necessary in

the worst-case for α ∈ [180◦, 240◦). In contrast, r = 2
is sometimes necessary when α < 180◦.

1 Introduction

Consider a wireless network modeled by a set of planar
point sites S each equipped with a transceiver having
a transmission radius r. Typically one assumes that
communication is omni-directional and two nodes can
directly communicate with each other if the distance
separating them is r or less. Geometrically the trans-
mission region of an antenna at a point p is modeled
by a circle of radius r centered at p. The connectivity
of the network can be represented by a communication
graph G(S), which has a node for each point and an
edge between each pair of nodes separated by distance
r or less.

Recently there has been interest in using directional
antennas in place of their omni-directional counter-
parts [2, 3, 4, 5, 6, 7, 8]. Some advantages of using
directional antennas are that security can be enhanced

∗Université Libre de Bruxelles (ULB), Belgique,
aloupis.greg@gmail.com
†Department of Computer Science, Villanova University, USA

mirela.damian@villanova.edu
‡Department of Computer Science, Siena College, USA,

flatland@siena.edu
§Université Libre de Bruxelles (ULB), Belgique,

mkormanc@ulb.ac.be
¶Department of Computer Science and Engineering, Polytech-

nic Institute of NYU, USA, ozgurozkan@gmail.com. Research
supported by US Department of Education grant P200A090157.
‖School of Computing, Queen’s University, Canada

daver@cs.queensu.ca. Research supported by NSERC Dis-
covery grant 388-329.
∗∗Institute for Information Technology, National Research

Council, Canada, stefanie.wuhrer@nrc-cnrc.gc.ca

and communication interference can be reduced. Fur-
thermore, if directional antennas are used cleverly the
power consumption of the network may be reduced. The
transmission region of a directional antenna at a node
p is geometrically represented by the sector of a circle
with its apex at p, a central angle α, and a radius r. Its
orientation is determined by a rotation θ about p. We
assume that all antennas have the same α and r; it is
only θ that varies. Thus communication between two
nodes is no longer symmetric and is best modeled by a
directed communication graph in which a directed edge−→pq indicates that q lies in p’s sector.

The direction assignment problem is the task of find-
ing orientations for a set of directional antennas such
that the induced communication graph has certain de-
sired properties. In this paper we focus on obtaining a
strongly connected communication graph using minimal
r. We will assume S is normalized so that the length
of the longest edge in a Euclidean minimum spanning
tree is 1. It is not difficult to see that to achieve con-
nectivity in the normalized point set, r must be at least
1. Caragiannis et al. [3] show that, for antennas with
α < 240◦, an increase in r by a factor of

√
3 is sometimes

necessary to guarantee strong connectivity in the com-
munication graph. We show here that, for α ≥ 180◦, an
increase factor of

√
3 is always sufficient. In contrast,

when α < 180, the communication range must some-
times increase by a factor of 2 (i.e., consider points at
unit intervals on a line).

We review some related results. In addition to provid-
ing lower bounds on r, Caragiannis et al. [3] also give an
algorithm for orienting antennas with 180◦ ≤ α < 288◦

to obtain strong connectivity using r = 2 sin(180◦ −
α/2). Thus the algorithm presented here (with r =

√
3)

improves upon their result when 180◦ ≤ α < 240◦.
Damian and Flatland [6] consider directional antenna
angles of 120◦ and 90◦, and provide bounds of r = 5
and r = 7 (resp.) while at the same time bounding
the number of hops to 5 and 6 (resp.) for nodes within
unit distance. Bose et al. [8] have recently shown that
a connected network using omni-directional communi-
cation, can be replaced with directional antennas (with
any α > 0◦) so that the increase of r and hop distance
are bounded by constant factors (which depend on α).

In other related work, Nijnatten [2] also considers the
problem of finding suitable orientations of α-antennas

CCCG 2011, Toronto ON, August 10–12, 2011

361

23rd Canadian Conference on Computational Geometry, 2011

to form a strongly connected graph, but in his variant
of the problem he allows a different r for each antenna
and seeks to minimize the overall power consumption of
the network. Ben-Moshe et al. [5] consider 90◦-antennas
but restrict the orientations to one of the four standard
quadrant directions. Bhattacharya et al. [4] consider
nodes with multiple directional antennas and focus on
minimizing the sum of the antenna angles for a fixed r.
Kranakis et al. [7] have recently published a survey of
results pertaining to the use of directional antennas in
wireless networks.

2 Orienting Antennas Using r =
√

3

Here we establish an upper bound of
√

3 for r, by means
of an algorithm for orienting 180◦-antennas of radius
r =

√
3 to achieve a strongly connected communica-

tion graph. Let MST5 be a minimum spanning tree of
P with maximum degree of five, such as the one de-
scribed in [1]. Our algorithm processes nodes in the
order in which they are visited in a breath-first traver-
sal of MST5. When a node is visited, it is assigned other
nodes (within distance

√
3) for its antenna to cover (so

as to satisfy certain invariants). If a node v is assigned
to cover node w, we will say that “v points to w,” and
we use the notation v → w. During the traversal of
MST5, nodes are colored white, gray, or black. Initially
all nodes are white, meaning that they have not yet
been visited and do not point to any nodes. Visited
nodes are black, and they point to at least one and at
most two other gray or black nodes. Gray nodes are
direct children of visited nodes but have not themselves
been visited. They point to one other gray or black
node.

Let the gray/black communication subgraph be the
graph consisting of the gray/black nodes and having
a directed edge −→uw between each pair of nodes where
u → w. Our goal is to assign/adjust what the nodes
point to by inserting/updating edges of length at most√

3 in the gray/black communication subgraph such
that, throughout the tree traversal, the gray/black com-
munication subgraph is strongly-connected. For each
gray/black node, observe that it is trivial to determine
an orientation for its 180◦-antenna that covers the one
or two nodes it points to. We note that the full com-
munication graph induced by these nodes may include
additional edges, since a node’s 180◦-antenna may (by
chance) cover nodes in addition to the one or two ex-
plicitly assigned to it, but these edges are not needed
for strong connectivity.

Let the root of MST5 be any node with degree one. To
get started, we color the root node black and its child
gray, and we constrain them to point to each other.
Starting with the root’s child, we visit the nodes one by
one in a breadth-first search order. When a node v is vis-

p
v

>120

v1 v2

v3

p
v

>120

v1 v2

v3

p
v

v1

p
v

v1

p

v

v1 v2

s

d

v3

v4

p

v

v1 v2

s

d

v3

v4

(a)

(d)

(b)

(e)

(c)

(f)

Figure 1: Solid edges are MST5 edges; the arrows rep-
resent directed edges in the communication graph; the
dotted arrow in (b,e) represents v’s directed edge to
some other gray/black node (by Invariant (I2)).

ited, it is initially gray. During the visit, we change its
color from gray to black and change the color of its chil-
dren from white to gray. We then locally update/insert
directed edges in the gray/black communication sub-
graph so that the following invariants are satisfied:

(I1) Each black node points to at least one and at most
two gray/black nodes.

(I2) Each gray node points to exactly one gray/black
node.

(I3) For each gray node v, one of the following is true:

(I3a) v points to its parent p. (Fig. 1a)

(I3b) p points to v. (Fig. 1b)

(I3c) p has children s and d that are (resp.) the
first child clockwise and first child counter-
clockwise from v, and p → s → v → d → p.

In addition, ŝpv+ v̂pd ≤ 180◦, and s and d lie
on opposite sides of the line passing through
v and p. (Fig. 1c)

(I4) The gray/black communication subgraph has edges
no longer than

√
3 and is strongly connected.

We describe inductively on the number of black nodes
how to maintain these invariants. In the base case there
is one black node, the root of MST5, and it points to its
single gray child, which points back to the root. Observe
that invariant (I1) holds for the root and invariants (I2,
I3a) hold for its child. Also, observe that invariant (I4)
holds for the root and its child. Assume inductively that
the invariants hold after visiting and coloring i nodes
black. Let v be the (i+ 1)-st node visited.

We introduce some definitions so that we can process
v in a uniform manner independent of its degree. Let
boundary(v) be the children of v angularly adjacent to its

23rd Canadian Conference on Computational Geometry, 2011

362

CCCG 2011, Toronto ON, August 10–12, 2011

parent p. More formally, let v0, v1, . . . , vk−1, for k ≤ 5,
be the nodes adjacent to v in counter-clockwise order
with v0 = p. Then, if deg(v) = 1, let boundary(v) = ∅;
otherwise, let boundary(v) = {v1, vk−1} (e.g., see v1 and
v3 in Fig. 1b.) An isolated child is a boundary child that
is angularly separated from v’s other children. In other
words, if deg(v) < 3, then isolated(v) = ∅; otherwise
if v̂1vv2 > 120◦, then v1 ∈ isolated(v), and similarly,
if ̂vk−1vvk−2 > 120◦, then vk−1 ∈ isolated(v) (e.g., in
Fig. 1b v3 is isolated, but v1 is not.) Let Children(v) =
{v1, . . . , vk−1}. The predicate in-range(v, w) = true iff
dist(v, w) ≤

√
3. For any gray node v, let source(v) be

the node constrained to point to node v, and let dest(v)
be the node that v is constrained to point to. We use
these terms only when well-defined within the context
of Invariant I3. For instance, if v satisfies (I3a), then
dest(v) = p; if v satisfies (I3b), then source(v) = p; and
if v satisfies (I3c), then source(v) = s and dest(v) = d
(see Fig. 1c).

Algorithm 1 details how we update/insert edges in
the gray/black communication subgraph when visiting
v. We begin by describing the operation of the algo-
rithm. The IF statement in lines 1-13 initializes the
variables vfrom and vto to be two nodes with a directed
edge between them such that one of the two nodes is v.
The existence of such an edge is guaranteed by Invariant
(I3). For example, in Fig 1b, vfrom = p and vto = v. In
Fig. 1c, there are two directed edges incident to v, one
of which will be used to initialize vfrom and vto; in this
case, there are no isolated children and we will assume
v4 is within range of d, so we set vfrom = v and vto = d.

The remaining pseudocode (lines 14-20) first deter-
mines if there is a boundary child of v that is within
distance

√
3 of both vfrom and vto. If so, then variable

vvia is initialized to one such child, with preference being
given in lines 17-18 to an isolated boundary child (which
will be explained shortly). For example, in Fig. 1b,
vvia = v3; in Fig. 1c, vvia = v4. Then the algorithm
does two things. First, it replaces the edge vfrom → vto
with the two edges, vfrom → vvia and vvia → vto (line 19).
This incorporates child vvia into the strongly connected
subgraph of gray/black nodes. Second, it calls the sub-
routine CHAIN (line 20) which inserts edges that link v
and its children other than vvia into a cycle. This incor-
porates the other children into the strongly connected
subgraph of gray/black nodes. See figure pairs 1b, 1e
and 1c, 1f showing before and after edge insertions. If,
however, there is no boundary child in range of vfrom
and vto in line 15, then vvia = ∅ when the call to CHAIN
in line 20 is made and all of v’s children are linked into
a cycle, thus incorporating them into the gray/black
strongly connected subgraph.

We give intuition regarding the isolated children and
the algorithm’s preference for them. If v has an isolated
boundary child, v′, then we may not be able to CHAIN

Algorithm 1: Visit(Node v)

1 if v → p then /* Invariant I3a */

2 vto = p, and vfrom = v

3 else if p→ v then /* Invariant I3b */

4 vto = v, and vfrom = p

5 else /* Invariant I3c */

6 if ∃v′ ∈ isolated(v) s.t. in-range(v′, dest(v))
then

7 vfrom = v, vto = dest(v)

8 else if ∃v′ ∈ isolated(v)
s.t. in-range(v′, source(v)) then

9 vfrom = source(v), vto = v

10 else if ∃v′ ∈ boundary(v)
s.t. in-range(v′, dest(v)) then

11 vfrom = v, vto = dest(v)

12 else
13 vfrom = source(v), vto = v

14 vvia = ∅
15 if ∃v′ ∈ boundary(v) s.t. in-range(v′, vfrom) ∧

in-range(v′, vto) then
16 vvia = v′

17 if ∃v′ ∈ isolated(v) s.t. in-range(v′, vfrom) ∧
in-range(v′, vto) then

18 vvia = v′

19 REPLACE vfrom → vto with vfrom → vvia and
vvia → vto

20 CHAIN(v,Children(v) \ {vvia})

Subroutine 2: CHAIN(v, v′1, v
′
2 . . . , v

′
`)

Add edges: v → v′1 → v′2 → . . . v′`−1 → v′` → v

v′ with the other children since the angle between it
and the next sibling (in clockwise or counter-clockwise
order) is > 120◦, and thus the next sibling may be at a
distance >

√
3. Observe that in the portion of the IF

statement involving Invariant (I3c) (lines 5-13), there is
a preference for initializing vfrom and vto such that they
both are in range of an isolated child. (Since one of these
two variables will be set to v which is within range of
all its children, we only need to check if dest(v) = d
or source(v) = s is within range.) This is done so that
vvia will be set to an isolated child (in line 18), and
thus an isolated child undergoes the REPLACE opera-
tion rather than being chained with the other children.
(In Section 3 we prove that the remaining children can
be chained.) If no isolated child is within range in lines
6-9, then the algorithm attempts to set vfrom and vto so
that they are within range of a regular boundary child
(lines 10-13). The reason for this is that to maintain
our invariants, we must not chain more than 3 children.

CCCG 2011, Toronto ON, August 10–12, 2011

363

23rd Canadian Conference on Computational Geometry, 2011

Thus if there is a boundary child in range, then it un-
dergoes the REPLACE operation, and the other (at most
3) children are chained.

3 Proof of Correctness

We now prove that Algorithm 1 is correct. We begin
by proving that the CHAIN and REPLACE operations
only add edges between nodes that are in range of each
other and that they maintain Invariants (I1), (I2), and
(I3). We then show that these operations also ensure
that Invariant (I4) is satisfied. In what follows, let p(w)
denote the parent of node w.

Consider the REPLACE operation in line 19. Ob-
serve first that execution only reaches line 19 if
in-range(vfrom, vvia) = in-range(vvia, vto) = true, and
therefore the edge updates are valid. We now verify that
vvia satisfies the invariants after REPLACE. If v satisfies
(I3a), or if v satisfies (I3c) and in-range(vvia, dest(v)) =
true, then vfrom = v. After REPLACE, vvia will sat-
isfy (I3b) since v = vfrom → vvia and v = p(vvia).
Otherwise, v satisfies (I3b), or v satisfies (I3c) and
in-range(vvia, source(v)) = true, and so vto = v. After
REPLACE, vvia will satisfy (I3a) since vvia → vto = v
and v = p(vvia). It is easy to verify that vvia satisfies
(I2), and since REPLACE does not change the number
of nodes pointed to by vfrom and vto, they continue to
satisfy either (I1) or (I2).

We now prove the correctness of the CHAIN operation.
It is easy to verify that the children involved in CHAIN
satisfy (I2) afterwards, since their color changes from
white to gray and CHAIN makes them each point to
one node. In addition, v satisfies (I1) since v points to
one gray/black node before CHAIN, and CHAIN makes
it point to one more. Therefore, we focus on verifying
(I3). In each case that follows, when vvia 6= ∅, we assume
vvia is intialized to boundary child vdeg(v)−1; situations
in which vvia is initialized to v1 are analogous.

• Case 1 (deg(v) = 1) ∨ (deg(v) = 2 ∧ vvia 6= ∅). In
this case there are no points in Children(v) \ {vvia}.

• Case 2 (deg(v) = 2∧vvia = ∅)∨(deg(v) = 3∧vvia 6=
∅). v1 is the only child in Children(v) \ {vvia},
and CHAIN adds edges v → v1 → v. Since
v = p(v1), in-range(v, v1) = true. Thus, v1 satis-
fies (I3a).

• Case 3 (deg(v) = 3 ∧ vvia = ∅) ∨ (deg(v) =
4 ∧ vvia 6= ∅). v1 and v2 are the two children in
Children(v) \ {vvia}, and CHAIN adds edges v →
v1 → v2 → v. Note that since v = p(v1) =
p(v2), in-range(v, v1) = in-range(v, v2) = true. Also,
by Lemma 4 in-range(v1, v2) = true. Thus, v1 sat-
isfies (I3b) and v2 satisfies (I3a).

• Case 4 (deg(v) = 4 ∧ vvia = ∅) ∨ (deg(v) =
5). Note that if deg(v) ≥ 4 then vvia 6= ∅ by
Lemma 3. Therefore, we only need to handle
the case when deg(v) = 5 ∧ vvia 6= ∅. In this
case, v1 , v2, and v3 are the three children in
Children(v) \ {vvia}, and CHAIN adds edges v →
v1 → v2 → v3 → v. Note that since v = p(v1) =
p(v3), in-range(v, v1) = in-range(v, v3) = true. Also,
by Lemma 4 in-range(v1, v2) = in-range(v2, v3) =
true. Thus, v1 satisfies (I3b) and v3 satisfies (I3a).

To complete the proof, we show that v2 satisfies
Invariant (I3c). First we verify that v̂1vv2+v̂2vv3 ≤
180◦. This is true since vvia is a boundary child of
v, and thus the remaining children v1, v2 and v3 are
radially consecutive about v. For a degree 5 node,
any three radially consecutive adjacent nodes can
span at most 180◦, since otherwise the sum of all
five angles is more than 360◦ (because the angle
between radially consecutive adjacent edges in a
MST is at least 60◦). Finally, we verify that v1
and v3 are on opposite sides of the line through
v2v. For contradiction, suppose they are on or to
the same side of this line. Because v1, v2, v3 are
radially consecutive, this implies that all five nodes
adjacent to v are on or to the same side of the line
through v2v, which again is impossible in a MST.

We end by proving that (I4) is satisfied after visiting
v. Let G be the gray/black communication subgraph
just prior to v being visited. By the inductive hypothe-
sis, G is strongly connected. Consider the REPLACE op-
eration. Observe that both vfrom and vto are gray/black
nodes and thus are in G. In addition, vfrom → vto cor-
responds to an edge in G. It is straightforward then
to verify that adding node vvia to G and replacing edge
vfrom → vto with vfrom → vvia and vvia → vto results in
a strongly connected graph. Similarly, adding v’s chil-
dren, v′1, . . . , v

′
`, involved in the CHAIN operation to G

along with edges v → v′1 → · · · → v′` → v results in a
strongly connected graph. This combined with the fact
that v’s children are all colored gray when v is visited
ensures that Invariant (I4) is satisfied.

Due to space constraints, we omit the proof of the
following lemma.

Lemma 1 Let (a, b, c, d) be a path in a minimum span-
ning tree T such that a and d lie on or to a same side

of a line through bc. Then âbc+ b̂cd > 150◦.

Lemma 2 Let (a, b, c, d) be a path in MST5 such that
a and d lie on or to the same side of a line through bc.

Furthermore, 60◦ ≤ âbc ≤ 150◦, 60◦ ≤ b̂cd ≤ 150◦, and
âbc+ b̂cd ≤ 210◦. Then |ad| ≤

√
3.

Proof. Let D(p, r) denote the open disk of radius r
centered at point p, let ∂D(p, r) denote its boundary,

23rd Canadian Conference on Computational Geometry, 2011

364

CCCG 2011, Toronto ON, August 10–12, 2011

120

α

p

b

c q

r s

120

p

b

c q

r s

30

75

(a) (b)

120

p

b

c q

r

s

15

82.5

120

p

b

c=q

r

s

105

(c) (d)

Figure 2: Lemma 2: Regions of diameter
√

3.

and let D[p, r] = D(p, r) ∪ ∂D(p, r) denote the closed
disk. Rotate MST5 so that bc is vertical (as shown in
Fig. 2a), and a and d lie right of bc. For simplicity,
let |bc| = 1, since this is the value for which |ad| is

maximum. Assume b̂cd ≤ âbc. The case when b̂cd ≥
âbc is symmetrical. We start with a small observation
regarding certain regions of diameter

√
3.

Fix 0 ≤ α ≤ 30◦, and define the points p = p(α), q =
q(α), r = r(α) and s = s(α) as follows: p is the point

above and right of b, such that p̂bc = 120◦+α and |bp| =
1; q is the right intersection point between ∂D(p,

√
3)

and ∂D(b, 1); r is the intersection point between the ray
with origin p passing through b, and ∂D(p,

√
3); and s

is the corner of the equilateral triangle 4prs, right of r.
Refer to Figure 2a. Then the following properties hold:

(P1) p̂bc+b̂cq = 210◦+α
2 . This follows immediately from

the fact that p̂bq = 120◦ (because |pb| = |bq| = 1

and |pq| =
√

3), thus ĉbq = α and b̂cq = 90− α/2.

(P2) The closed region formed by the intersection
D[p,

√
3]∩D[r,

√
3]∩D[s,

√
3] has diameter

√
3. We

abuse the terminology here and denote this region
by lune[p, r, s].

We apply these properties repeatedly, to determine re-
gions for which the lemma holds. We start with the

value α = 30◦, so that p̂bc is at its maximum value of
150◦. Let points p, q, r, s be as defined above. (See Fig-

ure 2b.) By property (P1), b̂cq = 75◦. If both a and
d lie inside lune[p, r, s], then the lemma holds by prop-
erty (P2). Suppose then that d lies outside lune[p, r, s].
Observe that d cannot lie in D(b, 1), because then
|bd| < |bc| and |bc| is not an edge in MST5. So it must be

that b̂cd ≥ b̂cq = 75◦, meaning that âbc ≤ 135◦ (because
their sum does not exceed 210◦, by the lemma state-
ment). We capture this situation by resetting α = 15◦

and redefining p, q, r, s for this new α value. (See to

Figure 2c.) By property (P1), b̂cq = 82.5◦. If both
a and d lie inside lune[p, r, s], then the lemma holds
by property (P2). If d lies outside lune[p, r, s], then

b̂cd ≥ b̂cq = 82.5◦, meaning that âbc ≤ 127.5◦. After
repeating these steps k times, we either get the result of

the lemma, or we get b̂cd ≥ 60◦+30◦ ·(1
2 + 1

22 +. . .+ 1
2k

),

and âbc ≤ 150◦−30◦ ·(1
2 + 1

22 + . . .+ 1
2k

). In the limit, as

k −→∞, we get that b̂cd ≥ 90◦ and âbc ≤ 120◦ (other-
wise the lemma holds). When α = 0, q and c coincide:

p̂bc = 120◦ and |pc| =
√

3. (See Figure 2d.) Simple

calculations show that b̂cp = 30◦, p̂cs = 75◦, therefore

b̂cs = 105◦. If both a and d lie inside lune[p, r, s], then
the lemma holds. Otherwise, if d lies outside lune[p, r, s],

then b̂cd ≥ 105◦ and therefore âbc ≤ 105◦. From this
point on, we are in the situation b̂cd ≥ âbc, which is

symmetric to the situation b̂cd ≤ âbc discussed above.
This concludes the proof. �

Lemma 3 If deg(v) ≥ 4, then vvia is initialized. Fur-
thermore, if v has an isolated child, then vvia is initial-
ized to an isolated child.

Proof. If v satisfies invariant (I3a) or (I3b), then
vto, vfrom ∈ {v, p}. Note that at most one boundary

child v′ of v may satisfy v̂′vp > 120◦, because each an-
gle between radially consecutive children of v is at least
60◦, and the sum of all these angles is 360◦. It follows
that the second boundary child (which always exists,
because deg(v) ≥ 4) is within range of both p and v,
therefore the condition of the IF statement on line 15
evaluates to true and vvia is initialized on line 16. By
similar arguments, if v has an isolated boundary child,
say v1, then with the exception of v̂1vv2, all other angles
at v must be smaller than 120◦. Thus v1 is within range
of p and v, and therefore vvia is initialized to an isolated
child in line 18.

Next we discuss the more complex situation when
v satisfies invariant (I3c), so v is involved in a cycle
p → s → v → d → p. (See for example Fig. 1c.) First
recall that by Invariant (I3c), s and d lie to opposite
sides of the line through vp, and s, v and d are radi-
ally consecutive children of p, in counter-clockwise or-
der. Since deg(v) ≥ 4 and radially consecutive adjacent
edges in an MST form an angle of at least 60◦, boundary
children v1 and vk−1 (where k = deg(v)) cannot lie on
the same side of the line through vp. Also recall that
v1, p and vk−1 are radially consecutive neighbors of v,
in clockwise order. It follows that s and v1 are both on
or to one side of the line through vp, and d and vk are
both on or to the other side. We will use this fact when
applying Lemma 2 below.

Consider first the case when deg(v) = 4. Assume
first that v has no isolated children. Note that v̂1vp +
v̂3vp ≤ 240◦, because each of v̂1vv2 and v̂2vv3 is at least
60◦, and the sum of all these angles is 360◦. These

CCCG 2011, Toronto ON, August 10–12, 2011

365

23rd Canadian Conference on Computational Geometry, 2011

together imply that v̂1vp+ v̂3vp+ ŝpd ≤ 240◦ + 180◦ =

420◦, so at least one of v̂3vp + v̂pd and v̂1vp + v̂ps is
no greater than 210◦. For the pair whose angle sum is
no more than 210◦, each individual angle is at least 60◦

and no more than 210◦ − 60◦ = 150◦. Having verified
the requirements of Lemma 2 for one of the two paths,
(v1, v, p, s) or (v3, v, p, d), we use it to show that either
in-range(v3, d) = true or in-range(v1, s) = true (or both).
If in-range(v3, d) = true, then vfrom and vto are initialized
in line 11 of the algorithm; otherwise, vfrom and vto are
initialized in line 13 of the algorithm. In either case, the
condition of the IF statement in line 15 of the algorithm
evaluates to true.

Assume now that v has an isolated child, say v1. By
definition, v̂1vv2 > 120◦. This along with the fact that
v̂2vv3 ≥ 60◦ implies that v̂1vp+ v̂3vp ≤ 180◦. It follows

that v̂1vp+ v̂3vp+ ŝpd ≤ 360◦. So by Lemma 1, v̂3vp+

v̂pd > 150◦. These together imply that v̂1vp + v̂ps ≤
210◦, and each of these angles has a value in the interval
[60◦, 150◦]. By Lemma 2, in-range(v1, s) = true. Then
vfrom and vto are initialized in line 9 of the algorithm,
and the conditions of both IF statements in lines 15
and 17 of the algorithm evaluate to true.

Consider now the case when deg(v) = 5. In this case,
v has no isolated children: each angle at v is at least
60◦, the sum of all five angles is 360◦, therefore each
angle is at most 120◦. It follows that v̂1vp + v̂4vp ≤
240◦. (In fact, a stronger upper bound is 180◦, but this
is irrelevant to the discussion here.) This situation is
identical to the degree 4, no isolated children case. �

Lemma 4 If deg(v) ≥ 3, let v′1, . . . , v
′
` ∈

Children(v) \ {vvia} be radially sorted around v.
Then, in-range(v′i, v

′
i+1) = true for i = 1, . . . , `− 1.

Proof. Recall that when deg(v) = 5, no angle between
two radially consecutive children of v exceeds 120◦, and
so the lemma is clearly true. So consider the situa-
tion where deg(v) < 5. By similar arguments, at most
one angle between two radially consecutive children of v
may exceed 120◦. Furthermore, one of these children is
necessarily a boundary (isolated) child since all angles
between radially consecutive children involve a bound-
ary child when v is of degree 3 or 4. As noted previously,
a degree 4 vertex can have at most one angle > 120◦. So
if v is of degree 4 and has an isolated child, then both
its boundary children form an angle < 120◦ with p, and
thus both are within range of p. When deg(v) = 3, if
one child is isolated, then they both are (since there are
only two children.) In this case, at least one of the two
children must be within range of p or else the sum of
the three angles at v is more than 360◦. If v satisfies in-
variant (I3a) or (I3b), then vto, vfrom ∈ {v, p}, therefore
the conditions of both IF statements on lines 15 and 17
evaluate to true. It follows that vvia is set to an isolated
child of v in line 18, and Children(v) \ {vvia} contains

either one child of v (the degree 3 case), or two children
of v within range of each other (the degree 4 case).

It remains to discuss the more complex situation when
v satisfies invariant (I3c), so v is involved in a cycle v →
d→ p→ s→ v, and ŝpv+ v̂pd ≤ 180◦. Assume without
loss of generality that v1 is isolated, and v1 and s lie on
the same side of vp (refer to Fig. 1c). If deg(v) = 3,
then v̂1vp + v̂2vp ≤ 240◦ (because v1 and v2 are both
isolated, by our assumption). Arguments similar to the
ones used in the proof of Lemma 3 show that in this
case either in-range(v2, d) = true, or in-range(v1, s) =
true, or both. If in-range(v2, d) = true, vfrom and vto are
initialized in line 7 of the algorithm; otherwise, vfrom and
vto are initialized in line 9 of the algorithm. In either
case, the conditions of both IF statements in lines 15 and
17 of the algorithm evaluate to true, and Children(v) \
{vvia} contains a single child of v.

If deg(v) = 4, Lemma 3 shows that in-range(v1, s) =
true. This guarantees that line 11 of the algorithm gets
executed and vvia = v1. It follows that Children(v) \
{vvia} contains two children of v within range of each
other. �
Acknowledgement. Many thanks to the Fields Insti-
tute of Canada for financial support, and to all partici-
pants of the Fields workshop for fruitful discussions.

References

[1] W. Wu, H. Du, X. Jia, Y. Li, and S.C.-H. Huang: Mini-
mum connected dominating sets and maximal indepen-
dent sets in unit disk graphs. Theor. Comp. Sci., 352:1–
7, 2006.

[2] F. van Nijnatten: Range Assignment with Directional
Antennas. Master’s Thesis, Technische Universiteit
Eindhoven, 2008.

[3] I. Caragiannis, C. Kaklamanis, E. Kranakis,
D. Krizanc, and A. Wiese: Communication in
wireless networks with directional antennae. Proc.
of the 20th Symp. on Parallelism in Algorithms and
Architectures, Proc. of SPAA, pp. 344–351, 2008.

[4] B. Bhattacharya, Y. Hu, Q. Shi, E. Kranakis, and
D. Krizanc: Sensor network connectivity with multi-
ple directional antennae of a given angular sum. Proc.
of IPDPS, pp. 1–11, 2009.

[5] B. Ben-Moshe, P. Carmi, L. Chaitman, M.J. Katz,
G. Morgenstern, and Y. Stein: Direction Assignment
in Wireless Networks. Proc. of CCCG, pp. 39–42, 2010.

[6] M. Damian, and R. Flatland: Spanning Properties
of Graphs Induced by Directional Antennas. Proc. of
FWCG, Stony Brook, NY, 2010.

[7] E. Kranakis, D. Krizanc, and O. Morales: Maintain-
ing Connectivity in Sensor Networks Using Directional
Antennae. Theor. Aspects of Distr. Comp. in Sensor
Netw., Part 2, pp. 59–84, 2011.

[8] P. Bose, P. Carmi, M. Damian, R. Flatland, M.J. Katz,
and A. Maheshwari. Switching to Directional Antennas
with Constant Increase in Radius and Hop Distance To
appear in WADS, 2011.

23rd Canadian Conference on Computational Geometry, 2011

366

CCCG 2011, Toronto ON, August 10–12, 2011

Euclidean Movement Minimization

Nima Anari∗ MohammadAmin Fazli† Mohammad Ghodsi†‡ Pooya Jalaly Khalilabadi†

MohammadAli Safari†§

Abstract

We consider a class of optimization problems called
movement minimization on euclidean plane. Given a set
of nodes on the plane, the aim is to achieve some spe-
cific property by minimum movement of the nodes. We
consider two specific properties, namely the connectiv-
ity (Con) and realization of a given topology (Topol).
By minimum movement, we mean either the sum of all
movements (Sum) or the maximum movement (Max).
We obtain several approximation algorithms and some
hardness results for these four problems. We obtain an
O(m)-factor approximation for ConMax and ConSum
and an O(

√
m/OPT)-factor approximation for Con-

Max. We also extend some known result on graphical
grounds in [1, 2] and obtain inapproximability results
on the geometrical grounds. For the Topol problem
(where the final decoration of the nodes must corre-
spond to a given configuration), we find it much simpler
and provide FPTAS for both Max and Sum versions.

1 DIntroduction

Consider a number of moveable robots distributed over
a plane in a far-flung manner. Each robot has an an-
tenna with a limited maximum range, denoted by rmax.
Robot s can communicate directly with robot t if and
only if their distance is less than rmax. Robot s can also
communicate indirectly with t if there is an ordered set
of robots s = r1, r2, · · · , rp = t so that each ri can di-
rectly communicate with ri+1. With this explanation,
we can form a dynamic graph whose vertices are the
moveable robots on the plane and edges are formed by
connecting each robot to every other robot residing in
the disk with radius rmax around it. These geometric
graphs are called UDGs (Unit Disk Graphs).

∗Computer Science Division, University of California Berkeley,
email: anari@cs.berkeley.edu
†Department of Computer Engineering, Sharif University

of Technology, emails: fazli, jalaly@ce.sharif.edu, ghodsi, sa-
fari@sharif.edu
‡Institute for Research in Fundamental Sciences (IPM),

Tehran, Iran. This author’s research was partially supported by
IPM under grant No: CS1389-2-01
§The research was partially supported by the Institute for Re-

search in Fundamental Sciences under grant No: CS1389-4-09

Definition 1 Given some points p1, ..., pm in the eu-
clidean plane, the UDG on these points is defined as
a simple graph G = (V,E), where V = {1, ...,m} and
E = {{i, j} | |pi − pj |2 ≤ 1}

Suppose that robots are initially located at points
p1, p2, · · · , pm. It is clear that all robots can commu-
nicate directly or indirectly with each other if and only
if their corresponding UDG is connected. Our aim is to
have the robots move in a way that they form a con-
nected UDG after relocation (the points p∗1, p

∗
2, · · · , p∗m).

We also want to efficiently optimize the travel distance
of the robots before they reach their final locations. The
term efficiently can be defined in many ways. In this
paper, we consider two of such measures: namely Sum
and Max. In Sum, the goal is to minimize the sum of
the movements of all robots, or formally to minimize∑m
i=1 |p∗i − pi|2. This parameter roughly measures the

total energy consumed by the robots. In Max, the goal
is to minimize the maximum movement of all robots,
i.e. minimizing maxi∈{1,...,m} |p∗i − pi|2. This parame-
ter measures the amount of time needed to reach the
final locations.

Using these two functions, we define two problems:
ConMax and ConSum.

Definition 2 In ConMax (resp. ConSum) we want
to move the robots so as to form a connected UDG and
the optimization goal is Max (resp. Sum).

Each of these problems can be considered in both
graphical or geometrical settings.

Definition 3 In a graphical setting, robots move on a
graph. At first, robots are placed on some vertices of
the graph and at each turn, each robot can move to one
of the adjacent vertices (each edge is considered to have
one unit of length). In geometrical settings, robots are
points belonging to a geometrical space (R2 in this paper)
and are free to move in any direction in the space.

1.1 Other Works

Demaine et al. [1, 2] first introduced movement prob-
lems in graphical settings and extensively studied them.
They defined 15 types of movement problems (borrow-
ing from their terminology, from here on we use the

CCCG 2011, Toronto ON, August 10–12, 2011

367

23rd Canadian Conference on Computational Geometry, 2011

words robot and pebble interchangeably). They con-
sider five properties: connectivity, directed connectiv-
ity, path, independent set and matching and consider
three objective functions: maximum movements, total
movement and number of pebbles that move. This re-
sults in the following 15 problems: ConMax, ConSum,
ConNum, DirConMax, DirConSum, DirConNum,
PathMax, PathSum, PathNum, IndMax, IndSum,
IndNum, IndMax, IndSum, IndNum.

Most of their salient results were proven in the con-
text of graphs. They proposed an O

(√
m

OPT

)
-factor ap-

proximation algorithm for ConMax and PathMaX(m
is the number of pebbles) and proved Ω

(
n1−ε

)
inap-

proximability result for ConSum and DirConMax (n
is the number of vertices in the ground graph) in graph-
ical settings. They also gave an O (1)-approximation for
IndMax wit an additive error of O (1) in geometrical
settings.

Note that all the algorithms presented in [1, 2] are
in fact polynomial in n, the number of the nodes in
the base graph, which makes them inefficient when
n � m which is a realistic assumption. Dealing with
this, given that the number of mobile agents is typically
much smaller than the complexity of the environment,
in [3] the authors turn to fixed-parameter tractability.
They characterize the boundary between tractable and
intractable movement problems in a very general set
up and show that many movement problems of interest
have fixed parameter tractable algorithms.

1.2 Our Results

Our results include algorithms for ConMax, ConSum,
TopolMax, TopolSum and an inapproximability re-
sult for ConMax.

In section 2.1 we prove (2 −
√
2
2)-inapproximability

for ConMax in geometric settings which extends the
hardness result of Demaine et al. [1, 2] about ConMax
in graphical settings.

Theorem 1 There is no polynomial algorithm for
ConMax in geometrical settings with an approximation

factor of less than 2−
√
2
2 , unless P = NP

In section 2.2 and 2.3 we give approximation al-
gorithms for ConMax and ConSum on geometrical
grounds. We present O (m)-factor approximation algo-
rithm for both problems which improve the O

(√
m

OPT

)
-

approximation algorithm (with additive error of O (1))
of Demaine et al. [2] in the cases where OPT is very
small.

Theorem 2 There is an O (m)-factor approximation
algorithm for ConMax and ConSum on geometrical
grounds.

In the final part of this paper, we introduce a new
kind of movement problems which is more constrained,
in some sense, than the previously proposed problems:
TopolMax and TopolSum.

Invariant 1 In problems TopolMax and Topol-
Sum, we are given m initial points p1, . . . , pm ∈ R2 and
a set of edges E ⊆ {{i, j} | i, j ∈ {1, . . . ,m}}. We are
supposed to determine m points p∗1, . . . , p

∗
n ∈ R2 in such

a way that the UDG defined on p∗1, . . . , p
∗
m contain all of

the edges in E. The objective function we are trying to
minimize can be either MAX or SUM which results in
two different problems we call TopolMax and Topol-
Sum.

Although our results are stated in two dimensions, most
of them can be easily extended to higher dimensions. In
particular all of our approximation algorithms work for
higher dimensions too.

Theorem 3 There is a FPTAS for the problems
TopolMax and TopolSum.

2 ConMax and ConSum

2.1 Hardness Results

In this section we prove Theorem 1. First, we prove
that ConMax is 2-approximable on UDGs (graphical
ground) only if P=NP. Then, with minor modifica-
tions, we prove Theorem 1. Our main idea is a proof of
Demaine et al. in [1, 2] for hardness of ConMax prob-
lem in graphical settings, but our case is more involved
and needs many modifications.

For this, we reduce the hamiltonian cycle problem
on 3-regular planar graphs which is known to be NP-
hard [7]. Let us call this problem 3PHP.

We first start with a useful way of embedding planar
graphs:

Lemma 4 (Valiant [6]). A planar graph G with max-
imum degree 4 can be embedded in the plane using
O (|V |) area in such a way that its vertices are at inte-
ger coordinates and its edges are drawn so that they are
made up of line segments of the form x = i or y = j,
for integers i and j.

There is also a polynomial time algorithm to compute
such an embedding [8].

We are now ready to prove the hardness of the Con-
Max problem on UDG grounds.

Theorem 5 There is no polynomial algorithm for
ConMax on UDG graphical grounds with approxima-
tion factor less than 2 unless P = NP

Proof. We prove this by reducing 3PHP. Assume that
we have an instance of 3PHP problem; a 3-regular pla-
nar graph G in which we want to check for the existence

23rd Canadian Conference on Computational Geometry, 2011

368

CCCG 2011, Toronto ON, August 10–12, 2011

s

t

s

t

s

t

(a) (b) (c) (d)

t

s

Figure 1: Graph G and its transformation process.

of a hamiltonian path between two specified vertices s
and t. See Figure. 1(a) for an example.

First we use Lemma 4 to get an embedding H of G
with integer coordinate vertices and horizontal or verti-
cal edges (Figure. 1(b)).

Next we scale up all vertex coordinates by 6.0 to
make each edge six times longer. The length of ev-
ery edge e = (u, v) is now a multiple of 6.0. We put
new vertices on every integer-coordinate point between
u and v. So, the edge e = (u, v) is replaced by a path
P e = u = v0, v1, · · · , v6k−1, v6k = v (notice that the
distance between vi and vi+1 is exactly one).

We color vertices u = v3, v6, ..., v3i, ..., v6k−3, v6k =
v as black and the remaining vertices as white. See
the resulting graph G in Figure. 1(d) (in this figure we
have scaled up everything by 3 and not 6 for clarity and
better understanding).

Since the degree of each vertex in the resulting UDG
is at most 3, we can attach a new leaf to each black
vertex via a unit length vertical or horizontal edge. We
color these new leaves as gray and call the resulting new
UDG G′.

Finally, we place one pebble on s and t and each gray
vertex of G′. We also place two pebbles on each black
vertex ofG′ except s and t. We show thatG has a hamil-
tonian path between s and t if and only if the answer
of ConMax on G′ is 1. If there is a hamiltonian path
between s and t in G, we can move the pebble on each
gray vertex to its neighboring vertex in V (G′) and move
pebbles on each black vertex to its neighboring vertices
along the path corresponding to G’s hamiltonian path
that induce a connected subgraph in G′. For the reverse
side, we show that if G does not have a hamiltonian path
between s and t then the value of ConMax is at least
2.0.

We show that when G is not hamiltonian, then es-
tablishing connectivity in G′ requires a pebble in a gray
vertex to move to a white vertex which requires a move-
ment of 2.0.

2 22

2

1

1
1

1 T �

u

v

Figure 2: The 3-degree vertex in minimum maximum
degree spanning tree viewed in G′.

Consider the optimal connectivity establishment in
G′. This induces a connected subgraph of G which is
not a hamiltonian path and, therefore, has a maximum
degree at least 3. Let u be a vertex with degree 3. It
has only 2 pebbles. So, one of its neighboring white
vertices, say v, can not be covered by the pebbles on it.
If we remove the edge between u and v, we would have a
subtree T ′ in which we need at least 2 moves to connect
its pebbles to u’s pebbles. This completes the proof. It
is clear that nothing would be changed in this proof if
we replace general UDG graphs with their specific type
grids because we used only vertical/horizontal edges and
integer coordinated vertices. �

We can also use the above proof for the (2 −
√
2
2)-

inapproximability of ConMax on geometrical grounds.

Proof. (of Theorem 1) The proof structure is almost
identical to the proof of Theorem 5. In Figure. 2, the
distance between vertex u and vertex v is 3. In proof of
Theorem 1 we had to move pebbles only in integer units
of length and the uv path was not covered by the pebbles
placed on u. So to connect T ′’s pebbles to u’s pebbles,
we had to move them 2 units and the approximation
factor was at least 2.

This is different on geometrical ground as u’s two peb-
bles can move to every point of the plane without any
limitation. So, there would be a movement of them
in which the minimum coverage of these pebbles over

all 3 outgoing paths of u is
√
2
2 (For example when they

move in north-west and south-east direction with 45 de-
gree slope). So the maximum of minimum coverage over

these 3 paths by u’s pebbles is at most
√
2
2 and again

suppose that this minimum coverage is being happened
for uv path. This completes the proof because in this
situation the movement of T ′’s pebbles would be at least

3−1−
√
2
2 = 2−

√
2
2 and this leads to the approximation

factor 2−
√
2
2 . �

CCCG 2011, Toronto ON, August 10–12, 2011

369

23rd Canadian Conference on Computational Geometry, 2011

2.2 O(m) approximation for ConMax

If two pebbles are adjacent at the end then their original
distance should be at most λ = 2OPT + 1. This means
that if we scale down all distances by a factor of 1

λ then
the corresponding UDG would be connected. This is
the idea behind the algorithm: centered at one of the
points, scale down all distances by a factor 1

λ and move
every point to its new location after scaling. This yields
an O(m)-factor approximation. The rest of details is
left to the journal version of this paper.

2.3 O(m) approximation for ConSum

We construct a complete weighted graph in which the
weight of (i, j) is defined as max(0, (|pi − pj |2 − 1)/2).
Then we find a Minimum Spanning Tree (MST) of this
graph. It can be shown that two fifths the weight of the
MST is a lower-bound for the optimum solution.

Next, we do the following operation for each edge
(i, j) of the MST: Removing the edge gives us two con-
nected components. We translate each connected com-
ponent along the edge pipj by a distance of max(0, (|pi−
pj |2−1)/2). Note that among the edges of the tree, only
the distance between pi and pj is changed.

After all these operations, all edges of the MST be-
come present in the resulting UDG. The total sum of
movements is at most m times the weight of the origi-
nal MST, hence an O (m)-approximation. More details
are left to the journal version of this paper.

3 Predetermined Topology

Assume that we are given m different points
p1, . . . , pm ∈ R2. The goal is to make the UDG de-
fined on these points have certain properties. One of the
properties that might be desirable for the UDG to have,
is to have it contain a certain predetermined graph.

Clearly one can assume that the given topology E
is connected; otherwise, the problem can be solved for
each connected component separately, and the solutions
can be combined together. Hence, from now on we will
assume that E is connected.

The main result we obtain is that there is a FPTAS
for each one of these problems. Our FPTAS’s use the
Ellipsoid method as a blackbox.

Remark 1 The Ellipsoid method works with a sepa-
ration oracle defined on a convex set; that is an oracle
which when given a point p determines whether it’s in-
side the convex set, and if the answer is false, returns
a hyperplane separating the point and the convex set.
Given a convex body C ⊂ Rn and an initial ellipsoid E0

containing C, and an arbitrary positive number V, the
Ellipsoid method either finds a point in C, or finds
out that the volume of C is less than V. The time it

takes for the Ellipsoid method to run is bounded by a
polynomial in n and log(Vol(C)/V).

3.1 FPTAS for TopolMax

In this section we will show how TopolMax can be
approximated using the Ellipsoid method.

Our algorithm uses some of the results and tools from
the O (m) approximation algorithm for ConMax, in-
cluding the definition and properties of the geometrical
transformation homothety. For details refer to the jour-
nal version of this paper.

For two given points pi and pj to become at most
1 unit apart (in the Euclidean metric), one should be
moved by at least eij = max(0, (|pi − pj |2 − 1)/2).

Now given an instance of TopolMax define O to be
max{i,j}∈E eij . Clearly O is a lower-bound for OPT .

Lemma 4 An instance of TopolMax can be solved by
a sum of displacements of 2(m− 1)O.

The main idea used behind the proof is exactly the
same as the one used in ConMax, namely the use of
homotheties.

Let’s formulate TopolMax as a linear program.
This linear program is exact, but unfortunately has in-
finitely many constraints. The following simple lemma
forms the basis of this linear program.

Lemma 5 For a vector v ∈ R2, the inequality |v|2 ≤ d
holds if and only if for each unit vector u ∈ S1 (S1 is
the unit circle), the inequality u · v ≤ d holds.

Now let’s formulate our problem as a non-linear pro-
gram, and then convert it to a linear program. We can
define the variables x1, . . . , xm and y1, . . . , ym to be the
final coordinates of the points; i.e. p∗i = (xi, yi). Our
problem can be formulated like the following

Minimize s

Subject To |pi − p∗i |2 ≤ s ∀i ∈ {1, . . . ,m}
|p∗i − p∗j |2 ≤ 1 ∀{i, j} ∈ E

Note that this formulation can be completely written
in terms of x1, . . . , xm and y1, . . . , ym; we can simply
replace each p∗i by (xi, yi). Now applying the previous
lemma to this formulation, we can rewrite it like the
following

Minimize s

Subject To (p∗i − pi) · u ≤ s ∀i ∈ {1, . . . ,m}, u ∈ S1

(p∗i − p∗j) · u ≤ 1 ∀{i, j} ∈ E, u ∈ S1

The new formulation is a linear program (although, with
infinitely many constraints), since inner product is a
bilinear operator. To use the Ellipsoid method on
this new formulation, we should first remove s. For

23rd Canadian Conference on Computational Geometry, 2011

370

CCCG 2011, Toronto ON, August 10–12, 2011

each s ∈ R≥0, define Ls to be the convex set in R2m

defined by the constraints

(p∗i − pi) · u ≤ s ∀i ∈ {1, . . . ,m}, u ∈ S1

(p∗i − p∗j) · u ≤ 1 ∀{i, j} ∈ E, u ∈ S1

Ls is the intersection of infinitely many half-planes.
Hence, it is convex. The optimum solution of Topol-
Max is the minimum s for which Ls is nonempty.

Because of the constraints (p∗i − pi) · u ≤ s, we can
find a sphere surrounding Ls. This sphere is centered
at the point (p1, . . . , pm) ∈ R2m, and its radius is

√
ms.

That is because

|(p∗1, . . . , p∗n)− (p1, . . . , pm)|2 =

√ ∑

i∈{1,...,n}
|p∗i − pi|22 ≤

√
ms2 =

√
ms

Since this sphere can be surrounded by a hypercube
with a side length of 2

√
ms, the volume of this sphere

is at most (2
√
ms)2m.

Note that using the previous lemma, existence of a
separation oracle for Ls becomes obvious. In fact, we
just have to check the unit vectors u which are parallel
to the vectors (p∗i − pi) and the vectors (p∗i − p∗j).

We have all of the things we need for the Ellipsoid
method, except V, the lower-bound on the volume of
Ls. Note that Ls ⊆ Lt for s ≤ t. So if we obtain a
lower-bound on the volume of Ls for one s, that lower-
bound also works for every Lt for which t ≥ s. Let
OPT denote the optimum solution of TopolMax. Let
s∗ = (1 + δ)OPT . Our goal is to derive a lower-bound
on the volume of Ls∗ .

Lemma 6 The volume of Ls∗ is greater than or equal
to (δOPT2m)2m.

Proof. Since LOPT is nonempty, one can find a point
(q1, . . . , qm) ∈ LOPT ⊆ Ls∗ ⊂ R2m.

Let Hα denote the α-homothety with respect to q1.
Consider the points Hα(q1), . . . ,Hα(qm). Since each

qi can be reached from q1 by a path consisting only of
the edges in E, we have |qi − q1|2 ≤ m− 1. So

|Hα(qi)− qi|2 = (1− α)|qi − q1|2 ≤ (1− α)(n− 1)

Since |qi − pi| ≤ OPT , we have |Hα(qi)− pi| ≤ OPT +
(1− α)(m− 1).

Because of the properties of homotheties, for each
{i, j} ∈ E, we have |Hα(qi) − Hα(qj)|2 ≤ α. Now let
r1, . . . , rm be some arbitrary points for which we have
|ri−Hα(qi)|2 ≤ (1−α)/2. For each {i, j} ∈ E, we have

|ri − rj |2 ≤ |Hα(qi)−Hα(qj)|2 + |ri −Hα(qi)|2
+|rj −Hα(qj)|2

≤ α+
1− α

2
+

1− α
2

= 1

We also have

|ri − pi| ≤ |ri −Hα(qi)|+ |Hα(qi)− pi|

≤ 1− α
2

+OPT + (1− α)(n− 1)

≤ OPT + (1− α)m

This shows that there is a copy of
B(1−α)/2 × · · · ×B(1−α)/2︸ ︷︷ ︸

m

inside LOPT+(1−α)m, where

Bx shows a 2-dimensional ball of radius x. Since
Vol(Bx) = πx2 ≥ x2, we have

Vol(LOPT+(1−α)m) ≥ (
1− α

2
)2m

We want α to be chosen in such a way that OPT +
(1 − α)m ≤ s∗. This can be obtained by setting α =
1− (s∗ − OPT)/m. For this α, we have 1− α = (s∗ −
OPT)/m = δOPT/m. Therefore

Vol(Ls∗) ≥ (
δOPT

2m
)2m

�

Using the lower-bound (δOPT2m)2m as the parameter V
of Ellipsoid, one can see that the ellipsoid method is
able to find a point inside Ls∗ in time bounded by a
polynomial of m and

log
(2
√
m(1 + δ)OPT)2m

(δOPT2m)2m
= log(4m

√
m

1 + δ

δ
)2m

= 2m log(4m
√
n

1 + δ

δ
) = O (poly(m, 1/δ))

We don’t know OPT , so we can’t actually set the pa-
rameter V of Ellipsoid to the above lower bound; this
is not a problem, as we can just run the Ellipsoid
method for the time bound we have obtained (which
depends only on m and δ).

Using the previous lemmas it’s easy to see that Algo-
rithm 3.1 is a (1 + ε)-approximation for TopolMax. If
OPT resides in an interval [(1+δ)iO, (1+δ)i+1O], then
s = (1 + δ)i+2O is definitely larger than s∗ = (1 + δ)O.
Hence, Ellipsoid finds a point of Ls in the time limit
given. But we have the following inequality (we’re as-
suming without loss of generality that ε ≤ 1)

s ≤ (1 + δ)2(1 + δ)iO ≤ (1 + δ)2OPT

= (1 + 2δ + δ2)OPT

≤ (1 + 2δ + δ)OPT = (1 + ε)OPT

So the solution found by Algorithm 3.1 is a (1 + ε)-
approximation.

CCCG 2011, Toronto ON, August 10–12, 2011

371

23rd Canadian Conference on Computational Geometry, 2011

Algorithm 1 TopolMax

1: Calculate O using the formula max{(|pi − pj |2 −
1)/2 | {i, j} ∈ E}.

2: Let δ = ε/3. Divide the interval [O, 2(m − 1)O]
into O (logm/ log(1 + ε)) intervals of the form [(1 +
δ)iO, (1+δ)i+1O]. Sort the interval endpoints in an
increasing order.

3: for each interval endpoint like a do
4: Run the Ellipsoid method on La using the ini-

tial bounding sphere of radius
√
ma around the

origin. Run this method until it finds an an-
swer or the upper-bound on the execution time
we found earlier passes.

5: If the Ellipsoid method finds a solution point,
then stop the algorithm and return that solution.

6: end for
7: If no solution is found, return the solution found

from our previous O (m)-approximation algorithm.

3.2 TopolSum

The same method used in the previous section can be
slightly modified to work for TopolSum. One can again
find similar bounds on the volume of the convex body
and again show that the Ellipsoid method works in
polynomial time.

4 Concluding Remarks

In this paper we showed that FPTAS exists once the
target UDG is known, i.e. adjacent vertices are speci-
fied. Therefore the hardness of ConMax, ConSum and
similar movement problems lie in finding the topology of
the target UDG. We know some good heuristic ways of
guessing the target topology but have little theoretical
justification for their behavior.

Considering other types of properties such as obtain-
ing an independent set of a given size or considering a
bigger class of graphs like disc graphs are good research
directions to follow. Directly related to our work one
can narrow the hardness and approximability gap by
improving one or both. We conjecture that both Con-
Max and ConSum are approximable within constant
factors.

References

[1] E. Demaine, M. Hajiaghayi, H. Mahini, S. Oveisgharan,
A. Sayedi, and M. Zadimoghaddam. Minimizing move-
ment, In Proceedings of the 18th Annual ACM-SIAM
Symposium on Discrete Algorithms, 2007.

[2] E. Demaine, M. Hajiaghayi, H. Mahini, S. Oveisgha-
ran, A. Sayedi, and M. Zadimoghaddam. Minimizing
Movement, ACM Transactions on Algorithms, volume
5, number 3, July 2009, Article 30.

[3] E.Demaine, M.Hajiaghayi, D.Marx, Minimizing Move-
ment: Fixed-Parameter Tractability, In Proceedings of
the 17th Annual European Symposium on Algorithms,
2009.

[4] MA.Fazli, Movement Minimization in Euclidean Plane,
BSc Thesis, Sharif University of Technology, 2009.

[5] N.Ahmadipour, Movement Minimization for Network
Design in Geometric Spaces, BSc Thesis, Sharif Uni-
versity of Technology, 2010

[6] L.G. Valiant, University considerations in VLSI cir-
cuits, IEEE Trans. Computers 30 (1981) 135-140.

[7] M.R. Garey, D.S. Johnson and R.E. Tarjan, The Planar
Hamiltonian Problems is NP-complete, SIAM Journal
on Computing, Vol. 5(1976), pp 704-714.

[8] A. Itai, C.H. Papadimitriou and J.L.Szwarcfiter, Hamil-
ton paths in grid graphs, SIAM Journale of Computing.
11 (1982) 676-686.

[9] M.Mahdian, Y.Ye and J.Zhang, Approximation algo-
rithms for metric facility location problems, SIAM Jour-
nal on Computing, 2006, p411-432.

23rd Canadian Conference on Computational Geometry, 2011

372

CCCG 2011, Toronto ON, August 10–12, 2011

A Randomly Embedded Random Graph is Not a Spanner

Abbas Mehrabian∗

Abstract

Select n points uniformly at random from a unit square,
and then form a random graph on these points by
adding an edge joining each pair independently with
probability p. We show that for every fixed ε > 0, if
p < 1 − ε, then with probability approaching 1 as n
becomes large, the resulting embedded graph has un-
bounded stretch factor.

1 Introduction

Select n points uniformly at random from a unit square,
and then form a random graph G on these points by
joining each pair independently with probability p =
p(n). This is not a “random geometric graph” in the
usual sense of that term, because points are connected
without regard to their geometric distance. For every
two points u and v, let d(u, v) denote their Euclidean
distance. Make G weighted by putting weight d(u, v) on
every edge uv. For two vertices u and v, let dG(u, v) de-
note their shortest-path distance on (weighted) G, and
let dG(u, v) = ∞ if there is no (u, v)-path in G. The
stretch factor of G is defined as

max
dG(u, v)

d(u, v)
,

where the maximum is taken over all vertices u, v. In the
open problem session of CCCG 2009 [1], O’Rourke asked
if for p > lnn/n, the resulting graph has a bounded
stretch factor. We give a negative answer to this ques-
tion. More precisely, we show that for every fixed ε > 0,
if p < 1−ε, then with probability approaching 1 as n be-
comes large, the resulting graph has unbounded stretch
factor.

2 Proof of the Main Result

Assume that n points are chosen independently and uni-
formly from a unit square, where n is sufficiently large.
Let p < 1− ε for some fixed ε > 0, and build the graph
G as in the introduction. In the following, with high
probability means with probability 1 − o(1), where the
asymptotics is with respect to n. Fix a positive λ. We

∗Department of Combinatorics and Optimization, University
of Waterloo, amehrabi@uwaterloo.ca

will show that with high probability the graph G has
stretch factor larger than λ.

Let m be a positive integer satisfying m2 ≤ n/2 <
2m2. Partition the unit square into m2 squares of side
1
m by drawing m − 1 equally spaced vertical lines and
m − 1 equally spaced horizontal lines. We will call the
generated squares of side 1

m the small squares. Let K
be the number of small squares that contain exactly
two points. The probability that some point lies on
the boundary of some small square is zero, and we will
assume that this does not happen.

Lemma 1 With high probability K ≥ e−8n.

Proof. Number the small squares arbitrarily from 1 to
m2. We have

K = K1 +K2 + · · ·+Km2 ,

where Ki is the indicator variable for the event that the
i-th small square contains exactly two points. Hence
EKi is the probability of this event. Let 1 ≤ i ≤ m2 be
arbitrary. The probability that a random point lies in
the i-th small square is 1/m2. So the probability that
exactly two of the n random points are in this square is

EKi =

(
n(n− 1)

2

)(
1

m2

)2(
1− 1

m2

)n−2

.

By the choice of m, we have m4 ≤ n2/4 and m2 ≥ n/4.
These bounds together with the fact that for large n,
exp(−5/n) ≤ 1− 4/n give

EKi ≥
(
n2

4

)(
4

n2

)(
1− 4

n

)n
≥ e−5.

Thus by linearity of expectation,

EK = EK1 + EK2 + · · ·+ EKm2 ≥ m2e−5 ≥ ne−7.

Now, we estimate Var(K) and show that Var(K) =
O(n). Let i, j be arbitrary, with 1 ≤ i < j ≤ m2.
The probability that both the i-th square and the j-th
square contain exactly two points is

E[KiKj] =

(
n

2

)(
n− 2

2

)(
1

m2

)4(
1− 2

m2

)n−4

,

and we have

EKiEKj = (EKi)
2 =

(
n

2

)2(
1

m2

)4(
1− 1

m2

)2(n−2)

.

CCCG 2011, Toronto ON, August 10–12, 2011

373

23rd Canadian Conference on Computational Geometry, 2011

Thus,

Cov(Ki,Kj) = E[KiKj]− EKiEKj

≤
(
n

2

)2(
1

m2

)4
[(

1− 2

m2

)n−4

−
(

1− 1

m2

)2(n−2)
]
.

Moreover, since m2 = Θ(n),

(
1− 2

m2

)n−4

−
(

1− 1

m2

)2(n−2)

= exp

(−2(n− 4)

m2

)
− exp

(−2n+ 4

m2

)
+O(1/m2)

= exp

(
− 2n

m2

)(
e8/m2 − e4/m2

)
+O(1/m2)

= eΘ(1)O(1/m2) +O(1/m2) = O(1/m2).

Thus,

Cov(Ki,Kj)

≤
(
n

2

)2(
1

m2

)4
[(

1− 2

m2

)n−4

−
(

1− 1

m2

)2(n−2)
]

= O(n4)O(1/m8)O(1/m2) = O(1/m2).

Consequently, since Var(Ki) = EKi(1− EKi) ≤ 1/4,

Var(K) =
∑

i

Var(Ki) +
∑

i6=j
Cov(Ki,Kj)

≤ m2/4 + 2

(
m2

2

)
O(1/m2) = O(m2) = O(n).

Let t =
(
e−7 − e−8

)
n. Then Chebyshev’s inequality

gives

Pr
[
K < ne−8

]
≤ Pr [|K − EK| ≥ t]

≤ Var(K)

t2
= o(1).

Thus, with high probability, K ≥ e−8n. �

A small square S with exactly two points u and v is
called nice if the following statements are true.

1. Points u and v lie in the circle which is co-centric
with S and has radius r = (7mλ)−1.

2. The points u and v are nonadjacent in graph G.

We claim that the existence of a nice square S implies
that the stretch factor of G is larger than λ. In fact,
the (weighted) distance between u and v in G is at least

1
2m − r, since any (u, v)-path in G should go out of S
at the very first step. However, the Euclidean distance
between u and v is at most 2r, and we have

(
1

2m
− r
)
> λ(2r).

Let A be the (random) set of small squares that con-
tain exactly 2 points. Let S ∈ A with points u and v
inside it. Then for S to be nice, u and v should lie in
the co-centric circle with radius r, and u and v should
be nonadjacent in G. The probability of the former is
(πr2m2)2 = (π/7λ)2, and the probability of the latter
is 1−p. These two events are independent, so the prob-
ability that S is not nice is 1− (π/7λ)2(1− p).

Let A0 be a fixed set of small squares, and assume
that we condition on A being equal to A0. Then the
events happening inside each square of A0 are indepen-
dent of the others. In particular, the events

{S is nice : S ∈ A0}

are mutually independent, hence the probability that no
nice square exists is equal to

[
1− (π/7λ)2(1− p)

]|A0|
.

Therefore, conditioned on the event |A| ≥ e−8n, the
probability that no nice square exists is at most

[
1− (π/7λ)2(1− p)

]e−8n
,

which, since p < 1− ε, approaches 0 as n becomes large.
By Lemma 1, with high probability the size of A is at
least e−8n, i.e. the event |A| ≥ e−8n happens with prob-
ability 1−o(1). Thus with high probability a nice square
exists and the stretch factor is larger than λ.

Acknowledgement. The author thanks Nick
Wormald for suggesting an alternative step in the proof
of Lemma 1.

References

[1] Erik D. Demaine and Joseph O’Rourke. Open Prob-
lems from CCCG 2009. In Proceedings of the 22nd
Canadian Conference on Computational Geoemtry
(CCCG 2010), Winnipeg, Manitoba, Canada, Au-
gust 9–11, 2010, 83–86.

23rd Canadian Conference on Computational Geometry, 2011

374

CCCG 2011, Toronto ON, August 10–12, 2011

Approximation Algorithms for the Discrete Piercing Set Problem
for Unit Disks

Minati De∗† Gautam K. Das‡ Subhas C. Nandy∗

Abstract

In this note, we shall consider constant factor approxi-
mation algorithms for a variation of the discrete pierc-
ing set problem for unit disks. Here a set of points P
is given; the objective is to choose minimum number of
points in P to pierce all the disks of unit radius centered
at the points in P . We first propose a very simple al-
gorithm that produces a 14-factor approximation result
in O(n log n) time. Next, we improve the approxima-
tion factor to 4 and then to 3. Both algorithms run in
polynomial time.

1 Introduction

The piercing set of a set of objects S in IR2 is a set of
points Q such that each object in S contains at least
one point in Q. Here the problem is, given the set S,
compute a piercing set of minimum size. Let us consider
the intersection graph G = (V,E) of the objects in S.
Its nodes V correspond to the members in S, and an
edge e = (u, v) ∈ E, for a pair of vertices u, v ∈ V
implies that the two objects corresponding to the nodes
u and v intersect. A clique C in the graph G implies
that each pair of objects corresponding to the nodes
in C are intersecting. But, it does not imply that all
of them have a non-empty common intersection region.
In other words, a clique C in G does not imply that
the objects corresponding to the members in C can be
pierced by a single point. However, if S consists of a set
of axis-parallel rectangles, then the minimum piercing
set corresponds to the minimum clique cover 1 of the
intersection graph of the members in S.

The minimum clique cover problem for a set of axis-
parallel unit squares in IR2 is known to be NP-hard [17].
Hochbaum and Maass [16] proposed a PTAS for the
minimum clique cover problem for a set of axis-parallel
unit squares with time complexity nO(1/ε2). The time
complexity was later improved to nO(1/ε) by Feder and

∗Indian Statistical Institute, Kolkata, India
†Visiting Carleton University, Canada, during April 1, 2011 -

August 27, 2011. minati.isi@gmail.com
‡Indian Institute of Technology Guwahati, India
1The minimum clique cover problem for a graph G = (V,E)

is partitioning the vertex set V into minimum number of subsets
such that the subgraph induced by each subset is a clique.

Greene [13], and by Gonzalez [14]. Chan [5] proposed
a PTAS for squares of arbitrary size with time com-
plexity nO(1/ε2). In fact, this algorithm works for any
collection of fat objects. Chan and Mahmood [6] con-
sidered the problem for a set of axis-parallel rectangles
of fixed height (but of arbitrary width), and proposed a

PTAS with nO(1/ε2) time complexity.

The minimum clique cover problem for unit disk graph
also has a long history. The problem is known to be
NP-hard [9], and a 3-factor approximation algorithm
is easy to obtain [19]. Recently, Dumitrescu and Pach
[12] proposed an O(n2) time randomized algorithm for
the minimum clique cover problem with approximation
ratio 2.16. They also proposed a polynomial time ap-
proximation scheme (PTAS) for this problem that runs

in O(n1/ε
2

) time. It is an improvement on a previous

PTAS with O(n1/ε
4

) running time [22].

Since, the disks do not satisfy the Helly’s property2, the
minimum piercing set problem for unit disks is different
from the minimum clique cover problem for unit disk
graph. The minimum piercing set problem for disks has
a lot of applications in wireless communication where
the objective is to place the base stations to cover a
set of radio terminals (sensors) distributed in a region.
The minimum piercing set problem for unit disks is also
NP-hard [3, 12]. Carmi et. al [3] proposed an approx-
imation algorithm for this problem where the approx-
imation factor is 38. In particular, if the points are
distributed below a straight line L, and the base sta-
tions (of same range) are allowed to be installed on or
above L only then a 4-factor approximation algorithm
can be obtained provided all the points lie within an
unit distance from at least one base station.

In the discrete version of the minimum piercing set prob-
lem for unit disks, two sets of points P and Q are given.
The unit disks are centered at the points of P , and the
piercing points need to be chosen from Q. The objective
is to choose minimum number of points from Q to pierce
all the disks in P . The problem is known to be NP-hard
[18]. The first constant factor approximation result on
this problem is proposed by Calinescu et al. [2]. It uses
linear programming relaxation method to produce an
108-factor approximation result. The approximation re-

2A set of object has the Helly property if each intersecting
family has a non-empty intersection.

CCCG 2011, Toronto ON, August 10–12, 2011

375

23d Canadian Conference on Computational Geometry, 2011

sult is then improved to 72 in [21], 38 in [3], and 22 in [8].
Finally, Das et al. [10] proposed an 18-factor approxi-
mation algorithm that runs in O(n log n+m logm+mn)
time, where |P | = n and |Q| = m.

Another variation of the discrete piercing set problem
for unit disks assumes Q = P . In other words, the
unit disks corresponding to the points in P need to be
pierced by choosing a minimum number points from P
itself. In the literature, the problem is referred to as
the minimum dominating set problem for the unit disk
graph (or MDS problem in short). Here, an undirected
graph is constructed with nodes corresponding to the
points in P . Between a pair of nodes there is an edge
if the distance between the two points is less than or
equal to their common radius. A vertex in the graph
dominates itself and all its neighbors. The objective is
to choose minimum number of vertices to dominate all
the vertices in the graph.

The problem is known to be NP-hard [7]. Ambuhl
et al. [1] first proposed an approximation algorithm
for this problem. They considered the weighted ver-
sion of the problem where each node is attached with
a positive weight. The objective is to find the mini-
mum weight dominating set of the nodes in the graph.
The approximation factor of their proposed algorithm
is 72. Huang et al. [15] improved the approximation
factor of the same problem to 6 + ε. Dai and Yu [11]
further improved the approximation factor to 5 + ε.
Though they have not analyzed the time complexity of

their proposed algorithm, their algorithm needs O(n
9

ε2)
time. Recently, Zou et al. [23] proposed a polynomial
time 4+ ε factor approximation algorithm. Nieberg and
Hurink [20] proposed an O(nc) time PTAS for comput-
ing the minimum dominating set for unit disk graphs,
where c = (2r + 1)2, and r is an integer satisfying
(2r + 1)2 < (1 + ε)r/2. It accepts any undirected graph
as input, and returns a (1 + ε) factor approximation
solution for the dominating set problem, or a certifi-
cate indicating that the input graph is not a unit disk
graph. For a 2-factor approximation result, the worst-
case running time is obtained by setting ε = 1; in that
case, r will be equal to 22. Thus, the running time is
O(n(2r+1)2) = O(n(2×22+1)2) = O(n2025). Even for a
3-factor approximation result, the worst case time com-
plexity (by putting ε = 2) becomes O(n625). Thus, this
algorithm is not at all tractable from a practical point
of view. Our present work is directed towards finding a
tractable algorithm with a guaranteed constant factor
approximation result. For the unweighted version of the
discrete piercing set problem, the best known result is
a 5-factor approximation algorithm proposed in [4], and
it works for disks of arbitrary radii. This result is then
used for the h-piercing problem, where the objective is
to choose minimum number of points in P to pierce each
disk by at least h points. The proposed approximation

factor was 5(2h − 1).

We propose three methods that use almost similar type
approach for the discrete piercing problem with Q = P .
The first one produces a 14-factor approximation result
in O(n log n) time. The second one produces a 4-factor
solution in O(n9) time, and the last one produces a 3-
factor solution in O(n18) time. Recall that the running
time of the existing algorithm for producing a 3-factor
approximation solution is O(n625) [20]. Thus, our algo-
rithm is a substantial improvement over the existing re-
sults in the literature. We can use this result to improve
the approximation factor for the h-piercing problem [4]
of constant radius disks to 3(2h − 1) from 5(2h − 1).

2 Approximation Algorithms

We are given a set of points P , where each point cor-
responds to a unit disk centered at that point. The
objective is to choose a subset P ′ ⊆ P of minimum car-
dinality such that the disk corresponding to each point
in P contains at least one member of P ′.

2.1 A simple 14-factor approximation algorithm

Consider a partitioning of the plane into a grid whose
each cell is of size 1√

2
× 1√

2
. Since the maximum distance

between any two points in a grid cell is less than or equal
to 1, we can pierce all the disks centered at points of P
in a particular cell by choosing any one member p ∈ P
lying in that cell. In other words, if we draw a disk of
unit radius, and centered at p, it covers all the points
lying inside that cell. Note that, it may cover point(s)
in the other cell(s). But, we show that a disk centered
at a point p ∈ P inside a grid cell may cover (some or
all) points in at most 14 other grid cells.

1 2 3 4 5

6 7 8 9 10

11 12 14 15

16 17 18 19 20

21 22 23 24 25

A B

C D

Figure 1: Discrete piercing set for unit disks

Consider the 5× 5 grid structure as shown in Figure 1.
The length of each side of a cell is 1√

2
. The cells are

numbered as 1, 2, . . . , 25. The cell 13 is split into four
parts, namely A, B, C and D. Observe that, a disk of
radius 1 centered at any point in sub-cell A may cover
(some or all) points in only 15 cells, numbered 2, 3, 4,

23rd Canadian Conference on Computational Geometry, 2011

376

CCCG 2011, Toronto ON, August 10–12, 2011

6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18 and 19. The same
fact can be observed for the sub-cells B, C and D. We
can further tighten the observation as stated below.

Observation 1 A single unit disk centered at a point
inside a cell can not cover points in more than 14 cells
simultaneously.

Proof. First we prove that a single unit disk centered
at a point p in the cell A can not cover points in cell
number 4 and 16 simultaneously (see Figure 1).

Let u and v be the bottom-left and top-right corners
of the cells 4 and 16 respectively. Thus, dist(u, v) = 2,
where dist(., .) denotes the Euclidean distance between
a pair of points. Let p be a point properly inside cell A.
Therefore, dist(u, p) + dist(p, v) > 2. This implies that
at least one of dist(u, p) and dist(p, v) is greater than
1. Therefore, the point p can not cover a point inside
cell 4 and a point inside cell 16 simultaneously. Thus,
a single unit disk at a point p ∈ A can cover (some or
all) points in cells numbered 2, 3, 4, 6, 7, 8, 9, 11, 12,
13, 14, 16, 17, 18 and 19, but it can not cover a point
in cell 4 and a point in cell 16 simultaneously.

Similarly, it can be shown that

• a single unit disk centered at a point p ∈ B can
cover (some or all) points in cells numbered 2, 3, 4,
7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 19 and 20, but it
can not cover a point in cell 2 and a point in cell
20 simultaneously.

• a single unit disk centered at a point p ∈ C can
cover (some or all) points in cells numbered 6, 7, 8,
9, 11, 12, 13, 14, 16, 17, 18, 19, 22, 23 and 24, but
it can not cover a point in cell 6 and a point in cell
24 simultaneously.

• a single unit disk centered at a point p ∈ D can
cover (some or all) points in cells numbered 7, 8,
9, 10, 12, 13, 14, 15, 17, 18, 19, 20, 22, 23 and 24
but it can not cover a point in cell 10 and a point
in cell 22 simultaneously.

Thus, the observation follows. �

In our approximation algorithm, we select one point
from each cell that contains at least one point. The
stepwise description of the proposed method is given in
Algorithm 1.

Theorem 1 The approximation factor of our algo-
rithm is 14, and its running time is O(n log n).

Proof. Consider a disk in the optimum solution. By
Observation 1, it can cover points in at most 14 cells.

Algorithm 1 MDS 14-FACTOR(P)

1: Input: Set P of points in a 2-dimensional plane.
2: Output: A Set P ∗ ⊆ P such that the unit disks

centered at points in P ∗ cover all the points in P .
3: Set P ∗ ← ∅.
4: Consider a partitioning of the plane into a grid

whose each cell is of size 1√
2
× 1√

2
.

/* A grid cell (α, β) is said to be less than another
grid cell (γ, δ) if and only if either α < γ or α = γ
and β < δ */

5: Consider a height balanced binary tree T for storing
the non-empty grid cells. Each element of T is a
tuple (α, β) indicating the indices of a non-empty
cell. It is attached with any point pi ∈ P that lies
in that cell (as the piercing point). For each point
pi = (xi, yi) ∈ P , we compute the indices of the grid
cell α = d xi√

2
e and β = d yi√

2
e. If the tuple (α, β) is

not in T , we store it in T and attach pi with it.
Otherwise (i.e., if (α, β) is in T), we have nothing
to do.

6: for (each node v of T) do
7: Let p be the point attached to the node v. Set

P ∗ ← p
8: end for
9: return P ∗

But, we have chosen at most 14 different disks to cover
those points. Thus, the approximation factor follows.

In order to justify the time complexity, we shall not
construct the grid explicitly. We maintain a height bal-
anced binary tree T for storing the non-empty grid cells.
The processing of each point requires only the checking
of the corresponding grid cell in T . After processing
all the points in P , we need to visit T for reporting
the piercing points. Thus the time complexity result
follows. �

2.2 Improving the approximation factor to 4

We now show that we can have a 4-factor approximation
algorithm by increasing the worst case running time.
We partition the plane into a grid whose each cell is of
size 3√

2
× 3√

2
as shown in Figure 2(a).

Lemma 2 The minimum piercing set of the unit disks
centered at the points inside a grid cell of size 3√

2
× 3√

2

can be computed in O(n9) time.

Proof. Let us consider a grid cell of size 3√
2
× 3√

2
. We

use χ to denote the cell, and Pχ to denote the set of
points inside this cell. We split χ into 9 subcells of size
1√
2
× 1√

2
(in Figure 2(b) it is shown separately.). In

order to get the minimum cardinality subset of P for

CCCG 2011, Toronto ON, August 10–12, 2011

377

23d Canadian Conference on Computational Geometry, 2011

3√
2

3√
2 A B

C

D

B B

B

B

B B

B B B

A A

A A A

A A A

C C

C C C

D D D

D D

(a)

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

(b)

1√
2

1√
2

(c)

Figure 2: Proof of Lemma 2

piercing the disks centered at the points in Pχ, we need
to identify the minimum number of points in P such
that the disks centered at those points can cover all the
points in Pχ. Note that, if all the 9 cells are non-empty,
we need at most 9 disks to cover all the points in Pχ.
The reasons are (i) the disk centered at any point inside
a subcell covers all the points inside that subcell, and
(ii) each non-empty subcell of χ can contribute one such
point.

In order to cover the points Pχ, we need to consider the
disks centered at the points in P that lie in χ and the
shaded region around χ as shown in Figure 2(c). Let
this set of points be Qχ. We choose every point of Qχ,
and check whether the disk centered at that point covers
all the points in Pχ. If it fails for all the points in Qχ,
then we choose each pair of points p, q ∈ Qχ and test
whether each point in Pχ lies inside at least one disk
centered at p and q. If it fails again, we need to choose
each triple of points of Qχ and so on. Finally, we need to
choose each tuple of 8 points from Qχ and test whether
each point in Pχ lies inside one of the disks centered to
those 8 points. In each step, the checking needs O(n)
time. Thus, these 8 steps needs in total O(n9) time in
the worst case. If the 8-th step also fails, we choose one
point in each cell arbitrarily, and put a disk centered
at those 9 points. Thus, the time complexity of this
optimal algorithm follows. �

The stepwise description of the method described in
Lemma 2 is given in Algorithm 2. Next, we use the
Algorithm 2 for designing Algorithm 3 for getting a
4-factor approximation result for the discrete piercing
problem.

Algorithm 2 OPT(χ, Pχ, Qχ)

1: Input: The cell χ of size 3√
2
× 3√

2
, set Pχ ⊆ P

of points inside cell χ, and set Qχ ⊆ P of points
such that each unit disk centered at the points in
Qχ covers at least one point in Pχ.

2: Output: Set P ∗ ⊆ Qχ such that the unit disks
centered at points in P ∗ cover all the points in Pχ.

3: Set P ∗ ← ∅ and flag ← false.
4: for (k = 1, 2, . . . , 8) do
5: Choose each k points from each Qχ, and check

whether the disks centered at these k points cover
all the points in Pχ.

6: If the answer of the above step is true, then add
these k points in the set P ∗, set flag = true, and
break the for loop.

7: end for
8: if (flag = false) then
9: Divide χ into 9 subcells of size 1√

2
× 1√

2
. Choose

one point of Pχ from each of these 9 subcells and
add these 9 points to the set P ∗.

10: end if
11: return P ∗

Observe that a unit disk in the optimum solution of
a cell χ does not cover any point of some other cell
ψ unless ψ is one of the eight neighboring cells of χ.
We color the cells with minimum number of colors such
that the unit disks placed in the cells of same color are
non-overlapping irrespective of which point is chosen (as
the center of the disk) in those cells. Thus, if we color
cell number 1 (top-left cell) of the grid by A, we need
to assign three different colors, say B, C and D to its
three neighboring cells numbered 2, 7 and 8, which in
turn are neighbors to each other (see Figure 2). But,
we can again assign color A to cell 3. Thus, we have the
following result.

Lemma 3 The minimum number of colors required to
color the cells of the grid is 4.

Proof. We assign color to the cells in the grid from top
row to the bottom row, and the cells in each row are
colored from left to right. While assigning color to a
cell, at most three of its neighbors are already colored.
These are all different since the corresponding cells are
neighbor to each other. So, we may assign the remaining
fourth color to it. �

Theorem 4 A 4-factor approximation algorithm for

23rd Canadian Conference on Computational Geometry, 2011

378

CCCG 2011, Toronto ON, August 10–12, 2011

the minimum discrete piercing set problem for unit disk
exists with time complexity O(n9).

Proof. Consider the cells colored by A. Since the dis-
tance between any two cells with color A is at least
3√
2
(> 2), a unit disk can covers only the points in a

single cell with color A. Therefore, the set of disks
in the optimum solution of one cell colored with A do
not cover any point in any other cell colored with A.
Thus, the optimum solution of the points of all the cells
colored with A can be computed by choosing each A
colored cell independently, and computing its optimum
solution. Let us denote this solution by OPTA. Surely
|OPTA| ≤ |OPT |, where OPT is the optimum solution
for the point set P distributed on the plane. Similarly
OPTB , OPTC and OPTD denote the optimum solution
of the cells colored as B, C and D. The approxima-
tion factor of our algorithm follows from the fact that
|OPTA|+ |OPTB |+ |OPTC |+ |OPTD| ≤ 4|OPT |, and
our reported answer is OPTA∪OPTB∪OPTC∪OPTD.

The time complexity follows from the fact that we are
using at most O(n) points while computing the opti-
mum solution of a cell, and we are computing the op-
timum solution for only non-empty cells, which may be
O(n) in the worst case. �

2.3 Improving the approximation factor to 3

We now improve the previous method by reducing de-
pendency between cells. As in the earlier sections, here
also we need to partition the region into cells as fol-
lows. We split the plane into horizontal strip of width
3√
2
. Each odd numbered strip is divided into equal sized

cells of width 6√
2
. The horizontal width of the last cell

may be less than 6√
2
, depending on the horizontal width

of the region. Each even numbered strip is divided into
cells such that the first cell is of width 3√

2
, and the

other cells are of width 6√
2
, excepting the last cell as

mentioned for odd numbered strips. Next, we assign
color to the cells of the odd numbered strips using three
colors A, B and C as shown in Figure 3. Now consider
the cells in the even numbered strips, say strip 2. Cell
8 shares sides of two cells 1 and 2, which are already
colored by A and B. So, we can color cell 8 by C. By
the same reason, cells 7 and 9 are colored by C and A.
Thus, the cells of each odd numbered strips are colored
using the sequence B,C,A,B,C,A, Such a coloring
admits that no part of the disk centered at a point in-
side a cell of a particular color i (∈ {A,B,C}) will lie
in another cell of the same color i.

The maximum number of disks (centered at points in P)
required to cover all the points is a cell of size 3√

2
× 6√

2

is 18. Arguing as in Subsection 2.2, the worst case time

Algorithm 3 MDS 4-FACTOR(P)

1: Input: Set P of points in a 2-dimensional plane.
2: Output: Set P ∗ ⊆ P such that the unit disks cen-

tered at points in P ∗ cover all the points in P .
3: Set P ∗ ← ∅.
4: Consider a partitioning of the plane into a grid

whose each cell is of size 3√
2
× 3√

2
. /* A grid cell

(α, β) is said to be less than another grid cell (γ, δ)
if and only if either α < γ or α = γ and β < δ */

5: Consider an height balanced binary tree T for stor-
ing the non-empty grid cells. Each element of T is
a tuple χ = (α, β) indicating the indices of a non-
empty cell. It is attached with two sets namely, Pχ
and Qχ where Pχ ⊆ P is the set of points inside the
cell χ and Qχ ⊆ P is the set of points such that the
disk centered at the points in Qχ covers at least one
point in Pχ. For each point pi = (xi, yi) ∈ P , we
compute the indices of the grid cell α = d 3xi√

2
e and

β = d 3yi√
2
e. If the tuple (α, β) is not in T , we store

it in T with corresponding Pχ and Qχ. Otherwise
(i.e., if (α, β) is in T), we just modify the sets Pχ
and Qχ.

6: for (each node v of T) do
7: Run 3√

2
X 3√

2
OPT(χ, Pχ, Qχ) /* Algorithm 2 */

8: Let P ∗1 be the output of the above algorithm. Set
P ∗ = P ∗ ∪ P ∗1

9: end for
10: return P ∗

A B C A B C

AB C AB C

A B C A B C

AB C AB C

A B C A B C

AB C AB C

1

19

2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

6√
2

3√
2

Figure 3: Coloring of cells for 3-factor approximation
algorithm

needed for computing the minimum number of disks
required to cover the points of P in such a cell is O(n18).
Thus, we have the following result:

Theorem 5 A 3-factor approximation algorithm for
the minimum discrete piercing set problem for unit disks
exists with time complexity O(n18).

CCCG 2011, Toronto ON, August 10–12, 2011

379

23d Canadian Conference on Computational Geometry, 2011

3 Conclusion

We proposed constant factor approximation algorithms
for a variation of the discrete piercing set problem for
unit disks, where the points chosen for piercing the disks
will be from the set of center points of the disks given
for piercing. The most simple algorithm produces 14-
factor approximation result in O(n log n) time. We then
improve the approximation factor to 4. Finally, we pro-
pose a 3-factor approximation algorithm, which is an
improvement of the existing result by a factor of 5

3 [20].
Though, the time complexity of our proposed 4- and
3-factor approximation algorithms are high, in actual
scenario, they terminate very fast.

Finally, our algorithm can also be used to solve the h-
piercing problem for unit disks as defined in [20]. Fol-
lowing the same method as in [20], it can be shown that
the result obtained using our method is no worse than
3(2h − 1)-factor of the optimum solution of h-piercing
problem. Thus, the result produced by our algorithm
for the h-piercing problem is an improvement by a factor
5
3 over the existing best known result [20].

References

[1] C. Ambuhl, T. Erlebach, M. Mihalak and M.
Numkesser. Constant-factor approximation for
minimum-weight (connect) dominating sets in unit disk
graphs. Proc. of the APPROX-RANDOM, pp. 3–14,
2006.

[2] G. Calinescu, I Mandoiu, P. J. Wan and A. Zelikovsky.
Selecting forwarding neighbors in wireless ad hoc net-
works. Mobile Network Applications, 9(2):101–111,
2004.

[3] P. Carmi, M. Katz and N. Lev-Tov. Covering points by
unit disks of fixed location. Proc. of the 18th. Interna-
tional Symposium on Algorithms and Computation, pp.
644–655, 2007.

[4] P. Carmi, M. J. Katz and N. Lev-Tov. Polynomial-time
approximation schemes for piercing and covering with
applications in wireless networks. Computational Ge-
ometry: Theory and Applications, 39(3):209–218, 2008.

[5] T. M. Chan. Polynomial-time approximation schemes
for packing and piercing fat objects. Journal of Algo-
rithms, 46(2):178–189, 2003.

[6] T. M. Chan and A. -A. Mahmood. Approximating the
piercing umber of unit height rectangles. Proc. of the
17th. Canadian Conference on Computational Geome-
try, pp. 15–18, 2005.

[7] B. N. Clark, C. J. Colbourn and D. S. Johnson. Unit
disk graphs. Discrete Math., 86(1):165–177, 1990.

[8] F. Claude, G. K. Das, R. Dorrigiv, S. Durochar, R.
Fraser, A. Lopez-Ortiz and B. G. Nickerson. An im-
proved line-separable algorithm for discrete unit disk
cover. Discrete Mathematics, Algorithms and Applica-
tions, 2(1):77–87, 2010.

[9] M. R. Cerioli, L. Faria, T. O. Ferreira and F. Protti. On
minimum clique partition and maximum independent
set on unit disk graphs and penny graphs: complexity
and approximation. Electronic Notes in Discrete Math-
ematics, 18:73–79, 2004.

[10] G. K. Das, R. Fraser, A. Lopez-Ortiz and B. G. Nick-
erson. On the discrete unit disk cover problem. Proc.
of the 5th. Workshop on Algorithm and Computation,
LNCS-6552, pp. 146–157, 2011.

[11] D. Dai and C. Yu. A (5 + ε)-approximation algo-
rithm for minimum weighted dominating set in unit disk
graph. Theoretical Computer Science, 410(8-10):756–
765, 2009.

[12] A. Dumitrescu and J. Pach. Minimum clique parti-
tion in unit disk graphs. Graphs and Combinatorics,
27(3):399–411, 2011.

[13] T. Feder and D. H. Greene. Optimal algorithms for
approximate clustering. Proc. of the 20th ACM Sym-
posium on Theory of Computing, pp. 434–444, 1988.

[14] T. F. Gonzalez. Covering a set of points in multidimen-
sional space. Information Processing Letters, 40(4):181–
188, 1991.

[15] Y. Huang, X. Gao, Z. Zhang and W. Wu. A better
constant-factor approximation for weighted dominating
set in unit disk graph. Journal of Combinatorial Opti-
mization, 18(2):179–194, 2008.

[16] D. S. Hochbaum and W. Maass. Approximation
schemes for covering and packing problems in image
processing and VLSI. Journal of the ACM, 32(1):130–
136, 1985.

[17] M. R. Garey and D. S. Johnson. Computers and
Intractability − A Guide to the Theory of NP-
completeness. Freeman, New York, 1979.

[18] D. Johnson. The NP-completeness column: an ongoing
guide. Journal of Algorithms, 3(2):182–195, 1982.

[19] M. Marathe, H. Breu, H. B. Hunt III, S. S. Ravi and D.
J. Rosenkrantz. Simple heuristics for unit disk graphs.
Networks, 25(2):59–68, 1995.

[20] T. Nieberg and J. Hurink. A PTAS for the minimum
dominating set problem in unit disk graphs. Proc. of
the 3rd International Workshop on Approximation and
Online Algorithms, LNCS - 3879, pp. 296–306, 2006.

[21] S. Narayanappa and P. Voytechovsky. An improved ap-
proximation factor for the unit disk covering problem.
Proc. of the 18th Canadian Conference on Computa-
tional Geometry, 2006.

[22] I. Pirwani and M. Salavatipour. A weakly robust PTAS
for minimum clique partition in unit disk graphs. Proc.
of the 12th Scandinavian Symposium and Workshops on
Algorithm Theory, LNCS-6139, pp. 188–199, 2010.

[23] F. Zou, Y. Wang, X. -H. Xu, X. Li, H. Du, P.
Wan and W. Wu. New approximations for minimum-
weighted dominating sets and minimum-weighted con-
nected dominating sets on unit disk graphs. Theoretical
Computer Science, 412(3):198–208, 2011.

23rd Canadian Conference on Computational Geometry, 2011

380

CCCG 2011, Toronto ON, August 10–12, 2011

New Lower Bounds for the Three-dimensional Orthogonal Bin Packing
Problem∗

Chia-Hong Hsu† Chung-Shou Liao§,†

Abstract

In this paper, we consider the three-dimensional orthog-
onal bin packing problem, which is a generalization of
the well-known bin packing problem. We present new
lower bounds for the problem and demonstrate that
they improve the best previous results.

1 Introduction

The bin packing problem (abbreviated as 1D-BP) is one
of the classic NP-hard combinatorial optimization prob-
lems. Given a set of n items with positive sizes v1, v2,
. . . , vn ≤ B, the objective is to find a packing in bins
of equal capacity B to minimize the number of bins re-
quired. The problem finds obvious practical relevance
in many industrial applications, such as the container
loading problem and the cutting stock problem.

The bin packing problem is strongly NP-hard. Fur-
thermore, it does not admit a (3

2 − ε)-factor approxima-
tion algorithm unless P=NP [10]. On the other hand, it
has been shown that the simple First Fit approach can
obtain a 17

10 -factor approximation algorithm, and the
First Fit Decreasing algorithm can approximate within
an asymptotic 11

9 -factor [11]. Subsequently, Fernandez
de la Vega and Lueker [9] proposed an asymptotic poly-
nomial time approximation scheme (PTAS), and Kar-
markar and Karp [12] presented an improved asymp-
totic fully PTAS. For further results on approximation
algorithms, readers may refer to Coffman, Garey, and
Johnson’s survey [6].

There are many variations of the bin packing problem,
such as the strip packing, square packing, and rectan-
gular box packing problems. In this paper, we consider
the three-dimensional orthogonal bin packing problem
(abbreviated as 3D-BP). Given an instance I of n 3D
rectangular items I1, I2, . . . , In, each item Ii is charac-
terized by its width wi, height hi, depth di, and volume
vi = wihidi. The goal is to determine a non-overlapping
axis-parallel packing in identical 3D rectangular bins
with width W , height H, depth D, and size B = WHD
that minimizes the number of bins required. We assume

∗Supported by the National Science Council of Taiwan under
Grant NSC99-2218-E-007-010.

†Department of Industrial Engineering and Engineering Man-
agement, National Tsing Hua University, Hsinchu 300, Taiwan.
§Corresponding Author: csliao@ie.nthu.edu.tw

that the orientation of the given items is fixed; that is,
the items cannot be rotated and they are packed with
each side parallel to the corresponding bin side.

A considerable amount of research has been devoted
to the design and analysis of lower bounds for the bin
packing problem [4, 16, 22]. Martello and Toth [19, 20]
and Labbé et al. [14] proposed lower bounds for 1D-
BP, and then extended the concept to multi-dimensional
models [17, 18]. Fekete and Schepers [7, 8] devised
lower bounds based on dual feasible functions (please
see the Appendix) and several related results were pre-
sented [3, 5]. Boschetti [1] combined Martello and
Toth’s work with the above dual feasible functions and
proposed the best lower bound for 3D-BP; i.e., the lower
bound dominates1 all the previous results for 3D-BP.

In the following sections, we first review the previ-
ously proposed lower bounds and integrate the best
of them for 1D-BP and 3D-BP to obtain a new lower
bound for 3D-BP. Then, we propose another novel lower
bound for 3D-BP and show that it dominates all the
previous results.

2 Lower bounds for 1D-BP revisited

An obvious lower bound for 1D-BP, called the continu-
ous lower bound, can be computed as follows:

L0 =

⌈
Σni=1vi
B

⌉

It is known that the asymptotic worst-case performance
ratio of the continuous lower bound L0 is 1

2 for 1D-
BP [19]. The lower bound can be easily extended to
3D-BP by considering the volume vi of each item Ii.
Martello et al. [17] showed that, for 3D-BP, the worst-
case performance ratio of L0 is 1

8 .
Subsequently, the bound was improved by Martello

and Toth [20]. Under the new bound denoted by L1, the
set of items is partitioned into two subsets such that one
contains the items whose size is larger than B/2, and
the other contains the remainder. Since each item in
the former subset needs one bin, at least | V (B/2, B] |2

1For two lower bounds L1 and L2 of a minimization problem,
L2 is said to dominate L1, denoted by L1 ≤ L2, if for any in-
stance I, L1(I) ≤ L2(I), where L(I) is the value provided by a
lower bound L for an instance I.

2For convenience, we define V (a, b] = {Ii | a < vi ≤ b} and its
cardinality as | V (a, b] |.

CCCG 2011, Toronto ON, August 10–12, 2011

381

23rd Canadian Conference on Computational Geometry, 2011

bins are required. In addition, only items of size vi,
p ≤ vi ≤ B − p are considered, where p is an integer
with 1 ≤ p ≤ B/2, because an item of size p cannot be
placed in the same bin as an item whose size is greater
than B − p. Hence, a valid lower bound L1 can be
computed if we allow the rest of the items (i.e., the items
in V [p,B/2]) to be split. (The other rounding scheme
of L1, denoted by L′1(p), is described in the Appendix.)

Labbé et al. [14] further improved L1, denoted as
L2, by partitioning the set of items into three sub-
sets (V (B/2, B], V (B/3, B/2], and V [p,B/3], where
1 ≤ p ≤ B/3) and applying the First Fit Decreasing
algorithm [6, 11, 13]. The procedure is implemented as
follows. The items in V (B/2, B] are assigned to sep-
arate bins as L1. It may be possible to assign some
of the items in V (B/3, B/2] to the open bins, and at
most one item in V (B/3, B/2] can fit in any of the
open bins. Thus, the open bins are sorted in non-
decreasing order based on their residual space, and the
items in V (B/3, B/2] are assigned in non-decreasing or-
der of their size. The procedure proves that the items
in V (B/2, B] and V (B/3, B/2] can be matched opti-
mally in a pairwise manner. Let K be the subset of
items in V (B/3, B/2] that cannot be matched through
the above procedure. The items in K can be paired, so
at least dK/2e bins are required. It follows that a valid
lower bound L2 can be obtained by allowing the items
in V [p,B/3] to be split as follows.

L2 =| V (B/2, B] | +dK/2e+ max
1≤p≤B/3

{0, L2(p)}, where

L2(p) =

⌈∑
vi∈V [p,B−p] vi

B
− | V (B/2, B − p] | −dK/2e

⌉

The lower bound L2 can be obtained in O(n) time pro-
vided that the sizes of the items are given sorted. Bour-
jolly and Rebetez [2] proved that L1 ≤ L2 (excluding
the rounding scheme L′1(p)), and that the asymptotic
worst-case performance ratio of L2 for 1D-BP is 3

4 . Note
that the primal concept of Labbé et al. cannot be eas-
ily extended to a new lower bound Lm−1 for 1D-BP by
partitioning the set of items into m subsets3, even by
using a brute-force approach.

3 Lower bounds for 3D-BP revisited

For 3D-BP, Boschetti [1] proposed a lower bound, de-
noted by LB , which actually consists of three types of
lower bounds: LB(p, q, r), L′B(p, q, r), and L′′B(p, q, r).
We discuss them in detail below. Note that no domi-

3Scholl et al. [21] showed that the lower bound L2 can be
extended by considering the items in V (B/4, B/3], but the process
is quite complicated and it does not have any obvious extension.

nance relations hold between the three bounds.

LB = max
1≤p≤W/2
1≤q≤H/2
1≤r≤D/2

{LB(p, q, r), L′B(p, q, r), L′′B(p, q, r)}

Boschetti [1] proved that LB is currently the best lower
bound for 3D-BP by applying L1 to LB(p, q, r) and
L′B(p, q, r), denoted by LB,1. In this section, we first re-
view LB,1 by applying L1 to LB(p, q, r) and L′B(p, q, r).
Then, based on the proofs in [2] and [3], which show,
respectively, that L1 ≤ L2 and L′1(p) ≤ fp2 (the dual
feasible function fp2 is discussed in the Appendix), we
integrate L2 in [14] and fp2 in [3] with LB to obtain a
better lower bound for 3D-BP, denoted by LB,2, and
show that LB,1 ≤ LB,2.

The lower bound LB,2(p, q, r). First, we consider the
lower bound LB(p, q, r). Given an item Ii = (wi, hi, di)
for every i, we let IW (W − p,W] = {Ii | W − p <
wi ≤ W}, IH(H − q,H] = {Ii | H − q < hi ≤ H},
ID(D − r,D] = {Ii | D − r < di ≤ D}, and I[p, q, r] =
{Ii | wi ≥ p, hi ≥ q, di ≥ r}. The objective of
LB(p, q, r) is to compute a valid lower bound for 1D-
BP by using a simple rounding technique when consid-
ering the volume of each item in I[p, q, r]. For exam-
ple, if Ii ∈ IW (W − p,W] is placed in a bin, then it
will occupy a volume equal to Whidi since no items in
I[p, q, r] can be packed side by side parallel to the width.
Hence, let B = WHD and LB(p, q, r) be computed as
a continuous lower bound by rounding the volume of
each item vi for every i to vi(p, q, r) = wi(p)hi(q)di(r)
such that if Ii ∈ IW (W − p,W], i.e., wi > W − p, then
wi(p) = W ; otherwise, wi(p) = wi. If Ii ∈ IH(H−q,H],
then hi(q) = H; otherwise, hi(q) = hi. Similarly, if
Ii ∈ ID(D−r,D], then di(r) = D; otherwise, di(r) = di.
Note that it can be proved that this rounding technique
is a dual feasible function [3, 8] (the so-called classic
dual feasible function fp0 ; please see the Appendix).

LB(p, q, r) =

⌈
Σni=1vi(p, q, r)

B

⌉

Since LB(p, q, r) can be computed as a continuous lower
bound for 1D-BP by considering the volume of each
item, L1 can be applied to LB(p, q, r) to obtain a valid
lower bound, denoted by LB,1(p, q, r). By contrast, we
apply L2 and the dual feasible function fp2 to LB(p, q, r)
separately. We select the maximum of the two refined
lower bounds, denoted by LB,2(p, q, r), and show that
it is a valid lower bound and that it is not smaller than
LB,1(p, q, r).

Lemma 1 LB,2(p, q, r) is a valid lower bound for 3D-
BP, and it dominates LB,1(p, q, r).

Proof. Based on the above rounding scheme, each item
in V (B/2, B] that is rounded, say wi is rounded to W if

23rd Canadian Conference on Computational Geometry, 2011

382

CCCG 2011, Toronto ON, August 10–12, 2011

wi > W − p, has two other dimensions larger than H/2
and D/2; otherwise, vi(p, q, r) ≤ B/2. Hence, the items
in V (B/2, B] are assigned to separate bins.

Consider the items in V (B/3, B/2]. Assume we fit
item Ii in V (B/3, B/2] in an open bin, and item Ij
in V (B/2, B] is placed in the same bin. In addition,
suppose the original dimensions of Ij are wj > W −
p, hj > H/2, and dj > D/2. Then, we only need to
determine the height and depth of Ii since only the items
in I[p, q, r] are considered. We have hi > H/3 and di >
D/3 because vi(p, q, r) > B/3. If hi < H/2, it implies
that di > 2D/3; similarly, if di < D/2, it implies that
hi > 2H/3. Thus, at most one item in V (B/3, B/2]
can fit in any of the open bins. The rounded items
in V (B/3, B/2] that can not be matched could not be
matched originally either. Moreover, based on the above
discussion, at most two items in V (B/3, B/2] can be
paired. Hence, it is valid to apply L2 to LB(p, q, r).

Furthermore, LB,2(p, q, r) is a valid lower bound for
3D-BP because fp2 is a dual feasible function, where 1 ≤
p ≤ B/2 and it can be applied directly to LB(p, q, r).
Because L1 ≤ L2 and L′1(p) ≤ fp2 , LB,2(p, q, r) domi-
nates LB,1(p, q, r). ¤

The lower bound L′B,2(p, q, r). Regarding the lower

bound L′B(p, q, r), as above, only the items in I[p, q, r]
are considered. Let I(W − p,H − q,D − r) = IW (W −
p,W]∩IH(H−q,H]∩ID(D−r,D]. Obviously, | I(W−
p,H − q,D − r) | is a valid lower bound and no items
in I[p, q, r] can be placed in the open bins. Next, the
items in I[p, q, r] \ I(W − p,H − q,D − r), denoted by
I ′[p, q, r] are considered. The objective of L′B(p, q, r) is
to consider items in terms of their width, height, and
depth. Let the respective subsets be:

I(p,H − q,D − r) = IH(H − q,H] ∩ ID(D − r,D] ∩ I′[p, q, r];

I(W − p, q,D − r) = IW (W − p,W] ∩ ID(D − r,D] ∩ I′[p, q, r].

I(W − p,H − q, r) = IW (W − p,W] ∩ IH(H − q,H] ∩ I′[p, q, r];

Any two items from the different subsets above can
not be matched in the same bin. That is, the items
in I(p,H − q,D − r), I(W − p, q,D − r), and I(W −
p,H − q, r) can only be packed in separate bins. Thus,
the items in I(p,H − q,D− r), I(W − p, q,D− r), and
I(W−p,H−q, r) can be considered separately. For each
dimension, a continuous lower bound of 1D-BP can be
computed similarly. It follows that a valid lower bound
L′B(p, q, r) can be derived as follows:

L′B(p, q, r) =| I(W − p,H − q,D − r) | +

⌈
ΣIi∈I(p,H−q,D−r)wi

W

⌉
+

⌈
ΣIi∈I(W−p,q,D−r)hi

H

⌉
+

⌈
ΣIi∈I(W−p,H−q,r)di

D

⌉

Since a continuous lower bound of 1D-BP can be com-
puted for each dimension, Boschetti [1] applied L1 to
the lower bound L′B(p, q, r), denoted by L′B,1(p, q, r),
in terms of the width, height, and depth. Our lower
bound, denoted as L′B,2(p, q, r), is obtained by applying
L2 and fp2 to L′B(p, q, r) separately and selecting the
maximum of the two refined lower bounds. We show
that L′B,2(p, q, r) is still a valid lower bound.

Lemma 2 L′B,2(p, q, r) is a valid lower bound for 3D-
BP, and it dominates LB,1(p, q, r).

Proof. Without loss of generality, we consider the
depth of each item in I(W − p,H − q, r) = IW (W −
p,W]∩IH(H−q,H]∩I ′[p, q, r]. Because r ≤ di < D−r,
the lower bound L2 for 1D-BP can be used directly in
terms of the depth of these items. This is similar to the
width and height of the items in I(p,H − q,D− r) and
I(W − p, q,D − r). Moreover, the dual feasible func-
tion fp2 can be used directly for each dimension of the
items. Hence, L′B,2(p, q, r) is a valid lower bound for
3D-BP. Because L1 ≤ L2 and L′1(p) ≤ fp2 , L′B,2(p, q, r)
dominates L′B,1(p, q, r). ¤

The lower bound L′′B,2(p, q, r). The lower bound
L′′B(p, q, r), which is conceptually similar to LB(p, q, r),
can be obtained by using another rounding technique
proposed in [18]. The objective is to pack items into
a bin like small rectangular boxes whose dimensions
are p, q, and r, where 1 ≤ p ≤ W/2, 1 ≤ q ≤
H/2, and 1 ≤ r ≤ D/2. The maximum number of
small rectangular boxes that can be placed in a bin is
bW/pcbH/qcbD/rc. Besides, every item is represented
by small rectangular boxes whose dimensions are p, q,
and r. Thus, for every i, the volume of each item vi, can
be rounded to v′i(p, q, r) = w′i(p)h

′
i(q)d

′
i(r) such that, if

Ii ∈ IW (W/2,W], then w′i(p) = bW/pc−b(W −wi)/pc;
otherwise, w′i(p) = bwi/pc. If Ii ∈ IH(H/2,H], then
h′i(q) = bH/qc−b(H−hi)/qc; otherwise, h′i(q) = bhi/qc.
Similarly, if Ii ∈ ID(D/2, D], then d′i(r) = bD/rc −
b(D−di)/rc; otherwise, d′i(r) = bdi/rc. For each dimen-
sion, it can be proved that the rounding technique is a
dual feasible function [3, 8]. More precisely, it is similar
to the dual feasible function fp2 except that wi = W/2,
hi = H/2, and di = D/2. L′′B(p, q, r) can be computed
as a continuous lower bound as follows:

L′′B(p, q, r) = max
1≤p≤W/2
1≤q≤H/2
1≤r≤D/2

{⌈
Σni=1v

′
i(p, q, r)

bW/pcbH/qcbD/rc

⌉}

We let the size of a bin B be equal to bW/pcbH/qcbD/rc
and apply L2 to L′′B(p, q, r), denoted by L′′B,2(p, q, r),
and show that it is also a valid lower bound.

Lemma 3 L′′B,2(p, q, r) is a valid lower bound for 3D-
BP, and it dominates L′′B(p, q, r).

CCCG 2011, Toronto ON, August 10–12, 2011

383

23rd Canadian Conference on Computational Geometry, 2011

Proof. When L2 is applied to L′′B(p, q, r), the dimen-
sions of the items in V (B/2, B] are larger than 1

2bW/pc,
1
2bH/qc, and 1

2bD/rc. The width wi of each item Ii with
w′i(p) >

1
2bW/pc is larger than W/2 originally. Simi-

larly, hi > H/2 and di > D/2. Hence, the items in
V (B/2, B] are assigned to separate bins.

Consider each item Ii in V (B/3, B/2]. We have
w′i(p) >

1
3bW/pc, h′i(q) > 1

3bH/qc, and d′i(r) >
1
3bD/rc,

which implies that wi > W/3, hi > H/3, and di > D/3,
because v′i(p, q, r) > B/3. If item Ii can fit in an
open bin, without loss of generality, there is one di-
mension of Ii, say d′i(r), that satisfies the condition
1
2bD/rc > d′i(r) >

1
3bD/rc, which implies that D/2 ≥

di > D/3. Furthermore, if 1
2bD/rc > d′i(r), we have

w′i(p) >
2
3bW/pc and h′i(q) >

2
3bH/qc, which implies

that wi > 2W/3 and hi > 2H/3 because v′i(p, q, r) >
B/3. Thus, at most one item in V (B/3, B/2] can fit
in any of the open bins; and at most two items in
V (B/3, B/2] can be paired.

On the other hand, we claim that if we can not fit Ii in
some open bin, in which Ij in V (B/2, B] is placed, then
Ij was not matched with Ii originally. More precisely, if
d′j(r)+d′i(r) > bD/rc, then dj +di > D. We know that
d′j(r) = bD/rc − b(D− dj)/rc. Suppose that di ≤ D/2.
Then, we have:

⌊
D

r

⌋
−
⌊
D − dj
r

⌋
+

⌊
di
r

⌋
>

⌊
D

r

⌋

⇒
⌊
di
r

⌋
>

⌊
D − dj
r

⌋

⇒di
r
≥
⌊
di
r

⌋
≥
⌊
D − dj
r

⌋
+ 1 >

(
D − dj
r

− 1

)
+ 1

⇒dj + di > D

We also know that dj + di > D if di > D/2; therefore,
L′′B,2(p, q, r) is a valid lower bound. Because L0 ≤ L2,
L′′B,2(p, q, r) dominates L′′B(p, q, r). ¤

Thus, we have the following new lower bound LB,2
for 3D-BP:

LB,2 = max
1≤p≤W/3
1≤q≤H/3
1≤r≤D/3

{LB,2(p, q, r), L′B,2(p, q, r), L′′B,2(p, q, r)}

The theorem follows immediately.

Theorem 4 LB ≤ LB,1 ≤ LB,2.

4 A new lower bound for 3D-BP

In this section, we extend the approach in [14] to 3D-BP
and propose a novel lower bound, denoted by L∗B . First

of all, we define some notations. Let IW (W/2,W] =
{Ii | W/2 < wi ≤ W}, IH(H/2, H] = {Ii | H/2 <
hi ≤ H}, and ID(D/2, D] = {Ii | D/2 < di ≤ D}.
Similarly, let IW (W/3,W/2] = {Ii | W/3 < wi ≤
W/2}, IH(H/3,H/2] = {Ii | H/3 < hi ≤ H/2}, and
ID(D/3, D/2] = {Ii | D/3 < di ≤ D/2}.
I(W/2, H/2, D/2) = IW (W/2,W] ∩ IH(H/2, H] ∩ ID(D/2, D];

I(W/3, H/2, D/2) = IH(H/2, H] ∩ ID(D/2, D] ∩ IW (W/3,W/2];

I(W/2, H/3, D/2) = IW (W/2,W] ∩ ID(D/2, D] ∩ IH(H/3, H/2];

I(W/2, H/2, D/3) = IW (W/2,W] ∩ IH(H/2, H] ∩ ID(D/3, D/2];

We compute the new lower bound as follows. The
items in I(W/2,H/2, D/2) ∩ V (B/3, B] are assigned
to separate bins because each dimension of the items
in I(W/2, H/2, D/2) is larger than half the size of its
corresponding bin side. It may be possible to assign
some of the items in I(W/3, H/2, D/2) ∩ V (B/3, B],
I(W/2,H/3, D/2)∩V (B/3, B], and I(W/2,H/2, D/3)∩
V (B/3, B] to the open bins; however, at most one item
can fit in any of the open bins because only the items
in V (B/3, B] are considered.

In addition, an item from the above three subsets
can only fit in the open bins if one of its dimensions
is smaller than half the size of the corresponding bin
side; i.e., such an item can be only packed in the open
bins in terms of its width, height, and depth. We then
partition the | I(W/2,H/2, D/2) ∩ V (B/3, B] | open
bins into two subsets so that one subset contains the
open bins whose residual space is smaller than B/2,
and the other contains the remaining bins. Note that
the items in the first subset have at least two dimen-
sions that are more than 2/3 of the size of the corre-
sponding bin sides. Thus, the open bins in that subset
can be divided into three parts based on the smallest
dimension of their included items. Moreover, the bins
in each part are sorted in non-increasing order based
on the corresponding dimension. Therefore, the items
in I(W/3,H/2, D/2) ∩ V (B/3, B], I(W/2,H/3, D/2) ∩
V (B/3, B], and I(W/2,H/2, D/3)∩V (B/3, B] must be
assigned in non-decreasing order separately in terms of
their width, height, and depth. Similar to the proof of
Labbé et al. [14], the procedure proves that the items
are matched optimally in a pairwise manner.

Next, the second subset of open bins are sorted
in non-decreasing order based on their residual space,
and the items that cannot be matched are mixed
and assigned in non-decreasing order according to
their volume. Let KHD ⊆ I(W/3,H/2, D/2) ∩
V (B/3, B] be the subset of items that cannot be
matched through the above process. Similarly, let
KWD ⊆ I(W/2,H/3, D/2) ∩ V (B/3, B] and KWH ⊆
I(W/2,H/2, D/3) ∩ V (B/3, B] be the subsets of items
that cannot be matched either. Note that any two items
from the different subsets above can not be matched in

23rd Canadian Conference on Computational Geometry, 2011

384

CCCG 2011, Toronto ON, August 10–12, 2011

the same bin because, without loss of generality, one
dimension of each item Ii, say wi, no larger than W/2
implies that hi > 2H/3 and di > 2D/3. Hence, the
items in KHD, KWD, and KWH can only be paired sep-
arately, and at least dKHD/2e+ dKWD/2e+ dKWH/2e
bins are required.

Then, we consider the remaining items in I(p,H −
q,D−r), I(W−p, q,D−r), and I(W−p,H−q, r). Sim-
ilarly, any two items from the different subsets can not
be matched in the same bin. Thus, the items can be only
packed in terms of each dimension. First, the items are
assigned to the above open bins by allowing the items
to be split. Let I ′(p,H − q,D− r), I ′(W − p, q,D− r),
and I ′(W −p,H−q, r) be the subsets of items that can-
not be packed in the | I(W/2,H/2, D/2) ∩ V (B/3, B] |
+dKHD/2e+ dKWD/2e+ dKWH/2e open bins respec-
tively. We compute a continuous lower bound of 1D-BP
for each dimension. Finally, a valid lower bound can be
obtained by allowing the rest of the items to be split as
follows:

L∗B = | I(W/2,H/2, D/2) ∩ V (B/3, B] | + (1)
⌈
KHD

2

⌉
+

⌈
KWD

2

⌉
+

⌈
KWH

2

⌉
+ (2)

⌈
ΣIi∈I′(p,H−q,D−r)wi

W

⌉
+ (3)

⌈
ΣIi∈I′(W−p,q,D−r)hi

H

⌉
+ (4)

⌈
ΣIi∈I′(W−p,H−q,r)di

D

⌉
+ (5)

max
1≤p≤W/3
1≤q≤H/3
1≤r≤D/3

{0, L∗B(p, q, r)}, where L∗B(p, q, r) =

⌈∑
Ii∈I′[p,q,r] vi

B
− α + | I(W − p,H − q,D − r) |

⌉

and α = (1) + (2) + (3) + (4) + (5).

We use the rounding scheme, i.e., the dual feasible
function fp0 for each dimension of every item Ii, to
derive a rounded volume vi(p, q, r) = wi(p)hi(q)di(r).
Next, we show that 1) L∗B is a valid lower bound; and
2) after applying the rounding scheme fp0 , L∗B dominates
max1≤p≤W/3,1≤q≤H/3,1≤r≤D/3{LB,2(p, q, r), L′B,2(p, q, r)}.

Lemma 5 L∗B is a valid lower bound.

Proof. The dimensions of each item in
I(W/2,H/2, D/2) are more than half the size of
the corresponding bin sides even if the item is rounded.
Hence, the items in I(W/2, H/2, D/2) are assigned to
separate bins.

Consider the items in I(W/3,H/2, D/2)∩V (B/3, B],
I(W/2,H/3, D/2)∩V (B/3, B], and I(W/2,H/2, D/3)∩
V (B/3, B]. Without loss of generality, say we fit item

Ii ∈ I(W/3,H/2, D/2) ∩ V (B/3, B] into an open bin,
and item Ij in I(W/2,H/2, D/2)∩ V (B/3, B] is placed
in the same bin. Ii may fit with respect to the width
because hi(q) > H/2 and di(r) > D/2 imply that hi >
H/2 and di > D/2. Besides, wi = wi(p) because W/2 ≥
wi > W/3. W/2 ≥ wi also implies that hi(q) > 2H/3
and di(r) > 2D/3 because vi(p, q, r) > B/3. Thus, if
hi is rounded, then hi > H − q; otherwise, hi > 2H/3.
Similarly, di > min{D − r, 2D/3}. Because only the
items in I[p, q, r] are considered, at most one item in
the above three subsets (every item Ik in the subsets
has wk > W/3, hk > H/3, and dk > D/3) can fit in any
of the open bins.

On the other hand, since Ii may fit (in terms of the
width) into the bin in which Ij is placed, we need to
consider if wj is rounded (because wi = wi(p)). We
know that the rounded wj that can not be matched
was not matched originally either. In addition, based
on the above discussion, for item Ii ∈ KHD, W/2 ≥
wi > W/3 implies that hi > min{H − q, 2H/3} and
di > min{D − r, 2D/3}. Thus, two items from any two
of KHD, KWD, and KWH cannot be matched in the
same bin; and at most two items from each subset can
be paired.

Finally, similar to the lower bound L′B(p, q, r), we
consider the remaining items in I(W − p,H − q, r),
I(p,H − q,D − r), and I(W − p, q,D − r). The items
are first assigned to the above open bins by allowing the
items to be split. Then, we compute a continuous lower
bound of 1D-BP for each dimension of the remainder.
Thus, fp0 can be applied to L∗B , and L∗B becomes a valid
lower bound for 3D-BP by allowing the rest of the items
to be split. ¤

Lemma 6 For each 1 ≤ p ≤ W/3, 1 ≤ q ≤ H/3, 1 ≤
r ≤ D/3, L∗B dominates LB,2(p, q, r) and L′B,2(p, q, r).

Proof. First we consider LB,2(p, q, r). Since fp0 is ap-
plied to both LB,2(p, q, r) and our new lower bound
L∗B , we claim that the new partition scheme is bet-
ter than Labbé et al.’s method. For the first part,
we have I(W/2,H/2, D/2)∩ V (B/3, B] open bins com-
pared to V (B/2, B] bins. Every item Ik ∈ V (B/2, B]
has wk(p) > W/2, hk(q) > H/2, and dk(r) > D/2;
thus, Ik ∈ I(W/2,H/2, D/2) ∩ V (B/3, B]. We have
V (B/2, B] ⊆ I(W/2,H/2, D/2) ∩ V (B/3, B].

For the second part, each item Ik ∈ V (B/3, B]
has wk(p) > W/3, hk(q) > H/3, and dk(r) >
D/3. Besides, if one of the item’s dimensions,
say the width wk(p) ≤ W/2, it implies that
hi(q) > 2H/3 and di(r) > 2D/3. We have
V (B/3, B] ⊆ I(W/2,H/2, D/2) ∪ I(W/3,H/2, D/2) ∪
I(W/2,H/3, D/2) ∪ I(W/2,H/2, D/3). Therefore,
| V (B/2, B] | +dK/2e ≤ | I(W/2, H/2, D/2) ∩
V (B/3, B] | +dKWH/2e + dKHD/2e + dKWD/2e. It
is obvious that the remainder of LB,2(p, q, r) is no

CCCG 2011, Toronto ON, August 10–12, 2011

385

23rd Canadian Conference on Computational Geometry, 2011

larger than the remainder of L∗B . Thus, L∗B dominates
LB,2(p, q, r).

Consider the lower bound L′B,2(p, q, r). For the first
part, since fp0 is applied to L∗B , we have I(W − p,H −
q,D − r) ⊆ I(W/2,H/2, D/2) ∩ V (B/3, B]. Regarding
the second part, without loss of generality, say I(W −
p,H−q, r) is considered in L′B,2(p, q, r). We explore the
possibility of placing the items in I(W/2,H/2, D/2) ∪
I(W/2, H/2, D/3)∪I(W −p,H−q, r) for the new lower
bound L∗B . Clearly, by considering each dimension, L∗B
dominates L′B,2(p, q, r). ¤

Finally, similar to L′′B,2(p, q, r), we apply the dual fea-
sible function fp2 to each dimension of all the items
instead. Then, we compute the summation of the
rounded volume of each item, and a continuous lower
bound can be obtained by letting the size of a bin
B = bW/pcbH/qcbD/rc. It is also valid to apply L2 to
this continuous lower bound, denoted by L∗DF (p, q, r).
Then, we have:

L∗B,DF = max{L∗B , L∗DF (p, q, r)}
Because L′′B,2(p, q, r) ≤ L∗DF (p, q, r), the next theorem
follows immediately.

Theorem 7 LB,2 ≤ L∗B,DF .

5 Concluding remarks

We have considered the 3D-BP problem and proposed
two new lower bounds LB,2 and L∗B,DF . In addition,
we have demonstrated that the lower bounds improve
the best previous results, and that L∗B,DF dominates
all the other lower bounds for 3D-BP proposed in the
literature. In our future research, we will continue to
improve the non-oriented model, which allows items to
be rotated.

References

[1] M.A. Boschetti. New lower bounds for the three-
dimensional finite bin packing problem. Discrete Ap-
plied Mathematics, 140:241–58, 2004.

[2] JM. Bourjolly, V. Rebetez. An analysis of lower bounds
procedures for the bin packing problem. Computers &
Operations Research, 32:395–405, 2005.

[3] J. Carlier, F. Clautiaux, A. Moukrim. New reduction
procedures and lower bounds for the two-dimensional
bin packing problem with fixed orientation. Computers
& Operations Research, 34:2223–2250, 2007.

[4] F. Clautiaux, C. Alves, J.V. de Carvalho. A survey
of dual-feasible and superadditive functions. Annals of
Operations Research, 179:317–342, 2010.

[5] F. Clautiaux, A. Moukrim, J. Carlier. New data-
dependent dual-feasible functions and lower bounds for
a two dimensional bin-packing problem. International
Journal of Production Research, 47(2):537–560, 2009.

[6] E.G. Coffman Jr., M.R. Garey, D.S. Johnson. Approx-
imation algorithms for bin-packing: a survey. In D.S.
Hochbaum (ed.) Approximation algorithms for NP-hard
problems, 46–93, PWS Publishing, Boston MA, 1997.

[7] S.P. Fekete, J. Schepers. New classes of fast lower
bounds for bin packing problems. Mathematics Pro-
gramming, 91:11–31, 2001.

[8] S.P. Fekete, J. Schepers. A general framework
for bounds for higher-dimensional orthogonal packing
problems. Mathematical Methods of Operations Re-
search, 60:311–329, 2004.

[9] W. Fernandez de la Vega, G.S. Lueker. Bin packing can
be solved within 1 + ε in linear time. Combinatorica,
1:349–355. 1981.

[10] M.R. Garey, D.S. Johnson. Computers and intractabil-
ity: a guide to the theory of NP-completeness. W.H.
Freeman and Co., New York, 1979.

[11] D.S. Johnson. Near-optimal bin packing algorithms.
Dissertation, Massachusetts Institute of Technology,
Cambridge, Massachusetts, 1973.

[12] N. Karmarkar, R.M. Karp. An efficient approximation
scheme for the one-dimensional bin packing problem.
In Proc. 23rd IEEE Annu. Found. Comp. Sci. (FOCS
82), 312–320, 1982.

[13] B.H. Korte, J. Vygen. Combinatorial Optimization
Theory and Algorithms (Chapter 18). Springer-Verlag,
2008.

[14] M. Labbé, G. Laporte, H. Mercure. Capacitated vehi-
cle routing on trees. Operations Research, 39:616–622,
1991.

[15] G.S. Lueker. Bin packing with items uniformly dis-
tributed over intervals [a, b]. In Proc. 24th IEEE Annu.
Found. Comp. Sci. (FOCS 83), 289–297, 1983.

[16] A. Lodi, S. Martello, M. Monaci. Two-dimensional
packing problems: A survey. European Journal of Op-
erational Research, 141:241–252, 2002.

[17] S. Martello, D. Pisinger, D. Vigo. The three-
dimensional bin packing problem. Operations Research,
48(2):256–267, 2000.

[18] S. Martello, D. Vigo. Exact solution of the two-
dimensional finite bin packing problem. Management
Science, 44:388–399, 1998.

[19] S. Martello, P. Toth. Knapsack problems: algorithms
and computer implementations. John Wiley & Sons,
Chichester, U.K., 1990.

[20] S. Martello, P. Toth. Lower bounds and reduction pro-
cedures for the bin packing problem. Discrete Applied
Mathematics, 28:59–70, 1990.

[21] A. Scholl, R. Klein, C. Jürgens. BISON: A fast hybrid
procedure for exactly solving the one-dimensional bin
packing problem. Computers & Operations Research,
24:627–645, 1997.

[22] S.S. Seiden, R. van Stee New bounds for multidimen-
sional packing. Algorithmica, 36:261–293, 2003.

23rd Canadian Conference on Computational Geometry, 2011

386

CCCG 2011, Toronto ON, August 10–12, 2011

The 2×2 Simple Packing Problem

André van Renssen∗ Bettina Speckmann†

Abstract

We significantly extend the class of polygons for which
the 2×2 simple packing problem can be solved in poly-
nomial time.

1 Introduction

We study the 2×2 simple packing problem: Given a sim-
ple rectilinear grid polygon P consisting of n edges and
containing N grid cells, determine the maximum num-
ber of non-overlapping, axis-aligned 2×2 squares that
can be packed into P [4]. The optimal solution is not
necessarily unique with respect to the placement of the
squares (Fig. 1). We, however, are interested only in
the optimal number of squares.

Figure 1: A polygon and one of its optimal solutions.

El-Khechen [6] proved that there always exists an op-
timal solution such that all packed squares are aligned
on the grid. Hence we consider only optimal solutions
of this type. We say that placing a square in a certain
location is optimal, if there exists an optimal solution
such that a square is placed in that location. Similarly,
we say that not placing a square in a certain location
does not affect optimality, if there is an optimal solu-
tion, such that no square is placed in that location.

Previous work. For polygons with holes, the 2×2
simple packing problem is known to be NP-hard [1].
Recently, it was proven to be NP-complete [5]. When

∗School of Computer Science, Carleton University, Canada,
avrensse@connect.carleton.ca This research was partially sup-
ported by NSERC.
†Department of Mathematics and Computer Science, TU

Eindhoven, The Netherlands, speckman@win.tue.nl Bettina
Speckmann is supported by the Netherlands Organisation for Sci-
entific Research (NWO) under project no. 639.022.707.

the polygon does not contain holes it is not known
whether the problem is NP-complete. An O(N) time
1/2-approximation algorithm is known to exist [2]. This
algorithm can be modified to run in O(n2) time by per-
forming a line sweep from bottom to top [8].

For polygons without holes there exists a PTAS [7]

that runs in O(k2N
1
ε2 /ε2) time, where k is the size of the

square (in our case k = 2) and ε > 0. The algorithm has
an error ratio of at most (1+ε)2. A faster PTAS [3] runs

in O(N̂ log N̂ + N̂∆
1
ε−1) time, where N̂ is the number

of possible locations to place squares, ∆ is the number
of squares any point in the 2-dimensional plane can be
in (in our case ∆ = 4), and ε > 0. The algorithm has
an error ratio of at most 1 + ε.

For a few classes of polygons, namely staircases, pyra-
mids, and Manhattan skyline polygons, the problem is
solvable in O(n) time [6]. These classes of polygons
can be solved by filling them from bottom to top with
squares placed in the corners.

Results. We describe a different approach: instead
of placing squares, we determine where not to place
squares. This allows us to solve a number of classes of
polygons in O(n2) time. Our polygon classes are signifi-
cantly larger than those previously solvable and include
staircases, pyramids, and Manhattan skyline polygons.

In Section 2 we present some observations on parts of
polygons that cannot contain squares. In Section 3 we
consider the intersection graph of all possible squares
and we present a number of rules to reduce this graph.
In Section 4 we describe a class of polygons that can
be solved based on these reduction rules. In Section 5
we describe a second class of polygons which can be
solved more efficiently, without considering the inter-
section graph. Neither of these polygons classes is con-
tained in the other. Additional details and extensions
can be found in the Master’s thesis of the first author [8].

2 Tight Corridors and Tails

The dual graph of a grid polygon P has a vertex for
each cell of P and an edge between two vertices iff their
corresponding cells share a border. A tight corridor of
P corresponds to a path in the dual graph, where each
vertex has degree at most 2 and no vertex is part of a
4-cycle. A tail is a tight corridor in which at least one
vertex has degree 1. We prove in [8] that no cell of a
tight corridor can be part of a square. We also show

CCCG 2011, Toronto ON, August 10–12, 2011

387

23rd Canadian Conference on Computational Geometry, 2011

how to remove these cells in O(n) time. Every solvable
class of polygons can be extended by attaching tails.

3 The Intersection Graph

Instead of placing squares, we determine where not to
place squares. For this, we use the intersection graph
G = (V,E) of all possible squares (see Fig. 2). Each
square is represented in G by a vertex located at the
position of its center on the grid. Two vertices are con-
nected by an edge iff their corresponding squares over-
lap. Clearly every vertex of G has degree at most 8.
El-Khechen [6] already observed that solving the Max-
imum Independent Set Problem on G results in an op-
timal non-overlapping placement of squares.

v′ v

v1 v2 v3

v4

Figure 2: The intersection graph G.

The number of vertices N̂ of G is upper bounded by
N , the number of cells in P . However, N can be far
larger than N̂ (for example, if P is a single tail). G can

be constructed in O(n log n + N̂) time using a simple
sweepline algorithm.

3.1 Graph Reduction

Placing a square in a corner where both edges of the
polygon P have length at least 2 is known to be op-
timal (for example, placing the square represented by
v′ in Fig. 2). We generalize this result, by noting that
it does not depend on the edges of P , but rather on
the sets of neighbors of the vertices of G. Each of the
neighbors of v′ excludes more vertices from the maxi-
mum independent set than v′ does.

We define the conflict set of a vertex v, denoted by
C(v), as all neighbors of v and v itself:

C(v) = {u | (u, v) ∈ E} ∪ {v}

The conflict set of a vertex changes when one of its
neighbors is removed from G. A vertex v is called re-
movable when there exists a vertex v′, a neighbor of v,

such that C(v′) ⊆ C(v). In other words, the conflict
set of v is a superset of the conflict set of v′. In Fig. 2,
the conflict set of vertex v consists of v1 to v4, v′, and
v itself. The conflict set of v′ consists of v1, v2, v, and
v′. Since C(v′) ⊆ C(v), v is removable.

Lemma 1 Removing a removable vertex v does not af-
fect optimality.

We refer to removing a removable vertex as the su-
perset rule. Each vertex has degree at most 8, so we can
check in constant time whether a vertex is removable.
Since removing vertices from G changes the conflict set
of neighboring vertices, vertices that were not removable
at first can become removable later.

Next, we take a closer look at which vertices are af-
fected when a removable vertex is removed. We already
saw that only the neighbors of a removed vertex and
their neighbors can become removable. A removable
vertex v′ remains removable when a removable vertex v
is removed, unless C(v′) = C(v).

Lemma 2 Given two removable vertices v and v′ with
C(v′) 6= C(v), v′ remains removable after the removal
of v.

To efficiently remove all removable vertices, we main-
tain them in a doubly-linked list L. A vertex can be
marked as removable and it stores a pointer to its lo-
cation in L. At each step, we remove the first vertex
in L from G and update its neighbors and the neigh-
bors of its neighbors: unmarked vertices that become
removable are added to L and marked vertices that be-
come not removable are removed from L. This way, all
removable vertices can be removed in O(N̂) time.

3.2 Cycles

Next, we discuss cycles of degree 2 vertices which might
also contains some higher degree vertices. If a cycle C
consists only of degree 2 vertices (i.e. it is not connected
to the rest of G), the optimal solution contains exactly
b|C|/2c vertices. For the optimality of the solution it
does not matter which vertices we pick, as long as no
two vertices are neighbors.

If a cycle C is connected to the rest of the graph G\C,
we can deal only with two special cases (see Fig. 3): (a)
G \C is connected to a single vertex of C and (b) G \C
is connected to two vertices go C, forming a triangle. If
G\C is connected to only one vertex of C, we can remove
that vertex, since for any pair of neighbors we can pick
only one vertex. Note that there may be multiple edges
between G\C and v, as long as no other vertices of C are
connected to G \C. Such single connecting vertices can
also be avoided when there are multiple such vertices in
C, as long as there is an odd number of vertices of C
between them.

23rd Canadian Conference on Computational Geometry, 2011

388

CCCG 2011, Toronto ON, August 10–12, 2011

(a) (b)

v

v1

v2 v3

Figure 3: Cycles that can be removed.

Next, we look at connections that form triangles. In
Fig. 3 (b) vertices v1, v2, and v3 form a triangle and
vertices v2 and v3 are part of the cycle C. If C has
odd length, at some point in C, there must be two ad-
jacent vertices that are both not part of the solution.
In this case, these vertices can be chosen to be v2 and
v3, without losing optimality.

If C has even length, we cannot apply this method,
since there are no two adjacent vertices that are both
not part of the solution. We note, however, that since
vertices v1, v2, and v3 form a triangle, picking any of
them excludes the other two from the solution. Now,
assume we pick vertex v1 to be part of the solution. This
excludes both v2 and v3. Since C has even length, there
exists an optimal solution such that one of the neighbors
of v2 and v3 is not used. Without loss of generality, we
assume that the remaining neighbor of v2 (i.e. not v1
or v3) is not used. Now vertex v1 can be replaced by
vertex v2, without violating the property that no two
adjacent vertices are part of the solution. Thus, vertex
v1 can be removed without affecting the optimality of
the solution. Moreover, since v1 may be connected to
other vertices in G, not picking it is potentially better.

3.3 Diamonds

A diamond is a rectangle having one cell removed from
each of its corners. Its corresponding graph is a rectan-
gular graph having a vertex removed from each corner
(see Fig. 4). If the height of a diamond is odd, the di-
amond can be removed using the superset rule and the
rules for removing cycles.

We now look at a special case: a diamond consisting
of four vertices having other parts of the graph attached

Figure 4: The graph of a diamond.

to two opposite vertices. This configuration is shown in
Fig. 5: vertices v2, v3, v5, and v6 form a diamond and
the other parts of the graph are attached to two opposite
vertices v2 and v6. The rule states that v3 and v5 can
always be picked without affecting optimality. In other
words, v2, v4, and v6 can always be removed. For this
rule to be applicable v4 may be present, but this is not
required. Also, there may be other vertices connected
to v2 to v6, as long as they are not connected to v3, v4,
and v5. It is also possible that there are only vertices
connected to v2 (or only to v6).

v1 v2 v4 v6 v7

v3

v5

Figure 5: The configuration of a diamond.

Lemma 3 Picking vertices v3 and v5 from a diamond
is optimal.

Note that we do not require that there is only one
vertex on the chains between v2 and v6. We require
only that there is an odd number of vertices on these
chains. Hence, we can generalize the rule to include
every diamond that satisfies this property.

3.4 Remarks

The reduction rules described in this section require that
specific configurations are found in the graph G. All
configurations can be found in O(N̂) time. Since re-
solving any configuration removes vertices, these rules
can be applied at most a linear (in N̂) number of times,
hence applying all rules (including the superset rule)

until no rule is applicable takes O(N̂2) time.
Finally, note that no rule uses the fact that the poly-

gon P is simple. Hence all reduction rules can also be
applied to graphs constructed from polygons with holes.

4 Polygons Solvable by Graph Reduction

In the previous section, we described a number of re-
duction rules. However, we did not relate these rules
directly to polygons. In this section we characterize the
polygons that can be solved using these rules.

To construct a solvable polygon, we start out with
one of four classes of initial polygons: The first class is
the class of staircases, pyramids, and Manhattan sky-
line polygons. The second class consists of polygons
constructed by stacking the blocks shown in Fig. 6 (see
Fig. 7 (a)). The blocks may be mirrored horizontally.

CCCG 2011, Toronto ON, August 10–12, 2011

389

23rd Canadian Conference on Computational Geometry, 2011

(a) (b) (c) (d) (e) (f)

even even

ev
en

Figure 6: The various blocks. Each block starts out as an even height rectangle. Blocks (b) and (f) are required to
have odd width. (a) A rectangle. (b)–(f) A single cell is removed from: (b) the lower right corner, (c) the upper
right corner, (d) the upper and lower right corners, (e) the upper left and right corners, (f) the upper and lower right
corners and an odd height column is removed from the upper left corner.

Note that it is allowed to stack multiple blocks next to
each other on top of a wider block and that it is al-
lowed to stack a wider block on top of multiple blocks.
The third class consists of diamonds: rectangles having
a single cell removed from each corner. The final class
is the class of polygons constructed by starting with an
arbitrary rectangle and attaching rectangles to its cor-
ners (see Fig. 7 (b)). Note that the attached rectangles
may not cover an entire side of a rectangle and no two
rectangles may be attached to the same corner.

Initial polygons of even height are non-cascading poly-
gons. A polygon is called non-cascading if its optimal
placement can be constructed regardless of the polygons
that are connected to it. In other words, its optimal
solution does not influence and is not influenced by the
polygons connected to it. We have to restrict the type of
possible connections for some non-cascading initial poly-
gons in order for them to remain non-cascading. In the
case of non-cascading staircases, pyramids, and Man-
hattan skyline polygons, a polygon may be attached to
any horizontal edge whose height (measured from the
base) is even. For non-cascading diamonds, the horizon-
tal edge to which the other polygon is connected may
not be covered entirely unless this edge has length 2.

(a) (b)

Figure 7: Constructing a polygon by: (a) stacking
blocks, (b) attaching rectangles to the corners of rect-
angles.

Non-cascading polygons can be attached to any con-
structible polygon.

Rectangles of even height and width are special case
of non-cascading polygons. Such rectangles can be at-
tached anywhere. In particular, they can be attached to
corners (see Fig. 8). The height and width of the rect-
angle need not be greater than the length of the edges of
the corner, hence any corner can be extended this way.

Figure 8: A corner exten-
sion.

Figure 9: A universal
connector polygon.

We define an universal connector polygon to be a
polygon that can be solved without affecting the con-
nected polygons in any way. Any two polygons may be
connected by means of a universal connector polygon.
We distinguish two types of universal connector poly-
gons. The first type is the tight corridor described in
Section 2. Two polygons connected by a tight corri-
dor correspond to two disconnected graphs that can be
solved individually. The second type is a variation on
the diamond: an even width rectangle of height 4 hav-
ing even width rows of cells removed from each corner.
The rectangles that are removed from the left corners
must have the same width. The same must hold for the
rectangles that are removed from the right corners (see
Fig. 9). Universal connector polygons can be extended
by attaching non-cascading polygons to any edge or by
attaching even height and width rectangles to corners.

Any polygon can be extended by attaching tails to it
(see Section 2).

Theorem 4 Every polygon constructed by the con-
struction scheme of Section 4 can be solved using the
graph reduction rules.

The class of polygons constructible using the above
construction scheme is significantly larger than the class

23rd Canadian Conference on Computational Geometry, 2011

390

CCCG 2011, Toronto ON, August 10–12, 2011

Figure 10: A polygon constructed using the construc-
tion scheme. Dashed lines represent the borders of the
building blocks.

of previously solvable polygons. An example polygon is
shown in Fig. 10.

5 Polygons Solvable in Quadratic Time

In the previous section, we presented a construction
scheme for polygons solvable in time polynomial in N̂
(the number of possible square locations) using the
graph reduction method. In this section, we present
a different class of polygons which does not require the
construction of the intersection graph; the constructed
polygons can be solved in O(n2) time. Though this new
class has some overlap with the class of the previous
section, neither is contained in the other.

The new construction scheme is very similar to the
previous scheme. There are, however, some differences.
Diamonds are replaced by diamonds having an arbitrary
number of steps and the non-cascading diamonds are
replaced by even height diamonds having an arbitrary
number of steps. Furthermore, the extension of rect-
angles placed in corners has an additional requirement:
the height and width of the rectangle may not be equal
to the length of the edges of the corner.

To solve these polygons, we find specific configura-
tions of edges in the polygon. These configurations will
correspond to (parts of) the polygons constructed using
the construction scheme. Since we also need to know
which edge of the polygon is closest to another edge, we
first define the distance between two horizontal edges
(two vertical edges are treated analogously). Since we
do not need the distance between a horizontal and a
vertical edge, we define this to be infinite.

We define the slab of an edge e, denoted by slab(e), as
the region bounded by e and two half-lines orthogonal
to e starting at the two endpoints of e, such that the
interior of the polygon intersects slab(e) in the imme-
diate neighborhood of e. A slab contains an edge f if
one of the endpoints of f lies in the interior or on the
boundary of the slab or f intersects the slab.

Given two horizontal edges e and f of a rectilinear

grid polygon, the distance between these two edges is
defined to be infinite when slab(e) does not contain f
and slab(f) does not contain e, or when the two edges
are connected by means of a single vertical edge. Oth-
erwise, the distance is the difference between their re-
spective y-coordinates.

We now define the edge e closest to another edge f as
the edge that has the smallest distance to edge f . An
edge can have multiple closest edges: if multiple edges
have the smallest distance to an edge e, they are all
part of the set of closest edges of e. The closest edges
are needed to efficiently check whether we need to split
the polygon during the removal of configurations.

The configurations are shown in Fig. 11. Here we de-
scribe two of these configurations in detail and analyze
the number of squares that can be placed when remov-
ing them. Full details can be found in [8]. Some con-
figurations can be solved by using other configurations
in combination with tail removal. These configurations
are shown to make it easier to see the correlation be-
tween the construction scheme and the configurations.
When describing the configurations, we say that certain
rectangles do not contain edges in their interior. Here a
rectangle contains an edge if (a part of) the edge lies in
the interior of the rectangle. Edges lying on the bound-
ary of the rectangle are allowed. All configurations may
be mirrored and rotated.

Configuration (a): A rectangular configuration C.
The rectangle defined by the horizontal edge and the
shortest vertical edge does not contain any edges of the
polygon. The height h of C is the length of the shortest
of the two vertical edges and the width w of C is the
length of the horizontal edge. The height h needs to
be strictly greater than 1. When C is removed, we add
bh/2c · bw/2c squares. Note that if the shortest vertical
edge has odd length, C is not removed completely: it is
reduced to a single row.

even

(a) (b) (c) (d) (e)

(f) (g)

(l)(i) (j) (k)

(h)

even

ev
en

even

even even

ev
en

ev
en

ev
en

ev
en

Figure 11: The configurations.

CCCG 2011, Toronto ON, August 10–12, 2011

391

23rd Canadian Conference on Computational Geometry, 2011

Configuration (l): A universal connector configura-
tion C. The two vertical edges have the same even
length l and the y-coordinates of their endpoints are
the same. The distance between the two edges is 4.
Both edges are connected to two edges of length 1 that
are directed towards the opposite edge. The rectangle
defined by the two vertical edges does not contain any
edges of the polygon. When C is removed, we add l
squares.

Next, we sketch how to use the configurations shown
in Fig. 11 to solve the polygons constructed by the con-
struction scheme. Staircases, pyramids, and Manhattan
skyline polygons can be solved by repeatedly using con-
figurations (a) and (g) on the base and the two vertical
edges connected to it. The blocks shown in Fig. 6 can be
solved by using the corresponding configurations: block
(a) can be solved using configuration (a), block (b) us-
ing configuration (b), and so on. Diamonds having an
arbitrary number of steps can be solved by using con-
figuration (h). Polygons constructed by starting with
an arbitrary rectangle and attaching rectangles to its
corners can be solved by repeatedly using configuration
(a) in combination with tail removal. For details see [8].

Since non-cascading polygons are special cases of the
above polygons, the configurations used to solve them
are the same. The even height and width rectangles
that can be placed in corners can be solved using con-
figurations (i), (j), and (k), depending on whether the
edges of the corner are longer or shorter than the edges
of the rectangle.

The tight corridors that can be used as universal con-
nectors will be removed before the algorithm is applied
to the polygon. Tight corridors formed during the re-
moval of configurations will be removed as soon as they
are formed. The diamonds that are used as universal
connector polygons can be solved using configuration
(l). Finally, tails will also be removed before and while
the algorithm is applied to the polygon.

Solving the polygons constructed by this scheme now
becomes quite simple: we find one of the configurations,
fill it, and continue with the remainder of the polygon.
To keep the algorithm this simple, we need to ensure
that the remaining part of the polygon is described by
its edges. Hence we remove all tight corridors (causing
the polygon to be split) and tails after each step.

Lemma 5 The polygon can be split at most n/4 − 1
times.

Lemma 6 A polygon can be split in O(n) time, while
updating the closest edges.

Lemma 7 While solving the polygon, configurations
that do not reduce the complexity of the polygon are used
at most a linear number of times.

From Lemmas 5, 6, and 7 it follows that the configu-
ration removal algorithm runs in O(n2) time.

Theorem 8 Every polygon constructed by the con-
struction scheme of Section 5 can be solved in O(n2)
time using the configuration removal algorithm.

6 Conclusion and Open Problems

We described a number of techniques that can be used
to solve certain instances of the 2×2 simple packing
problem on simple polygons. Our methods significantly
extend the class of polygons for which the 2×2 simple
packing problem is solvable in polynomial time. The
graph reduction technique is polynomial in N̂ and the
configuration removal technique runs in O(n2) time.
Both techniques return the optimal number of squares
for polygons constructed using their respective con-
struction schemes.

The complexity status of the 2×2 simple packing
problem remains open. Nevertheless, it is an interesting
open question if a PTAS that runs in time polynomial
in n (not just polynomial in N̂) exists. Another chal-
lenging problem is to find an exact algorithm for classes
of polygons that do not require construction schemes
to describe them, such as the class of rectilinear convex
simple polygons.

Acknowledgements. The authors would like to thank
Prosenjit Bose for helpful comments.

References

[1] F. Berman, D. Johnson, T. Leighton, P. Shor, and
L. Snyder. Generalized planar matching. Journal of Al-
gorithms, 11(2):153–184, 1990.

[2] F. Berman, F. Leighton, and L. Snyder. Optimal tile sal-
vage. Technical Report ADA119117, Purdue University,
May 1982.

[3] T. Chan. A note on maximum independent sets in rect-
angle intersection graphs. Information Processing Let-
ters, 89(1):19–23, 2004.

[4] E. D. Demaine, J. S. B. Mitchell, and J. O’Rourke. The
open problem project.
http://maven.smith.edu/~orourke/TOPP/.

[5] M. Dulieu, D. El-Khechen, J. Iacono, and N. van Omme.
Packing 2×2 unit squares into grid polygons is NP-
complete. In Proc. 21st Canadian Conference on Com-
putational Geometry, pages 33–36, August 2009.

[6] D. El-Khechen. Decomposing and Packing Polygons.
PhD thesis, Concordia University, April 2009.

[7] D. Hochbaum and W. Maass. Approximation schemes
for covering and packing problems in image processing
and VLSI. Journal of the ACM, 32(1):130–136, 1985.

[8] A. van Renssen. The 2×2 simple packing problem. Mas-
ter’s thesis, Technische Universiteit Eindhoven, 2010.

23rd Canadian Conference on Computational Geometry, 2011

392

CCCG 2011, Toronto ON, August 10–12, 2011

On covering of any point configuration by disjoint unit disks

Yosuke Okayama Masashi Kiyomi Ryuhei Uehara∗

Abstract

We give a configuration of 53 points that cannot be cov-
ered by disjoint unit disks. This improves the previously
known configuration of 55 points.

1 Introduction

In 2008, Japanese puzzle designer Naoki Inaba proposed
an interesting question [3]: “Given any configuration of
10 points, prove that you can cover all the points by
coins. You can use any number of coins, but coins can-
not overlap.” That is, he proved the following theorem:

Theorem 1 Any configuration of 10 points can be cov-
ered by disjoint coins.

Inaba gave an interesting proof of this theorem based
on the probabilistic method. (See appendix; this proof
is essentially the same in [4] written in Japanese. The
proof can be found in [6] also.) As he mentioned in
the answer page [4], this theorem also derives another
natural question: How many points arranged appropri-
ately cannot be covered by disjoint coins? Let k be
the maximum number of points such that any configu-
ration of k points can be covered by coins. (We note
that k points can be covered by at most k coins.) In-
aba’s theorem shows that 10 ≤ k, and trivially there is
an upper bound of k; if we put sufficiently many points
on a fine lattice, disjoint coins cannot cover all of them
(Figure 1). This problem spread over the puzzle society
in 2010 (at the 9th Gathering 4 Gardner). Peter Win-
kler took up this problem in his column [5], and he gave
a configuration of 60 points that cannot be covered by
disjoint coins. Moreover, Peter Winkler improved the
lower bound from 10 to 12 [6, 7]. That is, 12 ≤ k ≤ 59.
Recently, Veit Elser improved the upper bound to 54 in
2011 [2]. In this paper, we further improve the upper
bound of k to 52. That is, we give a configuration of
53 points that cannot be covered by disjoint coins. The
main theorem is summarized as follows.

Theorem 2 Let k be the maximum number such that
any configuration of k points can be covered by disjoint
coins. Then 12 ≤ k ≤ 52.

∗School of Information Science, Japan Advanced Institute of
Science and Technology, Ishikawa 923-1292, Japan. {mkiyomi,

uehara}@jaist.ac.jp

C A NA DA

C A NA DA

C A NA DA

Figure 1: Points cannot be covered by disjoint coins

Hereafter, we assume that each coin is a unit disk of
radius 1. To simplify the argument, each unit disk is an
open disk. That is, a point on the edge of a unit disk is
not covered by the disk. (Using the perturbation tech-
nique, our results can be applied to closed disks.) Let
L3, L4, and L6 be a triangular, square, and hexagonal
lattice, respectively. The size of a lattice is defined by
the shortest distance between any pair of two points in
Li for i = 3, 4, 6 (Figure 2). We sometimes abuse Li as
a set of lattice points for i = 3, 4, 6. Our construction
of the point configuration consists of two phases.

2 Configuration of the points in a circle

We first consider point configurations in a large circle.
We denote by x a circle of radius r = 2

√
3/3 − 1 =

0.1547 For the circle x, we have the following
lemma:

Lemma 3 Let C1 and C2 be disjoint two unit disks.
We suppose that a circle x circumscribes both of C1 and
C2. Then we cannot arrange any unit disk C3 with C3 ∩
x 6= ∅ that is disjoint from C1 and C2.

Proof. Since r = 2
√

3/3 − 1, when C1, C2, C3 touch
with each other, the circle x also touches all of them
(Figure 3). Since C1, C2, C3 are disjoint, the lemma
follows immediately. �

Using the circle x of radius r, we give the key idea of
our point configuration:

CCCG 2011, Toronto ON, August 10–12, 2011

393

23rd Canadian Conference on Computational Geometry, 2011

Figure 2: Triangular lattice, square lattice, and hexagonal lattice. Each size is given by the length of the arrow.

A circle x of
radius r=2 3/3-1

Figure 3: The circle x in the space surrounded by three
unit disks

r

r

r3

2

Figure 4: The size of each lattice

C1

C2

x1

x2

p1

p2

C+

Figure 5: Proof of Lemma 4

Lemma 4 Let C+ be a disk of radius 1 + 2r. For i =
3, 4, 6, let Li be the lattice of size

√
3r,

√
2r, and r,

respectively (Figure 4). (That is, we make x the largest
empty circle of each Li.) Then any point configuration
in Li ∩ C+ cannot be covered by disjoint unit disks.

Proof. We first observe that when we put a closed disk
x′ of radius r in Li ∩C+, x′ should contain at least one
point in Li ∩ C+ because of the size of Li.

Now in order to derive a contradiction, we assume
that all the points in Li ∩ C+ are covered by disjoint
unit disks C1, C2, Without loss of generality, C1 ∩
C+ contains the largest number of points in C+ among
Ci∩C+ (Figure 5). Then we can put a circle x1 of radius
r in C+\C1 such that x1 inscribes C+ and circumscribes
C1. Then, by the observation, x1 contains at least one

23rd Canadian Conference on Computational Geometry, 2011

394

CCCG 2011, Toronto ON, August 10–12, 2011

Figure 6: Enlargement of the lattices L4 and L6

point p1 in Li ∩ C+. By the assumption, there is a disk
C2 covering the point p1 in x1. Then we can put again a
circle x2 of radius r in C+\C1 such that x2 circumscribes
C1 and C2, and x2 contains a point p2 in Li∩C+. (Note
that x1 and x2 may overlap.) Then, by Lemma 3, we
cannot cover p2 by the other unit disks C3, This is
a contradiction. Thus the lemma follows. �

By Lemma 4, we can use L3∩C+ of size
√

3r, L4∩C+

of size
√

2r, and L6∩C+ of size r, where r = 2
√

3/3−1,
as point configurations that give upper bounds of k, re-
spectively. Among them, the upper bound k < 82 given
by L3 ∩C+ is much better than the others (the leftmost
one in Figure 2). For L4 and L6, we can slightly en-
large the size of the lattices than that of Lemma 4 with
careful analyses. For L4, when four points around on x
in Figure 4, at most one point on x touches surround-
ing unit disks. Hence we can enlarge L4 until at most
three points of the square touch surrounding unit disks
(Figure 6). (More precisely, we can enlarge to the min-
imum square of all the squares of which three points of
it touch the surrounding disks.) For L6, we can enlarge
L6 in Figure 4 until all of 6 points are on surrounding
unit disks as in Figure 6. However, these enlargements
cannot catch up with the case of L3 at all. Even using
the enlargement technique, our best achievements of the
cases of L4 and L6 are k < 102 and k < 119, respec-
tively. (The point configurations after enlargements are
given in Figure 2.) Hence we omit the details of these
enlargements.

3 Improvement of the point configuration

Hereafter, we fix the lattice L3 of size
√

3r. Carefully
checking the proof of Lemma 4, we can see that C+

is redundant. We first cut off the top and the bottom
of C+ as in Figure 7. More precisely, the lines AB
and EF are straight line segments in parallel, and the
distance between AB and the center of C+ is equal to
the distance between EF and the center of C+. The
distance between AB and EF is 1 + 3r. The curves
HA, BC, DE, and FG are arcs of the circles of radius
r. The curves CD and GH are arcs of the circle C+

1+2r

1

(1+3r)/2
r

A B

C

D
EF

G

H

O

Figure 7: The oval-like form Θ

C1

C2

x1

x2

p1

p2

Figure 8: Proof of Lemma 5

of radius 1 + 2r. Let Θ be the closed area surrounded
by the resulting oval-like form ABCDEFGH . We now
refine Lemma 4:

Lemma 5 Let Θ be the closed area given by the oval
in Figure 7. Let L3 be the lattice of size

√
3r. Then

any point configuration in L3 ∩ Θ cannot be covered by
disjoint unit disks.

Proof. In order to derive a contradiction, we assume
that all points in L3 ∩ Θ are covered by disjoint unit
disks C1, C2, Without loss of generality, C1 ∩ Θ
contains the largest number of points in L3 ∩ Θ among
Ci ∩ Θ. Then we can put a circle x1 of radius r in
Θ \ C1 such that x1 inscribes Θ and circumscribes C1

(Figure 8). Then x1 contains at least one point p1 in
L3 ∩ Θ. By the assumption, there is a disk C2 covering

CCCG 2011, Toronto ON, August 10–12, 2011

395

23rd Canadian Conference on Computational Geometry, 2011

p1 p2

p3 p4
p5p6

Figure 9: A point configuration in Θ; the circled points
are in Θ.

the point p1. Then we can put again a circle x2 of radius
r in Θ \ C1 such that x2 circumscribes C1 and C2, and
x2 contains a point p2 in L3 ∩ Θ. Then, by Lemma 3,
we cannot put any unit disk that covers p2. This is a
contradiction. Hence the lemma follows. �

Now we minimize the number of points in L3 ∩ Θ,
where L3 has size

√
3r. Our best achievement is given

in Figure 9. In this point configuration, we have two
criteria for the points p1, p2, . . . , p6 in Figure 9.

1. The line ℓ1 joining p1 and p2 and the line ℓ2 join-
ing p3 and p4 have enough distance to put Θ be-
tween them; the distance between ℓ1 and ℓ2 is equal
to 5.5

√
3r = 5.5

√
3(2

√
3/3 − 1) = 5.5(2 −

√
3) =

1.4737 . . . On the other hand, the corresponding
width of Θ is equal to 1 + 3r = 1 + 3(2

√
3/3 − 1) =

2
√

3−2 = 1.4641 Hence we can put Θ between
ℓ1 and ℓ2 such that all the points on ℓ1 or ℓ2 are
outside of Θ.

2. In Figure 9, the closest points on the right and left
sides of Θ are p5 and p6, respectively. We show
that we can put Θ between them. To simplify the
argument, we assume that we put Θ on the line
ℓ2 (joining p3 and p4) as in Figure 9, and we take
the coordinate with the center O = (0, 0) of the
Θ. Let p5 = (x5, y5) and p6 = (x6, y6). Then we
have p5 = (x5, −7

√
3r/4), p6 = (x6, −

√
3r/4), and

|x5 − x6| = 33r/2 = 11
√

3 − 33/2 = 2.5525
Let p′

5 be the point on the edge of Θ such that
p′
5 has the same height of p5 (and closest one of

two such points). Let p′
6 be the point on the edge

of Θ defined similarly for p6. That is, we can
let p′

5 = (x′
5, −7

√
3r/4), and p′

6 = (x′
6, −

√
3r/4).

Since x′2
i + y′2

i = (1 + 2r)2 for i = 5, 6, we

can obtain |x′
5 − x′

6| =
√

115/(4
√

3) − 725/48 +

√
283/48 − 29/(4

√
3) = 2.5302 Therefore, we

can put Θ between p5 and p6 such that they are
outside of Θ.

Based on these criteria, we can put Θ as in Figure 9,
and the only circled points are in Θ. The number of
the circled points is 53, and that concludes the proof of
Theorem 2.

4 Concluding remarks

We give an upper bound of 52 for the maximum num-
ber k such that any configuration of k points can be
covered by disjoint coins. In the oval Θ, it is essentially
required that the radius of the largest empty circle is
bounded by r = 2

√
3/3− 1. Hence some computational

power may improve the upper bound. But smart proofs
seem to be better; recently, Aloupis developed another
technique, and gave a better upper bound [1]. Applying
his technique to the point configuration in Figure 9, it
seems that we can remove a few more points. Our idea
is based on the uniform point configurations. The upper
bound based on some nonuniform point configurations
would be interesting.

We still have a big gap between 12 and 52. Im-
provement of the lower bound is also interesting. In
the appendix, we give the proof of the lower bound 10
by the probabilistic method. Indeed, the proof states
a stronger result: any configuration of 10 points can
be covered by the sheet in Figure 10. That is, the ar-
rangement of the coins is fixed. Moreover, the bound
given by the probabilistic method does not seem to be
tight. Hence the gap between the lower bound and the
real value seems to be larger than the gap between the
upper bound and the real value.

Acknowledgements

The authors are grateful to Hirokazu Iwasawa and Naoki
Inaba for their fruitful discussion on this topic. The au-
thors also thank Peter Winkler, Veit Elser, János Pach,
and Joseph Mitchell for their helpful comments.

References

[1] G. Aloupis. Personal communication. 2011.

[2] V. Elser. Packing-constrained point coverings. Ge-
ombinatorics, to appear.

[3] N. Inaba. http://inabapuzzle.com/hirameki/

suuri_4.html. (in Japanese), 2008.

[4] N. Inaba. http://inabapuzzle.com/hirameki/

suuri_ans4.html. (in Japanese), 2008.

23rd Canadian Conference on Computational Geometry, 2011

396

CCCG 2011, Toronto ON, August 10–12, 2011

Figure 10: A sheet of infinitely many coins

[5] P. Winkler. Puzzled: Figures on a Plane. Commu-
nications of the ACM, 53(8):128, August 2010.

[6] P. Winkler. Puzzled: Solutions and Sources. Com-
munications of the ACM, 53(9):110, September
2010.

[7] P. Winkler. Personal communication. 2011.

A Proof of Inaba’s theorem by the probabilistic
method

Let P be any configuration of 10 points p1, p2, . . . , p10.
We put randomly a sheet of infinitely many coins ar-
ranged like Figure 10 on P . For i = 1, 2, . . . 10, let
Ai be the event that the point pi is covered by a coin.
Then, Pr{Ai} = (

√
3−π/2)/

√
3 > 0.093 by a simple cal-

culation of ratios of areas of coins and the background.
Hence the probability that all points are covered is given
as follows:

Pr{A1 ∧ A2 ∧ A3 ∧ · · · ∧ A10}
= 1 − (Pr{A1 ∧ A2 ∧ A3 ∧ · · · ∧ A10})

= 1 − (Pr{A1 ∨ A2 ∨ A3 ∨ · · · ∨ A10})

≥ 1 − (Pr{A1} + Pr{A2} + Pr{A3} + · · · + Pr{A10}
> 1 − 10 · 0.093 = 0.07 > 0.

Since the all points are covered with positive probability,
there exists a way to put the sheet to cover all the points.

CCCG 2011, Toronto ON, August 10–12, 2011

397

23rd Canadian Conference on Computational Geometry, 2011

398

CCCG 2011, Toronto ON, August 10–12, 2011

Improving Accuracy of GNSS Devices in Urban Canyons∗

Boaz Ben-Moshe† Elazar Elkin‡ Harel Levi§ Ayal Weissman¶

Abstract

This paper addresses the problem of calculating the ac-
curate position of a GNSS device operating in an urban
canyon, where lines of sight (LOS) with navigation satel-
lites are too few for accurate trilateration calculation.
We introduce a post-processing refinement algorithm,
which makes use of a 3D map of the city buildings as
well as captured signals from all traceable navigation
satellites. This includes weak signals originating from
satellites with no line of sight (NLOS) with the device.
We also address the dual problem - computing a 3D map
of the city buildings when the position of the device is
given. This is achieved by storing LOS/NLOS rays to
all navigation satellites sampled at multiple locations
within a region of interest (ROI). These rays are then
used to compute the 3D shapes of buildings in the ROI.

A series of field experiments confirm that both algo-
rithms are applicative. The position refinement algo-
rithm significantly improves the device’s accuracy and
the mapping algorithm allows few users to map a com-
plex urban region simply by walking through it.

1 Introduction

Receivers in Global Navigation Satellite Systems
(GNSS) such as GPS, GLONASS or GALILEO tend to
output inaccurate location estimations while operating
in urban regions, mostly due to the density of tall build-
ings, which often block a receiver’s line of sight (LOS)
to the navigation satellites. Modern GNSS receivers are
sensitive enough to receive the indirect signal reflected
from the buildings. This multi-path effect is the major
factor of poor performance of GNSS in urban canyons.
A GNSS receiver approximates its position by interpo-
lating the signal from each navigation satellite into a
pseudorange, an approximation of the distance between

∗This research was partially supported by the MAGNET pro-
gram of the Israel Ministry of Industry and Trade - RESCUE
consortium (patent pending 61/426,541).
†Department of Computer Science, Ariel University Center,

Ariel 40700, Israel. benmo@g.ariel.ac.il
‡Department of Computer Science, Ariel University Center,

Ariel 40700, Israel
§Department of Computer Science, Ariel University Center,

Ariel 40700, Israel
¶Department of Computer Science, Bar-Ilan University,

Ramat-Gan, 52900 Israel

the receiver and the navigation satellite, obtained by
multiplying the speed of light by the time needed for
the signal to travel the distance. Using four pseudor-
anges and their associated satellite locations, the GNSS
receiver location can be computed simply by intersect-
ing the four spheres (see [2, 4] for more information re-
garding GNSS principles). Figure 5 presents an actual
positioning error caused by wrong pseudoranges in an
urban region.

In all but rare cases, a rule of thumb, which corre-
lates a strong signal to the existence of LOS is proven
very effective. Therefore, a GNSS device operating in a
non-urban area would simply sort captured signals ac-
cording to their strength, then use four (or more) strong
enough signals to compute its location. Since a receiver
wandering around at the country-side typically has LOS
with more than four satellites for most of its journey, the
decisive majority of location computations in such ar-
eas are typically based on signals originating from LOS
satellites, for which pseudoranges tend to be accurate
(the error range is typically within 2-5 meters).

In urban canyons, however, the situation is funda-
mentally different. It is very common for a GNSS device
operating in an area of this sort (e.g. downtown Man-
hattan) to be surrounded by obstacles such as tall build-
ings, which block LOS with most, and infrequently all,
otherwise available satellites. Since at least four strong-
enough signals, equivalent to four LOS satellites, are
required for accurate positioning, the outcome of a nar-
rowly available sky is inevitably a skewed computation,
up to the point where the device is unable to perform
its task.

Prior attempts to address limited LOS in urban areas,
all of the while succeed to present reasonably-accurate
results where satellites’ signals are scarce and weak,
are mostly based on approaches such as Map Matching
(MM) [7, 10, 17, 18] and Dead Reckoning (DR) [4, 13].
A certain degree of improvement could arguably be ob-
tained by assuming the GNSS receiver is located inside
a car, which drives at some estimated speed on top of a
road with a known path. The fact of the matter, how-
ever, is that most of these methods are evidently not
sufficient in rough urban canyons, where lines of sight
(LOS) can and do deteriorate up to the point where a re-
ceiver only captures multipath indirect reflections (zero
LOS). In such circumstances, the decisive majority of
GNSS devices become incompetent and cannot improve

CCCG 2011, Toronto ON, August 10–12, 2011

399

23d Canadian Conference on Computational Geometry, 2011

accuracy using these methods.

The novelty of the GNSS−refinement method pre-
sented in this paper is based on two core concepts. The
first is that unlike existing methods, which mostly rely
on information external to the line of sight (LOS) prob-
lem, such as vehicle speed and road location, the dis-
cussed improvement is confronting the LOS problem
in a more direct manner, by applying LOS-based al-
gorithms. The second inventive aspect is an effective
leverage of supposedly-useless weak signals originating
from no line of sight (NLOS) satellites. By combining
captured signals’ strength with shading algorithms on
a region of interest’s 3D map, our improved GNSS de-
vice is able to determine with a high degree of assurance
in which parts of the region of interest (ROI) it could
potentially be, and likewise, in which parts of the ROI
it is certain not to be, thus significantly narrowing the
problem’s error range.

The above, however, merely segments a ROI into
”can-be” and ”cannot-be” partial regions. Therefore, to
address the general case, in which intersecting the satel-
lites’ binary LOS maps yields more than one ”can-be”
region, we multiply each binary map with a ”likelihood
weight”. These weights are from a continuous range,
where each derives from the captured signal’s strength
of the respective satellite. We later discuss how sum-
ming weighted LOS maps for all satellites usually con-
verges to a single ”highest likelihood” location. We also
explain the heuristics we use in case there are still sev-
eral candidate locations subsequent to that summing
procedure.

Figure 1: The Urban Canyon effect: In red, the GPS
captured path. In blue, the actual path.

1.1 Related Work

Prior studies have shown that longer integration times
and data wipe-off enable High Sensitivity GPS (HS-
GPS) receivers to acquire and track signals at lower sig-
nal strengths [14, 9]. This increases satellite availability
in weak signal environments, but in an urban canyon
comes with a baggage of positioning errors resulting
from signal cross-correlation, multipath and echo-only
signals [14, 8]. Most attempts to improve GNSS de-
vices’ accuracy in urban canyons consider the typical
in-vehicle situation. This narrows the estimation prob-
lem, since vehicles are generally restricted to travel on

roads. Nevertheless, GNSS and other absolute posi-
tioning systems do not inherently locate vehicles onto
roads [12, 15]. The process of coinciding the output
of a sensor such as GPS with a road network map is
called Map Matching (MM) and is often integrated
with Dead Reckoning (DR), which is the process of es-
timating one’s current position based upon a previously
determined position [3, 19].

Unfortunately, the problem’s narrowing achieved by
MM techniques is not sufficient in complex urban
canyons. This is mainly because limited LOS in such
areas frequently causes initial location estimates that
are off by tens of meters. Such deviations are too large
for MM techniques, which often leads to placements
onto wrong distant roads.

In this paper we demonstrate how 3D maps of an
area can be leveraged to acquire more information out
of captured (both LOS and NLOS) GNSS signals. This
additional information can then be used in conjunction
with existing MM techniques, or as an alternative to
such methods. Moreover, the concepts employed to nar-
row the estimation problem also form the basis of our
algorithm for the dual 3D modeling problem (see section
3).

1.2 Paper Structure

Following an introduction and a related work review,
we turn to a detailed discussion of the GNSS refinement
algorithm. We then present a framework algorithm to
the dual (inverse) problem, namely the computing of the
city buildings’ 3D maps by capturing the signal strength
of all navigation satellites. Subsequently, we put the
presented algorithms to the test and discuss results from
field experiments conducted in rough urban canyons.
We conclude with suggested future work.

2 GNSS Refinement Algorithm

2.1 Overview and Definitions

In this section we present the main algorithm for im-
proving the GNSS receiver’s accuracy in urban canyons.
The algorithm transforms the signal strength of each
traceable navigation satellite into a LOS/NLOS value.
This value is not boolean but a continuous value in the
range of [0, 1], representing the LOS clearance.

The algorithm’s detailed description begins with for-
malization of (i) input parameters available from the
GNSS device; (ii) some pre-defined constants (thresh-
olds) and (iii) functions and data structures used
throughout the refinement process (see Table 1). We
then describe the mechanism by which the algorithm de-
termines LOS status with each satellite. Subsequently,
we explain the concepts behind LOS/NLOS partial

23rd Canadian Conference on Computational Geometry, 2011

400

CCCG 2011, Toronto ON, August 10–12, 2011

maps and discuss the formation of an aggregated like-
lihood map out of them. We conclude the section with
a high-level pseudo-code, which encapsulates the entire
algorithm.

GNSS Algorithm Definitions

Device
DeviceOutput : The current non-refined location
estimation, position error range, and the set
(S(t)) of all traceable satellite signals.
LastPosition: The last recorded refined loca-
tion, and the corresponding error ratio and con-
fidence level.

Constants
SigBench: A signal-strength threshold, which
determines visibility (assume LOS if higher;
NLOS if lower).
MaxSig: A surely visible signal-strength thresh-
old (used for linear transformation to [0,1]
range).
MinorErr : An error estimation threshold (don’t
correct if smaller).

Functions

S(t) = S1...Sn: The set of all satellite signals as
captured by the GNSS receiver in time t.
Sv(t) ⊂ S(t): The set of visible satellites (subset
of S(t) obtained using SigBench).
Su(t) ⊂ S(t): The set of invisible satellites (sub-
set of S(t) obtained using SigBench).
Map: A 2.5D representation of the terrain - in-
cluding both earth surface and buildings on top
of it.
ROI : The region of interest; a minimal polygon
which contains both: (i) all buildings which may
affect the user.(ii) all possible locations in which
the user could potentially be.
LOS(Si, ROI): A binary shading function from
each point of the ROI to a LOS,NLOS w.r.t.
Si location.
SIG(Si, ROI,Wi): A refinement of LOS(Si,
ROI) to a continuous range using a signal
strength (Wi ∈ [0, 1]) weight.
Approximate: The proposed GNSS refinement
algorithm (i) Creates an aggregated likelihood
map from all SIG(Si,ROI,Wi) (ii) Picks most
likely location with respect to the parameters
DeviceOutput and LastPosition.
Aggregated : An aggregation ad-hoc 2D matrix
with ROI ’s boundaries.

Table 1: Formal definitions of parameters used through-
out the proposed GNSS refinement algorithm.

2.2 Approximating Satellites’ LOS Status

The strength of a signal as captured by GNSS-receiver
depends on several factors ([5]):

• Global parameters: transmission frequency, trans-
mission power - these parameters are mostly fixed.

• Position and time: atmosphere and ionosphere con-
dition, the angle between the satellite and the re-
ceiver.

• LOS and multi-path status: the nature of propa-
gate signal with respect to the possible ”radio path”
to the receiver [16, 5, 6].

For a given GNSS (e.g. GPS L1, L2), the global pa-
rameters are fixed. The position and time parameters
can be approximated within a small error range, usu-
ally smaller then 5 dB. The typical LOS signal strength
is at least 10dB stronger than the signal strength of
a reflected signal (NLOS). It is therefore rather sim-
ple to classify captured signals into Sv(t)(LOS) and
Su(t)(NLOS) subsets. Moreover, the field experiments
we conducted (see section 4) demonstrate that deter-
mining a signal’s LOS/NLOS status is applicable even
in highly complex urban regions.

2.3 Partial LOS Map

Computing a shading map of a city building map (ROI)
w.r.t. a satellite position can be done by projecting the
buildings on the surface (the satellite position can be
thought as in infinity). Our implementation encapsu-
lates the LOS map of each captured signal Si in S(t) as
a 2D matrix filled with (0 and 1) binary values, each in-
dicating whether the receiver is likely to have LOS with
the corresponding satellite within a one square meter
spot. The computation of the map’s values is a rela-
tively straightforward shading algorithm, which makes
use of the satellite’s position and the 2.5D Map of the
area.

A fundamental, somewhat tricky, feature of the pro-
posed algorithm concerns the leverage of weak multi-
path signals captured by the receiver to obtain meaning-
ful information. A weak captured signal almost always
indicates the absence of LOS with the respective satel-
lite and is therefore classified (using SigBench) into the
subset of invisible satellites Su(t). Knowing the receiver
cannot see the satellite from its current location, we can
conclude it is certainly not positioned in spots where
this satellite can be seen. Derives from this observa-
tion is the applicability of using the complementary LOS
maps (switching 1 and 0 values) of invisible satellites be-
longing to the subset Su(t) as likelihood layers, which
are as informative as likelihood layers generated from
visible satellite signals belonging to the Sv(t) subset.
Furthermore, since the discussed algorithm is targeted
at urban canyons scenarios where LOS may deteriorate
even to an empty Sv(t) subset (all captured signals are
weak), the complementary LOS maps of invisible satel-
lites belonging to Su(t) become an essential source of
information for the formation of the aggregated likeli-
hood map discussed below.

2.4 Likelihood Weights

Likelihood weightening is a mechanism employed by the
algorithm to improve determinism. In the absence of
weights, which transform a LOS map from a binary
LOS/NLOS representation into a more refined likeli-
hood map, the algorithm could very well narrow the

CCCG 2011, Toronto ON, August 10–12, 2011

401

23d Canadian Conference on Computational Geometry, 2011

problem by segmenting the ROI into ”can be” and
”cannot be” regions, but would not be able to resolve
a scenario of multiple ”can be” spots, and pick a single
location to be presented on the GNSS device’s screen.
By introducing signal-strength derived weights, the LOS
maps become differentiated from one another (each map
is multiplied by a weight from a continuous range).
This, in turn, results in (i) a further segmented ag-
gregated likelihood map, which serves the algorithm’s
purpose of picking a single spot ; (ii) improved accu-
racy and reliability, since greater importance is granted
to stronger signals.

2.5 Aggregated Likelihood Map

The likelihood map is implemented as a 2D matrix filled
with real numbers, each representing the likelihood of
the receiver to be located within a location (e.g., within
1 square meter). The matrix is constructed by (a) mul-
tiplying each partial LOS matrix with a weight, which
signifies the signal’s strength of the corresponding satel-
lite and (b) summing all partial weighted matrices. The
outcome of this matrix addition is a single 2D matrix,
where each point represents a likelihood, and the ma-
trix’s highest value(s) is the most likely spot. Since
this likelihood matrix is being constructed by summing
a considerable number (roughly 8 to 18) of partial (al-
ready differentiated by weights) matrices, the max value
of the matrix tends to have a relatively small number of
appearances. In the empirically common case of a sin-
gle unique max value, the algorithm concludes and the
spot represented by that max value is being presented.
Otherwise, if several max values are encountered, the
algorithm’s Approximate function is employing heuris-
tic methods (e.g. nearest point to the non-intervened
receiver’s output - DeviceOutput) to choose the point
to be presented.

Figure 2: Construction of a likelihood map from LOS
maps. In this example there are three satellites (S1 −
S3) and four points (p1 − p4), p1 and p4 have the same
aggregated shading maps (they both can see S1, and
S2). Yet p2 and p3 aggregated shading maps differ from
the aggregated shading map of p1 (or p4).

2.6 Algorithm Formalization

Using the definitions at the beginning of this section (see
Table 1), the refinement algorithm’s high-level pseudo-

code would be:

Algorithm 1: High-Level pseudo-code for GNSS re-
finement algorithm

Result: RefinedPosition
if PositionError < MinorErr then

return DevicePosition;

Let S(t) be the set of all satellite signals as
captured by the GNSS receiver in time t.
Let Aggregated be a 2D matrix with ROI ’s
boundaries (initialized with 0 values).
for each Si in S(t) do

Use SigBench to determine whether Si ∈ Sv or
Si ∈ Su.
Let Wi be Si’s signal strength weight 1

Li ← SIG(Si, ROI,Wi)
2

if Si ∈ Su then
Inverse Li

3

Aggregated← Aggregated+ Li
4

Let LikelyPoints be the set of max values in
Aggregated.
Refined Position = Nearest point in LikelyPoints
to DevicePosition.
return Refined Position.

1Wi is transformed into [0, 1] range using MaxSig constant.
2Compute partial weighted map.
3For an NLOS satellite : x = (1− x) to each x in the matrix.
4Add partial weighted map to aggregated likelihood map.

3 3D Mapping Algorithm

3.1 Overview

In this section we address the problem of constructing a
3D building map using the strength of the signals from
navigation satellites. This task is the dual problem to
the improved accuracy: instead of using the 3D build-
ings’ map to improve the receiver’s position, we use its
position to approximate the buildings’ 3D map.

Most GNSS devices are able to keep detailed log
files, which contain information about captured satel-
lites’ signals along a device’s journey. Thereafter, it is
a straightforward process to track down a device’s path
and the satellites’ position respective to that device at
each point in time during the journey (in sampling rate
of 1-10Hz). This ability to track down signals, when
magnified by a number of GNSS devices covering a sub-
jected urban canyon, is a preliminary enabler of our
novel framework algorithm to the dual problem, which
is the generation of buildings’ 3D models out of captured
satellites signals.

The 3D mapping problem can be defined as follows:
given a GNSS log-file, which contains samples of: time,

23rd Canadian Conference on Computational Geometry, 2011

402

CCCG 2011, Toronto ON, August 10–12, 2011

position, accuracy and the signal strength to each trace-
able satellite, convert the log file into two sets of 3D
vectors: (i) Blue vectors: all LOS signals. (ii) Red vec-
tors: all the NLOS signals. The goal is to construct the
surface, which will block all the vectors in the red set
and will not block the vectors from the blue set.

3.2 2.5D Mapping Heuristics

We limit this algorithm to compute a 2.5D map repre-
sentation, a surface of a terrain representation in which
each (X,Y) location has a single Z value associated with
it. For simplicity, we divide the mapping algorithm into
two sequential steps: (i) computing the buildings’ con-
tours. (ii) approximating the height of each contour.

For the algorithm’s first step we traverse time-
consecutive samples of the satellite signals. We then
compute distances between consecutive samples, using a
weighted xor function (assuming LOS is 1 and NLOS is
0), a change in satellite status (LOS/NLOS) contributes
to the distance function according to the satellite angle
(high-angle satellites contribute more). If the distance
is above some threshold, we consider this point to be
an edge-point. Edge-points tend to appear in buildings’
corners and next to buildings’ walls (due to the ampli-
fying distance of high-angle satellites). We then filter
out edge-points with potential high position error, and
aggregate all the relatively accurate edge-points. Lastly,
we compute contours which are bounded by the edge-
points. These contours may be general polygons or some
constraint shapes (see Figure 6).

The algorithm’s second step computes the z-value
of each contour. The height value of each contour is
bounded by all the LOS rays going over it. Yet because
the LOS/NLOS data is ”noisy” by nature, the actual
z-value is computed as the height for which maximal
weighted-constraints (LOS/NLOS) are satisfied. As in
the first stage, the higher the ray-angle is (LOS/NLOS)
the larger its weight becomes. Noteworthy is that sam-
ples from the same spot taken at different times of the
day are beneficial for the algorithm. This is because
for each triplet (spot, building, satellite) if there’s a
(time dependent) LOS ray from the spot to the satel-
lite, which goes over the building’s contour, then there
exists a time of the day, which minimizes the vertical
distance between that ray and the building’s roof.

During our initial field experiments, the contours of
the builds were slightly larger and shorter than in real-
ity. In order to fix this effect we modified the algorithm
to keep refining the 2.5D map by updating the contours
according to the building approximated height.

4 Experimental Results

We conducted a set of preliminary experiments to eval-
uate the suggested algorithms in practice. In order to

Figure 3: 3D mapping algorithm in action. In red are
the rays which are blocked (NLOS), in blue are the rays
with LOS to the corresponding navigation satellites.

evaluate the improved accuracy algorithm two types of
experiments were conducted (see Figures 3-5): (i) lo-
cating a GPS receiver in a fixed position for few hours
(at each position). (ii) walking along a fixed route. In
both experiments the actual position was compared to
the suggested location of both (a) the GPS device (b)
the refinement algorithm. In order to evaluate the 2.5D
mapping algorithm we have walked through the uni-
versity campus and computed the approximated build-
ing map. The algorithm was implemented in Java and
tested on both Android and Linux. The algorithm was
able to refine the location (in an area of 200*200 meters)
in less than 1 second, which validated its applicability to
run efficiently on mobile devices (equipped with a 1Hz
GPS). The following GPS receivers were used: Fastrax
1Hz, Wintec G-Rays 10Hz and the internal GPS of the
Android devices. All tests were made while walking.
The GPS row data was accessed via the NMEA proto-
col.

Figure 4: Improved position algorithm in action: In
both above examples the GPS suggested a position with
12-18 meters error ratio. The refinement algorithm was
able to fix the position to an error of less than 1 meter.

Figure 5: Improved Position: Left: above view. Right:
3D perspective view. In red, the path computed by a
1Hz fastrax GPS with an average error of 31 meters and
max error of 180 meters; In green, the refined position
with an average error of 4 meters and max error of 11
meters; In yellow, the actual path.

CCCG 2011, Toronto ON, August 10–12, 2011

403

23d Canadian Conference on Computational Geometry, 2011

Figure 6: 2.5D mapping example, Left: the actual
buildings, Middle: the 2.5D map of the buildings us-
ing axis parallel rectangles contours. Right: the 2.5D
map of the buildings with no contour constraints

5 Conclusion and Future Work

We have proposed a new framework for improving a
GNSS-receiver accuracy in urban regions. We have
also presented an algorithm for constructing a 2.5D
building map - using the receiver’s position and the
LOS status to it from each navigation satellite. In
practical implementations, both algorithms could be
running together - improved position accuracy assists
in improving the 2.5D map accuracy, which in turn
further improves positioning accuracy. Such approach
for Simultaneous Localization And Mapping (SLAM)
is proven to be an efficient method in many navigation
and mapping tasks [1, 11]. The experimental results
presented above show that even a basic implementation
of the algorithms helps improving the GNSS accuracy
significantly in urban canyons. Using few walking
clients equipped with standard GPS devices we were
able to construct a 2.5D buildings map of a complex
downtown area; this map was then sufficient as the
input source for the accuracy improvement algorithm.
For future work we intend to use GNSS-pseudoranges
to compute a more accurate map of the buildings.
In particular, we would like to generalize the 2.5D
mapping algorithm into a real 3D mapping method.

Acknowledgment The authors wish to thank Eliyahu
Ariel and Prof. Avner Kidar for introducing us to the
real world of GPS.

References

[1] J. Artieda, J. M. Sebastián, P. Campoy, J. F. Correa,
I. F. Mondragón, C. Mart́ınez, and M. Olivares. Visual
3-d slam from uavs. Journal of Intelligent and Robotic
Systems, 55(4-5):299–321, 2009.

[2] S. Gleason and D. Gebre-egiabher. GNSS Applications
and Methods. 2009.

[3] J. S. Greenfeld. Matching GPS observations to loca-
tions on a digital map. In Proceedings of the 81th
Annual Meeting of the Transportation Research Board,
Washington D. C. 2002.

[4] P. D. Groves. Principles of GNSS, Inertial, and Multi-
sensor Integrated Navigation Systems. 2008.

[5] B. M. Hannah. Modelling and simulation of gps multi-
path propagation. 2001.

[6] Y.-W. Lee, Y.-C. Suh, and R. Shibasaki. A simula-
tion system for gnss multipath mitigation using spatial
statistical methods. Comput. Geosci., 34:1597–1609,
November 2008.

[7] S. Liu, Z. Shi, M. Zhao, W. Xu, and K. Zhang. An ur-
ban map matching algorithm using rough sensor data.
Power Electronics and Intelligent Transportation Sys-
tem, Workshop on, 0:266–271, 2008.

[8] G. D. Macgougan. High sensitivity GPS performance
analysis in degraded signal environments. M. Sc. The-
sis, UCGE Report No, page 20176, 2003.

[9] B. Peterson, D. Bruckner, and S. Heye. Measuring GPS
Signals Indoors, Proceedings of ION GPS-1997, The In-
stitute of Navigation, 16-19 September, Kansas City,
Missouri, USA. pp 389-398, 1997.

[10] M. A. Quddus, W. Y. Ochieng, and R. B. Noland. In-
tegrity of map-matching algorithms. Transportation
Research Part C: Emerging Technologies, 14(4):283 –
302, 2006.

[11] D. Schleicher, L. M. Bergasa, M. Ocaña, R. Barea, and
E. L. Guillén. Real-time hierarchical gps aided visual
slam on urban environments. In EUROCAST, pages
326–333, 2009.

[12] C. Scott. Improved GPS Positioning for Motor Vehicles
Through Map Matching, Proceedings of ION GPS-1994,
The Institute of Navigation, 20-23 September, Salt Lake
City, Utah, USA. pp 1391-1400, 1994.

[13] J. Stephen and J. Stephen. Development of a multi-
sensor gnss based vehicle navigation system, 2000.

[14] S. Syed. University of calgary development of map aided
gps algorithms for vehicle navigation in urban canyons,
2005.

[15] G. Taylor and G. Blewitt. Virtual Differential GPS
and Reduction Filtering by Map Matching, Proceedings
of ION GPS-1999, The Institute of Navigation, 20-23
September, Salt Lake City, Utah, USA. pp 114-120,
1999.

[16] N. Viandier, D. F. Nahimana, J. Marais, and E. Duf-
los. Gnss performance enhancement in urban environ-
ment based on pseudo-range error model. In Position,
Location and Navigation Symposium, 2008 IEEE/ION,
pages 377–382, 2008.

[17] C. E. White, D. Bernstein, and A. L. Kornhauser. Some
map matching algorithms for personal navigation assis-
tants. Transportation Research Part C: Emerging Tech-
nologies, 8(1-6):91 – 108, 2000.

[18] Y. Zhang and Y. Gao. A fuzzy logic map matching
algorithm. Fuzzy Systems and Knowledge Discovery,
Fourth International Conference on, 3:132–136, 2008.

[19] L. Zhao, W. Y. Ochieng, M. A. Quddus, Noland, and
R. B. An Extended Kalman Filter algorithm for Inte-
grating GPS and low-cost Dead reckoning system data
for vehicle performance and emissions monitoring. The
Journal of Navigation, 56:257–275, 2003.

23rd Canadian Conference on Computational Geometry, 2011

404

CCCG 2011, Toronto ON, August 10–12, 2011

Geometry-Free Polygon Splitting

Sherif Ghali∗

Abstract

A polygon splitting algorithm is a combinatorial recipe.
The description and the implementation of polygon
splitting should not depend on the embedding geome-
try. Whether a polygon is being split in Euclidean, in
spherical, in oriented projective, or in hyperbolic geo-
metry should not be part of the description of the algo-
rithm. The algorithm should be purely combinatorial,
or geometry free.

The geometry ultimately needs to be specified, and
the geometric predicates can only be implemented after
specifying the coordinate type and the number type.
But the geometry, along with the coordinates and num-
ber type in that geometry, remain a late “plug-in”, to
be added only to the finished algorithm.

We describe a kernel for hyperbolic geometry. Once
classes and predicates in that geometry are developed,
hyperbolic geometry can be used as a plug-in to polygon
splitting alongside other geometries.

We also describe an algorithm for the splitting of a
polygon represented using its bounding lines. The use of
this dual representation ensures that all predicates are
computed directly from input data. This remains the
case even if the same polygon is split multiple times, as
occurs in BSP tree construction.

1 Introduction

Polygon clipping and splitting algorithms are described
in the literature for a specific geometry. An algorithm is
described either for Euclidean geometry [10] or for ori-
ented projective geometry [17, 2]. Initially, intersections
in oriented projective space were performed by mak-
ing observations about the homogenizing coordinate, w.
As kernels for different geometries were developed, it
became better understood that intersection operations
can be performed while the coordinates remain invisi-
ble [2, 15, 6].

Yet there is no reason for clipping and splitting algo-
rithms not to be designed and implemented as purely
combinatorial algorithms. The geometry remains a vari-
able, one that is bound to the algorithm at a late stage
during compilation.

The art of geometric computing has been scattered,
with computational geometry mainly seeking solutions

∗shghali@gmail.com

in Euclidean spaces and with computer graphics seek-
ing ones in oriented projective space. Recent work
has shown that geometric algorithms can be made neu-
tral [5, 4]. The same algorithm can be instantiated in
either Euclidean or oriented projective geometry. We
take at present another step and show that a kernel for
hyperbolic geometry can also be defined. We show how
a geometry kernel can be a late addition to an algorithm
to produce a concrete algorithm in that geometry.

The problem addressed here is polygon splitting—two
parts result from the split. If only one of the two parts is
needed, the problem is termed polygon clipping instead.
Given a splitting algorithm, regardless of whether it is
geometry free, one can easily produce a clipping algo-
rithm by removing the algorithm subset that generates
the part that is not needed.

1.1 Number-Type, Coordinate, and Dimension
Freedom

By liberating an algorithm from its number type, co-
ordinates, dimension, or from geometry, an algorithm
becomes number-type free, coordinate free, dimension
free, or geometry free, respectively.

Number-type freedom refers to the ability to modify
an implementation by changing as little as one program
line, to make the implementation operate on one num-
ber type or another [13]. Minimal modification is im-
portant. Modifying an algorithm to use ’float’ instead of
’double’, for example, can in general not be performed
simply by replacing one string with another. One must
also confirm that each instance does indeed represent a
coordinate in the geometric system.

Coordinate freedom [11] is as important to writing
maintainable geometric systems as number-type free-
dom. A geometric system is said to be coordinate free
if coordinate manipulation is restricted. Coordinates
are needed in the input and output stages of an al-
gorithm, but the intermediate stages of an algorithm
are designed and implemented such that coordinates
are not accessed. Aside from the objectives of gener-
ality and reuse, coordinate freedom promotes the use of
a vectorial language to resolve geometric predicates [5,
Chap. 17].

Dimension freedom involves defining a geometric al-
gorithm that can operate in any dimension. The only
algorithms that appear to be amenable to dimension
freedom at this time are BSP algorithms.

CCCG 2011, Toronto ON, August 10–12, 2011

405

23rd Canadian Conference on Computational Geometry, 2011

1.2 Geometry Freedom

Geometric freedom proposes to turn a geometric algo-
rithm into a purely combinatorial one [5, Chap. 29].
Figure 1 illustrates a few low-dimensional geometries.

P 1

P 2

P 3

H1

H2

H3

T 1

T 2

T 3

E1

E2

E3

S1

S2

S3

Figure 1: Low-dimensional kernels for Euclidean, spher-
ical, projective, oriented projective, and hyperbolic geo-
metries.

Consider that we have defined classes (datatypes and
functions) for objects in each geometry. In the real Eu-
clidean plane RE 2 we will define classes for a point,
a line, and a polygon—called, respectively, Point E2,
Line E2, and Polygon E2. Likewise in the real oriented
projective plane RT 2 we will define the classes Point T2,
Line T2, and Polygon T2, and so on.

Even though in a geometric system we have no need
for creating a concrete instance of Euclidean, spherical,
or hyperbolic plane geometry, we define a datatype for
each geometry [4]. The datatypes remain abstract—
no instance is ever created. They serve in acting as a
parameter to a combinatorial algorithm. During com-
pilation the generic geometry is replaced by a concrete
one, and the resulting implementation is as efficient as
one hand-tailored for a particular geometry.

If ’double’ is chosen as the number type, the class for
2D Euclidean geometry becomes Geometry E2<double>,
that for 2D hyperbolic geometry Geometry H2<double>,
and so on.

Computational geometry often uses mapping in gen-
eral and projection in particular to reduce one problem
to another. It is clear that a Euclidean geometry can-
not replace a different geometry everywhere, but even
if the topology is identical, the mapping may be unde-
sirable. It is possible, for instance, to use stereographic
projection to define a bijection between points on the
extended complex plane and the Riemann sphere [9]. It
then becomes possible to claim that a problem on the
sphere can be solved by invoking an algorithm on the
complex plane, along with appropriate handling for the
ideal point. This may be satisfying in synthetic geome-
try, but it is not a useful solution from an algebraic or
a computing perspective. No numerical precision would
be adequate to capture points in proximity of the north
pole.

2 Kernel Support for Polygon Splitting

As with any instance of introducing modularity into a
software system, one must define the interface between
two or more components. In the case of raising the
abstraction of polygon splitting, we need to define the
classes and the functions provided by the kernel and
used by the implementation of polygon splitting.

The following C++ code illustrates the implementa-
tion of a 2D Euclidean geometry class. Itself parame-
terized by a number type NT, the class also acts as a
parameter for geometry-free algorithms.

template<typename NT>
struct Geometry E2
{

typedef NT NumberType;

typedef Point E2<NT> Point;
typedef Line E2<NT> Hyperplane;
typedef Polygon E2<NT> Polytope;

};

The code for other geometries is similar. The follow-
ing code shows a class Geometry H2 for 2D hyperbolic
geometry.

template<typename NT>
struct Geometry H2
{

typedef NT NumberType;

typedef Point H2<NT> Point;
typedef Line H2<NT> Hyperplane;
typedef Polygon H2<NT> Polytope;

};

The hyperbolic geometry kernel represents points by
those in the interior of the Poincaré disk, where lines are
oriented circles orthogonal to the unit circle [8]. Line
intersection results in either no (real) points or in two
points. In the first case the lines have no intersection in
the hyperbolic plane and in the second they have one
intersection. One point will be inside the unit disk and
its inversion will be outside. A line joining two points
will pass by the two points as well as their inversions.
Adopting the Poincaré disk rather than Weierstrass co-
ordinates [3] means that we sacrifice homogeneity, which
we leave as a second step.

LP

L
L+ L−

Figure 2: Separability of hyperbolic geometry

The only property of hyperbolic geometry on which
polygon splitting depends is separability, illustrated in
Figure 2. We say that a geometry is separable if the

23rd Canadian Conference on Computational Geometry, 2011

406

CCCG 2011, Toronto ON, August 10–12, 2011

removal of one hyperplane results in two disjoint sets.
Separability is also the property of oriented projective
geometry that is not satisfied by classical projective geo-
metry and that makes it necessary to base geometric al-
gorithms on the former. We have yet to identify a class
of algorithms that can be naturally defined in classical
projective geometry.

Each geometry in turn defines the concrete types for
a point, a hyperplane, and a polytope in that geome-
try using traits [12]. A geometry-free algorithm is then
written to use a point, a hyperplane, and a polytope
without referring to a concrete type [4].

Traits are simply type mappings. A classical proce-
dure performs mapping between objects. The procedure
takes a set of parameters. When called, it evaluates a
function and returns an object. Traits extend this no-
tion to types. The ’typedef’ statement in the C lan-
guage already performs this mapping, although in the
opposite order of what assignment statements in that
language would suggest: the “l-type-value” appears on
the right. The combination of type genericity and type
mapping meant that traits have found wide applications
in generic programming.

The polygon splitting implementation is a function
split that is parameterized by the geometry.

template<typename Geometry>
void
split(const typename Geometry::Polytope & polytope,

const typename Geometry::Hyperplane & hyperplane,
typename Geometry::Polytope & positive part,
typename Geometry::Polytope & negative part);

To split in a concrete geometry, it suffices to instan-
tiate the generic function with a concrete geometry.

split<Geometry E2<double> >(...);
split<Geometry S2<double> >(...);
split<Geometry H2<double> >(...);

Type safety is guaranteed. The function for splitting
in one geometry will only accept polytope objects and
a hyperplane in that geometry. In this abstraction we
refer to polygons using the more general term polytope
to facilitate dimension freedom.

Only one predicate function is needed by split: line-
point sidedness. Visualization requires a second func-
tion: line-line intersection. Neither function is generic
with respect to the geometry. To compile split in a given
geometry, It is necessary to ensure that a concrete in-
tersection function and sidedness predicate are available
for that geometry. The declarations in the case of Eu-
clidean geometry, for instance, are:

template<typename NT>
Oriented side
oriented side(const Line E2<NT>& L1,

const Line E2<NT>& L2,
const Line E2<NT>& L3);

template<typename NT>
Point E2<NT>
intersection(const Line E2<NT> & L1,

const Line E2<NT> & L2);

3 Geometry-Free Polygon Splitting

3.1 A Dual Representation for Polygons

Our main application for polygon splitting is the compu-
tation of Boolean operations. A polygon is recursively
split by the partitioning hyperplanes in a binary tree.
When a fragment of the polygon reaches a leaf node,
the Boolean operation is evaluated and the fragment
is either discarded or used to construct a subtree at a
leaf [18].

Suppose that the operation we wish to compute is
Boolean union, and that we have inserted into an ini-
tially empty tree the three dark-shaded polygons shown
in Figure 3 (a). Our BSP tree will at this time include
some leaf node N representing the light-shaded trian-
gle in the center. Suppose that we then insert a fourth
polygon defined by the three circular markers and the
dashed lines. That polygon will be split by the inte-
rior nodes, and all fragments but one will be eliminated
as redundant (because they will be already flagged as
belonging to the point set). Only the fragment at the
center will remain.

+

+

+

−
−

−

(a) (b) (c)

Figure 3: (a) Computing the union of four polygons;
(b) the boundary of the fragment remaining of the
fourth polygon; (c) the corresponding subtree

The traditional approach is to then construct a binary
tree (Figure 3 (c)) to represent the remaining fragment
of the fourth polygon (Figure 3 (b)—we use the reverse
of the convention of a polygon’s orientation to facilitate
dimension freedom [5]). That binary tree is attached
as a subtree at the leaf node N . Yet this seven-node
subtree introduces six nodes that represent empty sets.
This is the case in a binary tree whenever the key at an
interior node matches the key at one of its ancestors. In
this case all three interior nodes of the subtree would
be present along the path to the root. Storing nodes
that represent the empty set does not breach the BSP
tree—the empty sets are convex—but it is not optimal.

The conclusion we make is that the recursive splitting
of a polygon must maintain for each edge of the polygon

CCCG 2011, Toronto ON, August 10–12, 2011

407

23rd Canadian Conference on Computational Geometry, 2011

whether the edge is the result of a cut. Only those edges
that are not the result of a cut are used to construct the
leaf subtree.

As is now well-understood, it is necessary to use
ternary logic for the sidedness predicate. Figure 4 illus-
trates the issue in the present context. If two polygons
have sides that coincide with a splitting line (perhaps
because they have already been cut by precisely that
line), then the act of folding the coincidence of sided-
ness with either the positive or the negative sides will
result in a zero-area quadrangle.

0
+

− (a)
(b)

Figure 4: Necessity of handling point-hyperplane in-
cidence: Folding 0 into − means that polygon (a) is
unnecessarily split, and likewise for polygon (b) if 0 is
folded into +.

But how can we determine reliably whether a given
vertex or edge is incident to a splitting line? One ap-
proach is to off-load the problem on the number type
and assume that we have at our disposal an exotic num-
ber type capable of determining without failure the sign
of a determinant. Yet a solution is possible that depends
on no stronger than the built-in finite precision number
types.

The solution we use is to define polygons by their
bounding lines rather than their bounding vertices [16].
Sugihara and Iri have also shown how the sidedness
predicates can be resolved directly from the coefficients
of the (hyper-) planes and without appealing to duality.

In addition, we also store with each bounding line a
flag describing whether the line is the result of a split.
Storing these flags ensures that the BSP trees we con-
struct contain no nodes representing empty sets.

3.2 Algorithm

Figure 5 shows a new polygon splitter with the following
new features. It is generic with respect to the geome-
try. It avoids slivers by using the input lines to define
all new fragments. It is suitable for concave polygons,
and it maintains a flag for each polygon boundary to
identify whether it is the result of a cut, which makes
the resulting fragments suitable for processing in BSP
trees.

The main operation in the graphics pipeline is to clip
a polygon six times with the boundary of a cube in
oriented projective space. In that setting the hyperplane
is three-dimensional, but the object clipped is a two-
dimensional polygon lying in 3D.

The present algorithm is not identical to the one that
appeared in the monograph [5, Page 263]. That work

also represented polygons using their bounding hyper-
planes, but vertex coordinates were computed to deter-
mine sidedness—an operation that is at present resolved
by using hyperplane-based predicates [16].

Both preceding works on polygon clipping [5, 1] avert
the construction of new vertices at the clip/split lo-
cations. They both do so by outputting hyperplanes
instead of the classical method of outputting vertices
during each iteration. The atomic test in Bernstein and
Fussell’s algorithm is based on four boundary edges and
three vertices, for a total of 27 cases (each vertex may lie
on either side or coincide with the splitting plane). In
addition to being purely combinatorial or geometry free,
the present algorithm (as well as the previous mono-
graph presentation [5]) iterates instead over three hy-
perplanes and two vertices while handling 9 cases (three
outcomes for each vertex). For completeness, we show
the algorithm handling both positive and negative frag-
ments. We also handle the coincidence of the polygon
with the splitting plane—a case that can arise in 3D.

The implementation was invoked in spherical, Eu-
clidean, and hyperbolic geometries. Examples of split-
ting a polygon on the sphere, in the Euclidean plane,
and in the hyperbolic plane are shown in Figure 6.

4 Future Work

The trajectory we take is to define algorithms and a
usable library for vector computer graphics that com-
plements what can be done in raster computer graphics.
Rather than represent an image of a 3D object as a uni-
formly sampled shading value (a raster image), we wish
to capture an image as a planar graph on either a sphere
or on a subset of the Euclidean plane. The extension of
this work to 3D must proceed while satisfying the follow-
ing two simultaneous objectives. The present splitting
routine must be usable when splitting a 3D polygon em-
bedded in a plane in space. But the splitting function
must also robustly handle the case of a 3D polytope,
which is necessary for dimension freedom in a BSP tree.
A splitting routine has also been implemented for 1D in
both spherical geometry and in Euclidean geometry [5].
Even though simple, the need arises in practice for the
computation of Boolean operations on regular sets in
1D.

Line clipping and splitting is an equally important
problem. In the context of BSP trees we often need to
determine sub-hyperplanes [5, 1], the subset of a split-
ting line lying inside a convex region—an instance of line
clipping. Figure 7 suggests that it may be possible to
use classical duality to combine an implementation for
line and polygon splitting [14]. But note that, as illus-
trated in the figure, the vertices to be addressed under
line and polygon splitting are distinct. The vertices ad-
dressed under line splitting are the line’s intersections

23rd Canadian Conference on Computational Geometry, 2011

408

CCCG 2011, Toronto ON, August 10–12, 2011

Split(Polygon P, Line L)
returns positive polygon, negative polygon: Polygon
classify (implicit) vertices of P with respect to L
if no vertex lies in L−

or no vertex lies in L+

for each bounding line of P // Case (a)
if line coincides with L

set the corresponding edge flag
if no vertex lies in L− // Case (b)

copy P with new edge flags into positive polygon
if no vertex lies in L+ // Case (c)

copy P with new edge flags into negative polygon
return

if all vertices of P lie on L // Case (d)
return

vector of lines positive lines, negative lines
vector of flags flags of positive lines, flags of negative lines
for each bounding edge e of P

// e.source is implicitly defined by predecessor(e) and e
// e.target is implicitly defined by e and successor(e)
if e.source is not in L− and e.target is not in L−

insert e to positive lines // Case (e)
insert flag of e to flags of positive lines
if e.target lies on L // Case (f)

insert L to positive lines
insert true to flags of positive lines

else if e.source is not in L+ and e.target is not in L+

insert e to negative lines // Case (g)
insert flag of e to flags of negative lines
if e.target lies on L

insert -L to negative lines // Case (h)
insert true to flags of negative lines

else // segment straddles the splitting line; split
if e.source lies in L+ and e.target lies in L−

insert e to positive lines // Case (i)
insert flag of e to flags of positive lines
insert L to positive lines
insert true to flags of positive lines
insert e to negative lines
insert flag of e to flags of negative lines

// The symmetric next case is included for completeness
if e.source lies in L− and e.target lies in L+

insert e to negative lines // Case (j)
insert flag of e.source to flags of negative lines
insert -L to negative lines
insert true to flags of negative lines
insert e to positive lines
insert flag of e to flags of positive lines

construct positive polygon from positive lines and flags of positive lines
construct negative polygon from negative lines and flags of negative lines

(a)

(b)

(c)

(d)

(e)

1

+

−
+

−

+

−
+

−

+

−
+

−

+

−
+

−

+

−
+

−

(f)

(g)

(h)

(i)

(j)

I

I

+

−
+

−

+

−
+

−

+

−
+

−

+

−
+

−

+

−
+

−

Figure 5: Geometry-free polygon splitting—Cases (f) and (h) in the algorithm handle the incidence of a vertex with
the splitting line, case (a) handles the incidence of an edge with the splitting line, and cases (b) and (c) handle the
cases when the polygon lies strictly on one side of the splitting line. Cases (f) and (h) are themselves special cases
of (e) and (g). Cases (i) and (j) handle a proper (interior) intersection between the polygon’s boundary and the
splitting line. If, as iterative runs of the algorithm guarantee, the input polygon represents a regular set, case (d)
cannot arise in 2D geometry. We include it to be able to handle 3D polygon splitting.

CCCG 2011, Toronto ON, August 10–12, 2011

409

23rd Canadian Conference on Computational Geometry, 2011

Figure 6: Polygon splitting in Euclidean, spherical, and hyperbolic geometries

with the polygon’s bounding lines.

Figure 7: Combining polygon and line clipping

Genericity can also be used in the context of at-
tributes [7]. A polygon’s vertex will frequently carry
along data such as texture coordinates, which will also
need to be clipped along with the geometry. Yet clip-
ping texture coordinates is not as straight-forward as it
may seem because of the distinct metrics in each geo-
metry. The appropriate solution is to devise an inter-
polation module that caters for distances, angles, and
areas. Geometry and dimension freedom suggest that
the solution should handle interpolants of an arbitrary
function, not just linear interpolation, in an arbitrary
geometry.

Acknowledgment

I am grateful for the helpful comments made by re-
viewer #3.

References

[1] G. Bernstein and D. Fussell. Fast, exact, linear
booleans. Comput. Graph. Forum, 28(5):1269–1278,
2009.

[2] J. Blinn and M. Newell. Clipping using homogeneous
coordinates. Comput. Graph., 12(3):245–251, Aug.
1978.

[3] H. Buseman and P. Kelly. Projective Geometry and
Projective Metrics. Academic Press, 1953.

[4] S. Ghali. Geometry-free geometric computing—towards
higher-order genericity through purely combinatorial
geometric algorithms. to appear.

[5] S. Ghali. Introduction to Geometric Computing.
Springer, 2008.

[6] S. Ghali. Sense and sidedness in the graphics pipeline
via a passage through a separable space. The Visual
Computer, 25(4):367–375, Apr. 2009.

[7] P. Heckbert. Generic convex polygon scan conversion
and clipping. In A. Glassner, editor, Graphics Gems I,
pages 84–86. Academic Press, 1990.

[8] M. Henle. Modern Geometries: Non-Euclidean, Projec-
tive, and Discrete. Prentice-Hall, 2nd edition, 2001.

[9] P. Henrici. Applied and Computational Complex Anal-
ysis. Wiley, 1974.

[10] Y. Liang and B. Barsky. An analysis and algorithm for
polygon clipping. CACM, 26(11):868–876, 1983.

[11] S. Mann, N. Litke, and T. DeRose. A coordinate free
geometry ADT. Technical Report CS-97-15, University
of Waterloo, July 1997.

[12] N. Myers. Traits: A new and useful template technique.
C++ Report, June 1995.

[13] J. Nievergelt, P. Schorn, M. de Lorenzi, C. Ammann,
and A. Brüngger. XYZ : Software for geometric com-
putation. Report 163, ETH, Zürich, July 1991.

[14] V. Skala. A new approach to line and line segment
clipping in homogeneous coordinates. The Visual Com-
puter, 21:905–914, 2005.

[15] J. Stolfi. Oriented Projective Geometry: A Framework
for Geometric Computations. Academic Press, 1991.

[16] K. Sugihara and M. Iri. A solid modelling system
free from topological inconsistency. J. Inform. Proc.,
12(4):380–393, 1989.

[17] I. Sutherland and G. Hodgman. Reentrant polygon clip-
ping. CACM, 17:32–42, 1974.

[18] W. Thibault and B. Naylor. Set operations on poly-
hedra using binary space partitioning trees. Comput.
Graph., 21(4):153–162, 1987.

23rd Canadian Conference on Computational Geometry, 2011

410

CCCG 2011, Toronto ON, August 10—12, 2011

Robustness of topology of digital images and point clouds

Peter Saveliev∗

Abstract

Such modern applications of topology as digital image
analysis and data analysis have to deal with noise and
other uncertainty. In this environment, the data struc-
tures often appear "filtered" into a sequence of cell com-
plexes. We introduce the homology group of the filtra-
tion as a generalization of the homology group of a single
cell complex. It is the group of all possible homology
classes of all elements of the filtration with a certain
equivalence relation. This relation equates the classes
that represent the same homology class of the original
data structure. The persistent homology group of the
filtration is obtained similarly with an equivalence re-
lation that equates the classes the differences of which
falls outside of user’s choice of the acceptable level of
noise.

1 Introduction

Since Poincaré, homology has been used as the main
descriptor of the topology of geometric objects. In the
classical context, however, all homology classes receive
equal attention. Meanwhile, applications of topology
in analysis of images and data have to deal with noise
and other uncertainty. This uncertainty appears usually
in the form of a real valued function defined on the
topological space. Persistence is a measure of robustness
of the homology classes of the lower level sets of this
function [6], [2], [4], [3].
Since it’s unknown beforehand what is or is not noise

in the dataset, we need to capture all homology classes
including those that may be deemed noise later. In this
paper we introduce an algebraic structure that contains,
without duplication, all these classes. Each of them
is associated with its persistence and can be removed
when the threshold for acceptable noise is set. The last
step can be carried out repeatedly in order to find the
best possible threshold. The construction follows the
approach to analysis of digital images presented in [8].

2 Backgound

The topological spaces subject to such analysis are cell
complexes. A cell complex is a combinatorial structure

∗Department of Mathematics, Marshall University, USA,
saveliev@marshall.edu

that describes how k-dimensional cells are attached to
each other along (k − 1)-dimensional cells. Cell com-
plexes come from the following two main sources.
First, a gray scale image is a real-valued function f

defined on a rectangle. Given a threshold r, the lower
level set f−1((−∞, r)) can be thought of as a binary
image. Each black pixel of this image is treated as a
square cell in the plane. These 2-dimensional cells have
to be combined with their edges (1-cells) and vertices
(0-cells) while in the n-dimensional case the image is
decomposed into a combination of 0-, 1-, ..., n-cubes.
This process is called thresholding. The result is a cell
complex K for each r, see [7].
Second, a point cloud is a finite set S in some Euclid-

ean space of dimension d. Given a threshold r, we deem
any two points that lie within r from each other as
"close". In this case, this pair of points is connected by
an edge. Further, if three points are "close", pairwise,
to each other, we add a face spanned by these points.
If there are four, we add a tetrahedron, and, finally,
any d + 1 "close" points create a d-cell. The process
is called the Vietoris-Rips construction. The result is a
cell complex K for each r [6].
Next, we would like to quantify the topology of the

cell complex K. It is done via the Betti numbers of K:
B0 is the number of connected components in K; B1
is the number of holes or tunnels (1 for letter O or the
donut; 2 for letter B and the torus); B2 is the number of
voids or cavities (1 for both the sphere and the torus),
etc.
The Betti numbers are computed via homology the-

ory [1]. One starts by considering the collection Ck(K)
of all formal linear combinations (over a ring R) of k-
cells in K, called k-chains. Combined they form a fi-
nitely generated abelian group called the chain com-
plex Ck(K), or collectively C∗(K). A k-chain can be
recorded as an Nk-vector, where Nk is the total num-
ber of k-cells in K. The boundary of a k-chain is the
chain comprised of all (k − 1)-faces of its cells taken
with appropriate signs. Then the boundary operator
∂ : Ck(K) → Ck−1(K), k = 0, 1, ..., acts on the chain
complex and is represented by a Nk ×Nk−1 matrix.
From the chain complex C∗(K), the homology group

is constructed by means of the standard algebraic tools.
To capture the topological features one concentrates on
cycles, i.e., chains with zero boundary, ∂A = 0. Fur-
ther, one can verify whether two given k-cycles A and
B are homologous: the difference between them is the

CCCG 2011, Toronto ON, August 10–12, 2011

411

23d Canadian Conference on Computational Geometry, 2011

boundary of a (k + 1)-chain T : A − B = ∂T (such as
two meridians of the torus). In this case, A and B be-
long to the same homology class H = [A] = [B]. The
totality of these equivalence classes in each dimension
k is called the k-th homology group Hk(K) of K, col-
lectively H∗(K). Then, Betti number Bk is the rank of
Hk(K).

3 Prior work and outline

The methods for computing homology groups are well
developed. In real-life applications however both digital
images and point clouds may be noisy and one needs to
evaluate the significance of their homology classes. The
approach to this problem has been the following. In-
stead of using a single threshold and studying a single
cell complex, one considers all thresholds and all possi-
ble cell complexes. Since increasing threshold r enlarges
the corresponding complex, we have a sequence of com-
plexes:

K1 /→ K2 /→ K3 /→ K4 /→ . . . /→ Ks,

where the arrows represent the inclusions: in,n+1 :
Kn /→ Kn+1. Let inm : Kn /→ Km, n ≤ m, also be
the inclusion. This structure {Kn, inm} is called a fil-
tration.
Now, each of these inclusions generates a homomor-

phism inm∗ : H∗(K
n) → H∗(K

m) called the homology
map induced by inm. As a result, we have a sequence of
homology groups connected by these homomorphisms:

H∗(K
1)→ H∗(K

2)→ . . . → H∗(K
s) −→ 0.

These homomorphisms record how the homology
changes as the complex grows at each step. For ex-
ample, a component appears, grows, and then merges
with another one, or a hole is formed, shrinks, and then
is filled. We refer to these events as birth and death of
the corresponding homology class.
In order to evaluate the robustness of an element of

one of these groups the persistence of a homology class is
defined as the number of steps in the homology sequence
it takes for the class to end at 0. In other words,

persistence = death date - birth date.

The p-persistent homology group of Ki is defined as the
image of ii,i+p∗ . It is what’s left fromH∗(K

i) after p steps
in the filtration. Now the robustness of the homology
classes of the filtration is evaluated in terms of the set of
intervals [birth, death] representing the life-spans, called
barcodes, of the homology classes [5].
Our approach is similar but more algebraic. It con-

sists of two steps.
First stage: we pool all possible homology classes in

all elements of the filtration together in a single alge-
braic structure (Sections 4 and 5). The presence of noise

at this point is ignored. The homology groupH∗({Kn})
of filtration {Kn} captures all homology classes in the
whole filtration — without double counting. The latter
is achieved by an equivalence relation that equates the
classes that, in a sense, represent the same homology
class in the filtration: y = in,n+1∗ (x).
Second stage: for a given positive integer p, the p-

noise group Np
∗ ({Kn}) is comprised of the homology

classes in H∗({Kn}) with the persistence less than p.
Next, we "remove" the noise from the homology group
of filtration by using the quotient (Sections 6 and 7):

Hp
∗ ({Kn}) = H∗({Kn})/Np

∗ ({Kn}).

In other words: if the difference between two homology
classes is deemed noise, they are equivalent. This is
the persistent homology group of filtration. The second
stage can be repeated as needed.
The (persistent) homology group of filtration is a

graded group and is intended to stand for the homol-
ogy group of the data set that is behind the fil-
tration.
The main contribution of the present paper is an alge-

braic treatment of persistence that is alternative to the
persistence module [3]. In the case of image analysis,
the homology group of the image, unlike the barcodes,
captures only the topology independent from the gray
levels. This is why one might say that our approach
provides a coarser classification of the homology of fil-
trations.
We also discuss the computational aspects of this ap-

proach (Section 8) and multiparameter filtrations (Sec-
tion 9).

4 Motivation: the homology of a gray scale image

In this section we will try to understand the meaning of
the homology of the gray scale image in Figure 1. For
simplicity we assume that there are only 2 levels of gray
in addition to black and white. A visual inspection of
the image suggests that it has three connected compo-
nents each with a hole. Therefore, its 0- and 1-homology
groups should have three generators each. We now de-
velop an algebraic procedure to arrive at this result.

Figure 1: A gray scale image and the corresponding
filtration

First the image is "thresholded". The lower level sets
of the gray scale function of the image form a filtration:

23rd Canadian Conference on Computational Geometry, 2011

412

CCCG 2011, Toronto ON, August 10—12, 2011

a sequence of three binary images, i.e., cell complexes:
K1 /→ K2 /→ K3, where the arrows represent the inclu-
sions. Suppose Ai, Bi, Ci are the homology classes that
represent the components of Ki and ai, bi, ci are the
holes, clockwise starting at the upper left corner. The
homology groups of these images also form sequences —
one for each dimension 0 and 1.
Suppose F1, F2 are the two homology maps, i.e., ho-

momorphisms of the homology groups generated by the
inclusions of the complexes, with F3 = 0 included for
convenience. These homomorphisms act on the genera-
tors, as follows:

A1 → A2 → A3 → 0, B1 → B2 → B3 → 0,

C2 → C3 → 0, a1 → a2 → a3 → 0,

b1 → 0, c3 → 0.

To avoid double counting, we want to count only the ho-
mology classes that don’t reappear in the next homology
group. As it turns out, a more algebraically convenient
way to accomplish this is to count only the homology
classes that go to 0 under these homomorphisms. These
classes form the kernels of F1, F2, F3. Now, we choose
the homology group of the original, gray scale image to
be the direct sum of these kernels:

H0({Ki}) =< A3, B3, C3 >, H1({Ki}) =< b1, a3, c3 > .

Thus the image has three components and three holes,
as expected.

5 Homology groups of filtrations

In the following sections we provide formal definitions.
All cell complexes are finite.
Suppose we have a one-parameter filtration:

K1 /→ K2 /→ K3 /→ . . . /→ Ks.

HereK1,K2, . . . ,Ks are cell complexes, the arrows rep-
resent the inclusions in,n+1 : Kn /→ Kn+1, and so do
inm : Kn /→ Km, n ≤ m. We will denote the filtra-
tion by {Kn, inm : n,m = 1, 2, ..., s, n ≤ m}, or simply
{Kn}. Next, homology generates a "direct system" of
groups and homomorphisms:

H∗(K
1)→ H∗(K

2)→ . . . → H∗(K
s) −→ 0.

We denote this direct system by {H∗(Kn), inm∗ : n,m =
1, 2, ..., s, n ≤ m}, or simply {H∗(Kn)}. The zero is
added in the end for convenience.
Our goal is to define a single structure that captures

all homology classes in the whole filtration without dou-
ble counting. The rationale is that if x ∈ H∗(K

n), y ∈
H∗(K

m), y = inm∗ (x), and there is no other x satisfy-
ing this condition, then x and y may be thought of as

representing the same homology class of the geometric
object behind the filtration.
The homology group of filtration {Kn} is defined as

the product of the kernels of the inclusions:

H∗({Kn}) = ker i1,2∗ ⊕ ker i2,3∗ ⊕ . . .⊕ ker is,s+1∗ .

Here, from each group we take only the elements that
are about to die. Since each dies only once, there is
no double-counting. Since the sequence ends with 0,
we know that everyone will die eventually. Hence every
homology class appears once and only once.
These are a few simple facts about this group.

Proposition 1 If in,n+1∗ is an isomorphism for each
n = 1, 2, ..., s− 1, then H∗({Kn}) = H∗(K

1) .

Proposition 2 If in,n+1∗ is a monomorphism for each
n = 1, 2, ..., s− 1, then H∗({Kn}) = H∗(K

s).

Proposition 3 Suppose {Kn, inm, n,m = 1, 2, ..., s}
and {Ln, jnm, n,m = 1, 2, ..., s} are filtrations. Then
H∗({Kn t Ln}) = H∗({Kn})⊕H∗({Ln}).

Proposition 4 Suppose {Kn, inm, n,m = 1, 2, ..., s}
and {Ln, jnm, n,m = 1, 2, ..., s} are filtrations and f :
Ks → Ls is a cell map. Then the homology map of the
homology groups of these filtrations f∗ : H∗({Kn}) →
H∗({Ln}) is well defined as

f∗(x1, x2, ..., xs) = (f
1
∗ (x1), f

2
∗ (x2), ..., f

s
∗ (xs)),

where fn is the restriction of f to Kn.

The stability of the homology group of a filtration fol-
lows from the stability of its persistence diagram, i.e.,
the set of points {(birth, death)} ⊂ R2 for the gen-
erators of the homology groups of the filtration, plus
the diagonal. It is proven in [5] that dB(D(f),D(g)) ≤
||f − g||∞, where dB is the "bottle-neck distance" be-
tween the persistence diagrams D(f),D(g) of two fil-
trations generated by tame functions f, g. Function
F (x, y) = y − x creates an analogue bottle-neck dis-
tance for the set of points {persistence} ⊂ R and its
stability follows from the continuity of F .

6 Motivation: the high contrast homology of a gray
scale image

To justify our approach to persistence, we observe that
some of the features in the gray scale image in Figure
1 are more prominent than others. Specifically, some of
the features have lower contrast. These are the holes
in the second and the third rings as well as the third
ring itself. By contrast of a lower level set of the gray
level function we understand the difference between the
highest gray level adjacent to the set and the lowest gray
level within the set.

CCCG 2011, Toronto ON, August 10–12, 2011

413

23d Canadian Conference on Computational Geometry, 2011

An easy computation shows that the homology gen-
erators with persistence of 3 or higher among the gen-
erators are: A1, B1, a1. However, the set of the classes
of high persistence isn’t a subgroup of the homology
group of the respective complex. Instead, we look at
the classes with low persistence, i.e., classes that rep-
resent the noise. In particular, the classes in H∗(K

1)
of persistence 2 or lower form the kernel of F2F1. We
now "remove" this noise from the homology groups of
the filtration by considering their quotients over these
kernels. In particular, the 3-persistent homology groups
of the image are:

H3
0 ({Ki}) =< A1, B1 > /0 =< A1, B1 >,

H3
1 ({Ki}) =< a1, b1 > / < b1 >=< a1 > .

It is important that the output is identical to the ho-
mology of a single complex, i.e., a binary image, with
two components and one hole. The way persistence is
defined ensures that we can never remove a component
as noise but keep a hole in it.
This approach to image analysis was tested with real-

life images in [8].
Observe now that the holes in the second and third

rings have the same persistence (contrast) and, there-
fore, occupy the same position in the homology group
regardless of their birth dates (gray level). Second, if we
shrunk one of these rings, its persistence and, therefore,
its place in the homology group wouldn’t change. These
observations confirm the fact that the homology group
of the gray scale image, unlike the barcodes, captures
only its topology.
In the case of a Vietoris-Rips complex, not only the

barcode, the interval [birth, death], but also the per-
sistence, the number death - birth, of a homology class
contains information about the size of representatives of
these classes. For example, a set of points arranged in
a circle will produce a 1-cycle with twice as large birth,
death, and persistence than the same set shrunk by a
factor of 2. However, persistence defined as death/birth
will have the desired property of scale independence.
The same result can be achieved by an appropriate re-
parametrizing of the filtration.

7 Persistent homology groups of filtrations

In the general context of filtrations the measure of im-
portance of a homology class is its persistence which
is the length of its lifespan within the direct system of
homology of the filtration.
Given filtration {Kn}, we say that the persistence

P (x) of x ∈ H∗(K
n) is equal to p if in,n+p∗ (x) = 0

and in,n+p−1∗ (x) 6= 0. Our interest is in the "robust"
homology classes, i.e., the ones with high persistence.
However, the collection of these classes is not a group
as it doesn’t even contain 0. So we deal with "noise"

first. Given a positive integer p, the p-noise (homology)
group Np

∗ (Kn) of {Kn} is the group of all elements of
Kn with persistence less than p.

Alternatively, we can define these groups via kernels
of the homomorphisms of the inclusions: Np

∗ (Kn) =
ker in,n+p∗ .

Proposition 5 Np+1
∗ (Kn) ⊂ Np

∗ (Kn).

Next, we "remove" the noise from the homology
group. The p-persistent (homology) group of Kn with
respect to the filtration {Kn} is defined as

Hp
∗ (K

n) = H∗(K
n)/Np

∗ (K
n).

The point of this definition is that, given a threshold for
noise, if the difference between two homology classes is
noise, they should be equivalent.
Next, just as in the case of noise-less analysis, we

define a single structure to capture all (robust) ho-
mology classes. Let p be a positive integer. Suppose
x ∈ ker ik,k+p∗ and let y = ik,k+1∗ (x). Then

ik+1,k+1+p∗ (y) = ik+1,k+1+p∗ (ik,k+1∗ (x))

= ik,k+1+p∗ (x) = ik+p,k+p+1∗ (ik,k+p∗ (x))

= ik+p,k+p+1∗ (0) = 0.

Hence y ∈ ker ik+1,k+1+p∗ . We have proved that

ik,k+1∗ (ker ik,k+p∗) ⊂ ker ik+1,k+1+p∗ .

It follows that the homomorphism ik,k+1∗ : ker ik,k+p∗ →
ker ik+1,k+1+p∗ generated by the inclusion is well-defined.
Next, we use these homomorphisms to define the p-

noise (homology) group Np
∗ ({Kn}) of filtration {Kn}

as

Np
∗ ({Kn}) = ker i1,2∗ ⊕ . . .⊕ ker is,s+1∗ .

Observe that the formula is the same as the one in
the definition of Hp

∗ ({Kn}). Since ik,k+1∗ : ker ik,k+p∗ →
ker ik+1,k+1+p∗ is a restriction of ik,k+1∗ : Hp

∗ (Kk) →
Hp
∗ (Kk+1), each term in the above definition is a sub-

group of the corresponding term in the definition of
H∗({Kn}). The proposition below follows.

Proposition 6 Np
∗ ({Kn}) ⊂ H∗({Kn}).

Finally, the p-persistent (homology) group of filtration
{Kn} is

Hp
∗ ({Kn}) = H∗({Kn})/Np

∗ ({Kn}).

The results about Hp
∗ ({Kn}) analogous to the ones

about H∗({Kn}) in Section 5 hold.

23rd Canadian Conference on Computational Geometry, 2011

414

CCCG 2011, Toronto ON, August 10—12, 2011

8 Computational aspects

For 2-dimensional gray scale images, this approach to
homology and persistence has been used in an image
analysis program. The algorithm described in [8] has
complexity of O(n2), where n is the number of pixels in
the image, in the worst case. As a result, the processing
time for images of common sizes is several seconds on a
typical PC.
For the general case, the analysis algorithm may be

outlined as follows:

1. The input is a filtration.

2. The homology groups of its members and the ho-
momorphisms induced by inclusions are computed.

3. The homology group of the filtration is computed.

4. The persistence of all elements of the homology
groups is computed.

5. The user sets a threshold p for persistence and the
p-noise group of the filtration is computed.

6. The p-persistent homology group of the filtration is
computed and given as output.

If the user changes the threshold, the last two steps
are repeated as necessary without repeating the rest.
The algorithm above computes the homology group of

filtration, as defined, incrementally. This may be both
a disadvantage and an advantage. In comparison, the
persistence complex [3] also contains information about
all homology classes of the filtration but its computa-
tion does not require computing the homology of each
complex of the filtration. Meanwhile, the above algo-
rithm may have to compute the same homology over
and over if consecutive complexes are identical. Hence,
the algorithm has a disadvantage in terms of processing
time. On the other hand, the incremental nature of the
algorithm makes its use of memory independent from
the length of the filtration. Another advantage is that
multi-parameter filtrations are dealt with in the exact
same manner (see next section).
The inefficiency of the above algorithm can be ad-

dressed with a proper algebraic tool. This tool is the
mapping cone [9]. Suppose, for simplicity, that our fil-
tration has only two elements: i : K1 /→ K2. The map-
ping cone is, in a sense, a combination of the kernel and
the cokernel of i∗. It captures the difference between
K1 and K2 on the chain level: everything in C∗(K

1) is
killed unless it also appears in C∗(K

2) under i∗. Then
the algorithm is to construct the homology group from
the chain complexes C∗(K1), C∗(K

2) of the elements of
the filtration and the chain map i∗ : C∗(K1)→ C∗(K

2).

9 Multiparameter filtrations

Multiparameter filtrations come from the same main
sources as one-parameter filtrations. First, color images
are thresholded according to their three color channels.
Second, point clouds are thresholded by the closeness of
their points and, for example, the density of the points.
Let’s limit our attention to the two-parameter case.

A (finite) two-parameter filtration {Knm} is a table of
complexes connected by inclusions

i(n,m, n+ p,m+ q) : Knm → Kn+p,m+q, p, q ≥ 0,

These inclusions generate homomorphisms

i∗(n,m, n+ q,m+ p) : H∗(K
nm)→ H∗(K

n+q,m+p),

with 0s added in the end of each row and each column.
Define the homology group of the filtration {Knm} as

H∗({Knm})

=
M
nm

ker i∗(n,m, n+ 1,m) ∩ ker i∗(n,m,n,m+ 1).

The analogues of the results in Section 5 hold.
There are many ways to define persistence in the mul-

tiparameter setting. For example, we can evaluate the
robustness of a homology class x ∈ H∗(K

nm) in terms
of the pairs (p, q) of positive integers satisfying

i∗(n,m,n+ p,m)(x) = 0 and i∗(n,m, n,m+ q)(x) = 0.

Next, just as in Section 7, we restrict the homomor-
phisms generated by the inclusions to the homology
classes of low persistence:

i∗(n,m, n+ 1,m) :

ker i∗(n,m, n+ p,m)→ ker i∗(n+ 1,m, n+ 1 + p,m),

i∗(n,m, n,m+ 1) :

ker i∗(n,m, n,m+ q)→ ker i∗(n+ 1,m, n,m+ 1 + q).

Then the (p, q)-noise group of Knm is defined via these
homomorphisms:

Npq
∗ ({Knm})

=
M
nm

ker i∗(n,m, n+ 1,m) ∩ ker i∗(n,m,n,m+ 1).

Finally, the (p, q)-persistent (homology) group of filtra-
tion {Knm} is defined as

Hpq
∗ ({Kn}) = H∗({Knm})/Npq

∗ ({Knm}).

The results about Hpq
∗ ({Knm}) analogous to the ones

about Hp
∗ ({Kn}) in Section 7 hold.

CCCG 2011, Toronto ON, August 10–12, 2011

415

23d Canadian Conference on Computational Geometry, 2011

10 Summary and further research

The main contributions of the present paper are the
following.

• Homology group of filtration is defined to serve as
a substitute for the homology group of the dataset
that produced the filtration.

• This group is an algebraic treatment of persistence
alternative to the persistence module. It is ar-
guably easier to compute as it is simply the sum
of kernels.

• The algorithm has been tested with real-life images
and proven practical in terms of both output and
processing time.

• For analysis of point clouds, the approach provides
the output that is scale independent.

• For image analysis, the approach provides the out-
put that is both scale independent and gray-level
independent.

• Unlike the persistence module, our approach yields
a natural generalization to multiparameter filtra-
tions.

The following issues will be addressed in a forthcom-
ing paper:

• the stability of the homology group of filtration;

• the functoriality properties of the homology group
of filtration;

• the relation between the homology group of filtra-
tion and the persistence complex;

• the mapping cone construction for the homology
group of filtration;

• the homology group of multiparameter and poset
filtrations.

I thank the reviewers for their comments that helped
improve this paper.

References

[1] G. Bredon, Topology and Geometry, Springer Verlag,
1993.

[2] G. Carlsson, Topology and data, Bulletin of the Amer.
Math. Soc., Vol. 46, No. 2, pp. 255-308, 2010.

[3] G. Carlsson and A. Zomorodian, Computing persistent
homology. Discrete and Computational Geometry, 2005,
20th ACM Symposium on Computational Geometry,
Brooklyn, NY, 2004.

[4] G. Carlsson and A. Zomorodian, The theory of multidi-
mensional persistence. 23rd ACM Symposium on Com-
putational Geometry, Gyeongju, South Korea, 2007. Dis-
crete and Computational Geometry, 2009.

[5] D. Cohen-Steiner, H. Edelsbrunner, J. Harer, Stabil-
ity of persistence diagrams, Discrete and Computational
Geometry, vol. 37, no. 1, pp. 103-120 (2007).

[6] H. Edelsbrunner, D. Letscher, and A. Zomorodian,
Topological persistence and simplification. Discrete
Comput. Geom. 28 (2002), pp. 511-533.

[7] T. Kaczynski, K. Mischaikow, and M. Mrozek, Compu-
tational Homology, Appl. Math. Sci. Vol. 157, Springer
Verlag, NY, 2004.

[8] P. Saveliev, A graph, non-tree representation of the
topology of a gray scale image, Image Processing, Al-
gorithms and Systems IX, 2011, Volume 7870, O1-O19.

[9] C. A. Weibel, An Introduction to Homological Algebra,
Cambridge University Press, 1994.

23rd Canadian Conference on Computational Geometry, 2011

416

CCCG 2011, Toronto ON, August 10–12, 2011

Planar Pixelations and Shape Reconstruction

Brandon Rowekamp∗

Abstract

Given a PL (piecewise linear) set S in the plane R2 we
consider the set Pε(S) consisting of all pixels of size ε
that touch S. This pixelation Pε(S) resembles the orig-
inal set, but may not well approximate various impor-
tant invariants of the original set such as Betti numbers,
perimeter, curvature measures. We describe an algo-
rithm that associates to the pixelation Pε(S) a PL-set
Pε(S) which approximates S in a very strong sense.

1 Introduction

The ε-pixelation of the Euclidean plane is the decom-
position determined by the lines

x ∈ εZ and y ∈ εZ.

An ε-pixel is a square of the form

[ε(i− 1), εi]× [ε(j − 1), εj], i, j ∈ Z

with center located at

C[i, j] :=
(2i− 1

2
ε,

2j − 1

2
ε
)

(1.1)

For any compact subset of the plane we define its ε-
pixelation to be the union of all the ε-pixels that touch
S. We denote it by Pε(S).

Figure 1: A pixelation of an angle

∗Department of Mathematics, University of Notre Dame,
browekam@nd.edu

Roughly speaking, the main goal of this paper is to
algorithmically associate to Pε(S) a planar PL-region
Pε(S) that approximates S very well as ε ↘ 0. More
specifically, we would like to recover in the limit basic
geometric and topological invariants of S such as, area,
perimeter, curvature (measures) and Betti numbers.

While Pε(S) converges to S in the Hausdorff distance,
this notion of convergence fails to recover even the most
stable of invariants. For example lengths from the pixe-
lation may not converge to the corresponding lengths in
the original set. Additionally, topological information
such as the Betti numbers may be lost at all resolutions
ε.

For example, in Figure 1 we have depicted a pixela-
tion of the angle A formed by two segments of slopes 2

3
and 1 that have a common endpoint at the origin. The
homotopy type of this pixelation is independent of the
size of the pixel, and as seen in Figure 1, b1

(
Pε(A)

)
= 2,

∀ε > 0. The situation with geometric invariants such as
perimeter or curvature is much worse (even in the case of
a line the total curvature will explode while the perime-
ter will not converge to the correct length). Therefore
the pixelation itself is not a reasonable approximation
of the original shape. The goal of this paper is to gen-
erate algorithmically a better approximation using only
information from the pixelation.

2 Basic Results

Proofs for all claims in this section are omitted due to
lack of space. They are publicly available on the au-
thor’s website1.

Given the ε-pixelations of a PL subset of the plane,
we would like to construct a sequence of PL approxi-
mations of the original set which converge in a strong
sense to the original set. We delay a precise definition of
the notion “strong convergence” until the main result.
For now it suffices to say that we seek an approximation
which recovers the homotopy type of the original set, as
well as geometric invariants such as the perimeter, area
and the curvature measures of the boundary.

As we have seen in the introduction, the pixelation
itself will not recover these invariants. A better approx-
imation is described explicitly in the Algorithm section
given that the original set is PL2. The remainder of

1http://www.nd.edu/~browekam
2We are currently working to extend this technique to semi-

CCCG 2011, Toronto ON, August 10–12, 2011

417

23rd Canadian Conference on Computational Geometry, 2011

this section describes results about pixelations which
motivated the approximation which is described later.

Throughout this discussion we will use the concepts
of column and stack. The column of a pixelation at
the x-value x0 is simply the union of pixels from Pε(S)
which intersect the line {x = x0}. A stack is a connected
component of a column (that is to say, a series of pixels
“stacked” on top of each other with no gaps).

An elementary set is a region of the following form:

{(x, y) ∈ R2 : x ∈ [a, b], β(x) ≤ y ≤ τ(x)}.

where β and τ are continuous piecewise C2 functions
defined on [a, b] with the property that β(x) ≤ τ(x) for
all x ∈ [a, b].

Proposition 1 If S is an elementary set, then it is
contractible and Pε(S) is also contractible for every res-
olution ε.

Therefore, the pixelation of an elementary set has the
same homotopy type as the elementary set itself. We
will approximate elementary sets by connecting points
along the tops and bottoms of the stacks that make up
their pixelations. To ensure convergence of perimeter
and total curvature we will connect points from about
every σ-th column, where σ is a number determined by
ε (this number is explicitly shown in the algorithm). If σ
satisfies certain constraints (see (3.1)), then this method
of approximation will recover the desired invariants.

Figure 2: This approximation of an elementary set is
the region outlined by the black line.

As suggested by Figure 1, for non elementary sets
there is no guarantee of convergence in homotopy type.
Therefore for the approximation of a general piecewise
linear set we must determine which cycles in the pixe-
lation come from the original shape, and which cycles
are artifacts of the pixelation process. Intuitively these

algebraic subsets of the plane.

fake cycles must be located very close to columns that
undergo a change in the number of their stacks (since
fake cycles will have small area). We define the function
nε : R \ εZ→ Z≥0, where

nε(x0) = # of stacks of Pε(S) in the column at x0.

A point x0 ∈ R \ εZ is called a jumping point of nε if

nε(x0 + ε) 6= nε(x0).

A column over a jumping point is called a jumping
column. From investigating examples of pixelations,
we expect topological noise to occur “near” jumping
points. The following theorem gives a precise sense of
how “near” topological noise must be to jumping points.

Proposition 2 If S is a generic piecewise linear set,
i.e., no two of its vertices lie on the same vertical line.
Then the following hold.

1. There is an integer k = kS depending only on S
such that any fake cycles of Pε(S) is within at most
k-columns from a jumping column.

2. The function S 3 (x, y)
h7→ x ∈ R is a strati-

fied Morse function in the sense of [7] and for any
jumping point x0 of nε there exists a critical value
xh0 of h such that |x0 − xh0 | < kε.

In practical terms this proposition states that the
fake cycles only occur in narrow vertical strips of the
plane containing the jumping points of nε. Moreover
the jumping points of nε cannot be too far from the
critical values of the function h. Thus we can assume
that any cycle which occurs close to a jumping column
is fake and so our approximation should fill it in (the
meaning of “close” here will be explicitly shown in the
algorithm). We can fill these fake cycles somewhat care-
lessly, since they take up a very small area of the plane
for small resolutions. We call the columns which can
contain fake cycles “noise” and cover each connected
component of Pε(S) within in these columns by rectan-
gles.

So far we have a way to approximate two situations.
The first is for elementary regions, and the second is for
noise columns that accumulate near the critical values
of h. Away from the critical values of h the set S is a
disjoint union of elementary sets. Therefore these two
approximation techniques suffice to approximate the en-
tire set.

The next section gives an explicit algorithm for gener-
ating an approximation of a PL set from its pixelations.

3 The algorithm

The input for this algorithm is a pixelation. We encode
a pixelation by an m × m matrix A with 0, 1 entries,

23rd Canadian Conference on Computational Geometry, 2011

418

CCCG 2011, Toronto ON, August 10–12, 2011

Figure 3: An example of approximating in noise
columns (near jumping points of nε).

where aij = 1 if and only if the pixel with center C[i, j]
belongs to our pixelation. We think of the parameter m
as defining a m ×m subdivision of a computer screen,
consisting of squares of size ε := 1

m . Define

σ(ε) = bmρc,

where ρ is a fixed rational number ρ ∈ (1
2 , 1). Note that

lim
ε↘0

ε(σ(ε))2 =∞, lim
ε↘0

εσ(ε) = 0. (3.1)

We denote by P (A) the pixelation determined by the
matrix A. The output of the algorithm will be a PL set
Pε(A) that decomposes in a canonical fashion as a finite
union of trapezoids with vertical bases. We will refer to
such regions as polytrapezoids. We allow for degenerate
trapezoids, such as points, segments, or triangles.

The algorithm uses several basic subroutines. The
first one is the the subroutine stack. Its input is a list

C = C1, . . . , Cm, Ci = 0, 1,

which encodes a column of the pixelation P (A). The
output of stack is a list of nonnegative integers

n(C); b1 ≤ t1 < b2 ≤ t2 < · · · < bn(C) ≤ tn(C),

where n(C) is the number of stacks in the column en-
coded by C, and the location of the bottom and top
pixel in the j-th stack is determined by the integers
bj , tj . More formally

Ck = 1⇐⇒ ∃1 ≤ j ≤ n(C) : bj ≤ k ≤ tj .

If C = Ci, the i-th column of P (A), i.e.,

Ci = ai,1, . . . , ai,m

then we will denote the output stack(Ci) by

ni, bi,1 ≤ ti,1 < · · · < bi,ni
≤ ti,ni

.

A number 1 ≤ i ≤ m− 1 is called a jump point if

ni 6= ni+1.

The next subroutine that we need is called jump. Its in-
put is an integer k ∈ [1,m) and the output is an integer
jk = jump(k) defined as follows. If

{
i ∈ [k,m) ∩ Z; i is a jump point

}
= ∅,

then we set
jump(k) := m+ 1.

Otherwise

jump(k) = min
{
i ∈ [k,m) ∩ Z; i is a jump point

}
.

The noise region is determined by a finite collection of
intervals

[`1, r1], . . . , [`α, rα] ⊂ [1,m]

where the integers `k, rk are determined inductively as
follows.

`1 = max
(
jump(1)− 2σ(ε), 1

)
,

r1 = min
(
m, jump(1) + 2σ(ε)

)
.

Suppose that `1, r1, . . . , `j , rj are determined. If
jump(rj) > m we stop. Otherwise we set

`j+1 = max
(
jump(rj)− 2σ(ε), 1

)
,

rj+1 = min
(
m, jump(rj) + 2σ(ε)

)
.

The intervals [`1, r1], . . . , [`α, rα] may not be disjoint,
but their union is a disjoint union of intervals

[a1, b1], . . . , [aJ , bJ], bi < ai+1.

The intervals [aj , bj], 1 ≤ j ≤ J are the noise intervals.
The intervals

[1, a1], [b1, a2], . . . , [bJ−1, aJ], [bJ ,m]

are the regular intervals.
The heart of the algorithm consists of two procedures,

one for dealing with the noise intervals and the other for
dealing with the regular intervals. These procedures will
return a number of polytrapezoids,

First some notation. Given a collection of points

B0, T0, . . . , BN , TN ∈ R2

such that

x(Bi) = x(Ti), y(Bi) ≤ y(Ti), ∀i = 0, . . . , N,

x(Bj−1) < x(Bj), ∀1 ≤ j ≤ N,
we denote by polygon(B0, T0, . . . , BN , TN) the region
surrounded by the simple closed PL-curve obtained as
the union of line segments

[B0, B1], . . . , [BN−1, BN],

CCCG 2011, Toronto ON, August 10–12, 2011

419

23rd Canadian Conference on Computational Geometry, 2011

[BN , TN], . . . , [T1, T0], [T0, B0].

Note that each of the quadrilaterals Bi−1, Bi, Ti, Ti−1 is
a (possibly degenerate) trapezoid with vertical bases.

Consider first the regular intervals. Given a regular
interval I := [p, q] we observe that the number of stacks
ni is independent of i ∈ [p, q]. We denote this shared
number by n = n(I).

We construct inductively a sequence of numbers i0 <
· · · < iN as follows:

• We set i0 = p.

• If q − p < 2σ(ε) we set N = 1 and i1 = q.

• If i0, . . . , ik are already constructed, then, if q −
ik < 2σ(ε) we set N = k + 1 and ik+1 = q, else
ik+1 = ik + σ(ε).

Note that if q− p > σ(ε), then N ≥ 1, i0 = p, iN = q
and

N = 1 if q − p < σ(ε).

We have

stack(Cik) = n, bik,1, tik,1, . . . , bik,n, tik,n.

For j = 1, . . . ,n, and k = 0, . . . , N we denote by Bk,j
the center of the ε-pixel corresponding to the element
entry bik,j in the column Cik . Similarly we denote by
Tk,j the center of the pixel corresponding to the entry
tik,j of the column Cik . For 1 ≤ j ≤ n(I), we set

Pj(I) := polygon(B0,j , T0,j , . . . , BN,j , TN,j).

Define

P(I) =

n(I)⋃

j=1

Pj(I), Preg :=
⋃

I regular interval

P (I).

Suppose now that I = [p, q] is a noise interval. We
modify the column

Cp = ap,1, . . . , ap,m

to a column
C ′p = a′p,1, . . . , a

′
p,m,

by setting

a′p,k :=

1, if
∑q
i=p ai,k > 0

0, if
∑q
i=p ai,k > 0.

We apply the subroutine stack to the new column C ′pand
the output is

stack(C ′p) = n(I), b1 ≤ t1 < · · · < bn ≤ tn.

For j = 1, . . . ,n(I) we set

B0,j := C[p, bj], T0,j := C[p, tj],

B1,j := C[q, bj], T0,j := C[q, tj],

where C[i, j] is defined by (1.1). Next, for j =
1, . . . ,n(I) we define the rectangle

Rj(I) := polygon(B0,j , T0,j , B1,j , T1,j),

and we set

R(I) =

n(I)⋃

j=1

Rj(I), Pnoise :=
⋃

I noise interval

R(I).

The output of the algorithm is the polytrapezoid

Pε(A) := Pregular ∪ Pnoise.

4 The main result

We wish to prove that the above algorithm produces an
approximation of the original set which preserves the
Euler characteristic, perimeter of the boundary, total
curvature of the boundary and other important invari-
ants. One way to precisely state this is to use the con-
cept of normal cycle of a (subanalytic) set. The defini-
tion of a normal cycle uses basic concepts of geometric
measure theory (for an introduction to the subject see
[4, 8]).

Recall that a 1-current on a smooth manifold is an
element of the dual space of compactly supported dif-
ferential 1-forms. Thus, a current is an object T which
associates a number T (ω) to a compactly supported 1-
form ω. The number T (ω) can be thought of as the in-
tegral of ω over the current ω. For example an oriented
smooth arc is a 1-current which acts through integra-
tion. The mass of a current T is the quantity

sup
{
T (ω) : ω is a 1-form, sup

x
||ωx|| ≤ 1

}
,

where ‖ − ‖ denotes the Euclidean norm on the dual
of R2. The mass of a 1-current defined by an oriented
compact arc is equal to its length.

The normal cycle of of a planar PL set S is 1-current
NS living on the unit tangent sphere bundle of R2. It
consists of a finite collection of compact, oriented real
analytic arcs with multiplicities such that the result-
ing singular chain is a cycle. Each of these arcs is a
Legendrian curve with respect to the canonical contact
structure on the unit tangent sphere bundle. This cycle
is uniquely characterized by the Morse theoretic prop-
erties of the restrictions to S of the linear functions on
R2. Roughly speaking, the normal cycle is obtained as
follows.

Denote by Tε(S) the tube of radius ε around S,

Tε(S) :=
{
p ∈ R2; dist (p, S) ≤ ε)

}
.

This is a domain in the plane and its normal cycle is the
current NTε(S) defined the graph of the Gauss map of

23rd Canadian Conference on Computational Geometry, 2011

420

CCCG 2011, Toronto ON, August 10–12, 2011

the boundary. If we canonically identify the unit sphere
bundle with the Cartesian product S1 × R2, then the
graph of the Gauss map can be identified with the col-
lection of points (ν(p), p) ∈ S1 × R2, where p ∈ ∂Tε(S)
and ν(p) is the outer unit normal vector to ∂Tε(S) at p.
Then

NS = lim
ε↘0

NTε(S).

For a precise definition of the normal cycle we refer to
[1, 2, 6, 9, 10]. In particular, [9] gives a beautiful de-
scription of the normal cycle, together with specific ex-
amples of normal cycles and how to retrieve geometric
information from them.

In this setting, we can show the following theorem:

Theorem 3 Suppose S is a generic PL subset of R2,
i.e., no two vertices lie on the same vertical line. Fix a
function σ : R+ → Z+ satisfying (3.1).

Let Pε(S) be the PL approximation of S constructed
via the Algorithm described above. Then the normal cy-
cle NPε(S) of Pε(S) converges weakly to the normal cy-
cle NS of S as ε→ 0.

Proof: Due to lack of space we will omit most of the
details. The complete proof is publicly available on the
author’s website3. We confine ourselves to outlining the
most salient features of the proof.

The theorem is largely a consequence of the approxi-
mation theorem for normal cycles proved by Joseph Fu
in [5]. This theorem implies the following result.

Proposition 4 Suppose S is a PL subset of the plane
and for each ε ∈ (0, 1) Lε(S) is a PL set such that the
following hold

1. There is a compact subset K of the plane such that
Lε(S) ⊂ K for all ε ∈ (0, 1).

2. There is a M > 0 such that

mass (NLε(S)) < M, ∀ε ∈ (0, 1).

3. For almost every half plane H,

lim
ε↘0

χ(H ∩ Lε(S)) = χ(H ∩ S),

where χ denotes the Euler characteristic.

Then the normal cycles NLε(S) converge weakly to the
normal cycle NS.

The bulk of the proof consists of verifying all the con-
ditions in the above theorem for Pε(S). Note that the
first condition follows immediately from the construc-
tion of Pε(S).

The second condition is a bit more difficult. If X
is a PL set, then the mass of its normal cycle can be

3http://www.nd.edu/~browekam

expressed in terms of its perimeter and its total curva-
ture; see [9]. The conditions (3.1) allow us to produce
upper bounds on the perimeter and the total curvature
of Pε(S) that are independent of ε. Condition 2 follows
immediately from these upper bounds.

The third condition is the most challenging. To verify
it we associate to each approximation Pε(S) a graph Γε,
and a key observation is the fact that for ε sufficiently
small the graph Γε is isomorphic to the Reeb graph, [3,
VI.4], of the map h : S → R defined by the projection
onto the x-axis. As a matter of fact, our entire algorithm
can be viewed as a discretization of the Morse theory of
the above map. ut

5 Conclusion

Weak convergence in normal cycles implies the conver-
gence of Euler characteristic, perimeter, curvature. This
implies that the approximation Pε(S) created by our al-
gorithm converges in a very strong way to the original
set, recovering information that the pixelation destroys.

A simple example of the approximation algorithm ap-
plied to the case of two intersecting line segments is
shown in the Figure 4. Note the rectangle around the
point of intersection indicating a noise region.

Figure 4: An example of Lε(S) where S is the union of
two intersecting lines.

We note that the current approximation technique
only applies to piecewise linear sets. This is because
the construction relied on Proposition 2, which is only
true for PL sets. In more general cases, such as semi-
algebraic sets, fake cycles can stray further away from
the singular points of S. (Think of the pixelation of a
cusp.) Therefore more of the approximation will need

CCCG 2011, Toronto ON, August 10–12, 2011

421

23rd Canadian Conference on Computational Geometry, 2011

to be devoted to noise intervals in this case. We can
show4 that with a cleverer choice of σ, the general ap-
proximation method still works for semi-algebraic sets.

References

[1] A. Bernig: The normal cycle of compact definable sets,
Israel J. Math., 159(2007), 373-411.

[2] J. Cheeger, W. Müller, R. Schrader: Kinematic and
tube formulas for piecewise linear spaces, Indian Univ.
Math. J., 35(1986), 737-754.

[3] H. Edelsbrunner, J. Harer: Computational Topology.
An Introduction, Amer. Math. Soc., 2010.

[4] H. Federer: Geometric Measure Theory, Springer Ver-
lag, 1969.

[5] J. Fu: Convergence of curvatures in secant approxima-
tions, J. Diff. Geom. 37(1993), 177-190.

[6] J. Fu: Curvature measures of subanalytic sets, Am. J.
Math. 116(1994), 819-890.

[7] M. Gorseky, R. MacPherson: Stratified Morse Theory,
Springer Verlag, 1988.

[8] F. Morgan: Geometric Measure Theory: A Beginner’s
Guide, Elsevier, 2009.

[9] J.M. Morvan: Generalized Curvatures, Springer Verlag,
2008.

[10] L.I. Nicolaescu: On the normal cycles of subanalytic
sets, Ann. Glob. Anal. Geom., 39(2011), 427-454.

4This is work in progress.

23rd Canadian Conference on Computational Geometry, 2011

422

CCCG 2011, Toronto ON, August 10–12, 2011

Counting Simple Polygonizations of Planar Point Sets

Emo Welzl ∗

Given a finite planar point set, we consider all possible spanning cycles whose straight line realizations are crossing-
free – such cycles are also called simple polygonizations – and we are interested in the number of such simple
polygonizations a set of N points can have. While the minumum number over all point configurations is easy to
obtain – this is 1 for points in convex position –, the maximum seems to be more involved. M. Newborn and
W.O.J. Moser were the first to ask the question around 1980 and they gave first evidence that this number has to be
significantly less than the overall number (N − 1)!/2 of all spanning cycles. In 2000 A. Garcia, M. Noy and J. Tejel
describe points sets that have as many as Ω(4.65N) simple polygonizations, no improvement on this end has been
reported since then. Despite of several improvements on the upper bound over the years, the currently best upper
bound of O(54.6N) (recent joint work with A. Sheffer and M. Sharir) leaves obviously a big gap to be closed.

We report on the history of the problem and show how it connects to counting triangulations and crossing-
free perfect matchings, and how Kasteleyn’s algebraic method for counting perfect matchings in planar graphs
enters the picture. Basicially nothing is known for related algorithmic questions (determining the number of simple
polygonizations for a given point set, enumerating all simple polygonizations).

∗ETH Zürich, Switzerland

CCCG 2011, Toronto ON, August 10–12, 2011

423

23rd Canadian Conference on Computational Geometry, 2011

424

CCCG 2011, Toronto ON, August 10–12, 2011

Algorithms for Bivariate Majority Depth

Dan Chen∗ Pat Morin∗

Abstract

The majority depth of a point with respect to a point
set is the number of major sides it is in. An algorithm
for majority depth in R2 is given in this paper, and it is
the first algorithm to compute the majority depth. This
algorithm runs in O((n+m) log n) time with Brodal and

Jacob’s data structure, and in O
(

(n+m) logn
log logn

)
time

in the word RAM model.

1 Introduction

A data depth is a measure of the centrality of a point
with respect to a given data cloud in Rd. Many depth
notions have been introduced, such as Tukey depth [21],
Oja depth [17], Simplicial depth [15], and majority
depth [18, 16]. For the introduction of these notions, one
can refer to the surveys by Small [19] and Aloupis [2]. In
this paper we give an algorithm for the majority depth.
Let S be a set of points in Rd. If the points in S are in
general position (no d+ 1 points of S lie on a common
hyperplane), any d points in S define a unique hyper-
plane }. With } as the common boundary, two closed
half-spaces are obtained. The one containing more than
or equal to n+d

2 points is called the major side of }. Note
that halving hyperplanes have two major sides. Given a
finite set S of n points and a point p in Rd, the majority
depth of p is the number of major sides it is in.

In this paper we consider the problem of computing
the majority depth of a point p with respect to a set S
of n points in R2. We assume that the points in S are in
general position. The tools for the algorithm are given
in Section 2 and Section 3, and the algorithm is given
in Section 4.

2 Dual Arrangement

Let H be a set of n hyperplanes in Rd. We say that H
is in general position, if every subset of d hyperplanes
intersect in one point, and no d + 1 hyperplanes inter-
sect in one point. We say a hyperplane is vertical if it
contains a line parallel to the xd-axis. Without loss of
generality, we assume that no hyperplane in H is ver-
tical. The arrangement A(H) of H is the partitioning

∗School of Computer Science, Carleton University, Ot-
tawa, Ontario K1S 5B6, Canada, dchen4@connect.carleton.ca,
morin@scs.carleton.ca.

of Rd induced by H into vertices (intersections of any d
hyperplanes in H), faces (each flat in A(H) is divided
into pieces by the hyperplanes in H that do not con-
tain the flat, a j-face is a piece in a j-flat), and regions
(connected components in Rd separated by hyperplanes
in H). We call A(H) a simple arrangement if H is in
general position.

In an arrangement, we say a point p is at the k-
level [1, 11, 14], if there are k hyperplanes in H lying
vertically below p. (Above and below are with respect
to the xd coordinate.) The k-level of A(H) is the clo-

Figure 1: The 1-level of an arrangement in R2

sure of all the points of H at level k. Let m be the
number of vertices of the k-level. Tight bounds for m
are still open problems. In R2 the best known upper
bound of m is O(nk1/3) [9], and the best known lower

bound for m is n2Ω(
√

log k) [20]. In R2, constructing
the k-level takes O((n+m) log n) time using Edelsbrun-
ner and Welzl’s algorithm [13] with the data structure
in [3], and it takes O(n log n+nk1/3) expected time with
Chan’s randomized algorithm [4] which is output insen-
sitive. In the word RAM model, the construction takes

O
(

(n+m) logn
log logn

)
time [8].

Let A(T) be the dual arrangement [1, 11, 14] of S,
where T is a set of dual hyperplanes of the points in
S. For a hyperplane } determined by d points in S,
the major side of } contains at least dn−d2 e points in
its interior, and they are either above or below }. Let
}∗ be the dual image of } in A(T). Then, below or
above }∗ there are the same number of hyperplanes.
We define the major side of }∗ as a direction of the
xd-axis along which the ray from }∗ intersects at least
dn−d2 e hyperplanes. The directions of the major sides of
} and }∗ are opposite since the relative position between
a point and a hyperplane is reversed in the dual space.
However, if a point is in the major side of }, the dual

CCCG 2011, Toronto ON, August 10–12, 2011

425

23rd Canadian Conference on Computational Geometry, 2011

image of the point (a hyperplane) is on the major side
of }∗.

In the dual arrangement, we call vertices red if they
have major side facing down, blue if the have major side
facing up, and purple if they have major side facing both
up and down. Then the majority depth of p is equal to
the number of purple vertices plus the number of red
vertices above p∗ plus the number of blue vertices below
p∗.

When n is odd, the vertices with level less than dn−d2 e
in A(T) are blue, and the ones with level more than that

p∗

Figure 2: The vertices and major sides when n is odd

are red (see Figure 2). For each vertex on the dn−d2 e-
level, if the convex angle of its two adjacent segments
faces up it is blue, and if it faces down it is red.

When n is even, the situation is a little different.
As shown in Figure 3, the vertices with level less than
dn−d2 + 1e are blue, and the ones with level more than

dn−d2 e are red. The ones on both of these two levels are
purple.

Computing the majority depth of p with respect to
S is to count the number of major sides p is in. Since
the total number of vertices in a simple arrangement is(
n
d

)
, to compute the majority depth it is sufficient to

count the number of vertices in A(T) whose major side
does not contain p∗. This problem involves counting the
number of vertices of A(T) that are contained in a set
of polygons whose boundary is determined by p∗ and
the median level of A(T). We study this problem in the
next section.

3 Counting Vertices

In this section we discuss how to count the vertices of a
2-dimensional arrangement of n line segments confined
by a simple polygon (see Figure 4). Since there can be
Ω(n2) intersections in this arrangement, a sweep line
algorithm would take too much time. In the following
we discuss a couple of more efficient ways of counting
the vertices.

We first transform the arrangement into a structure
as shown in Figure 5, which makes the pattern of in-

a

a′

b

b′

c

c′

d

d′

e

e′

f

f ′

g

g′

Figure 4: An arrangement in a simple polygon

tersections clearer to us. In this structure, the polygon
is cut at some point and laid flat, and all the line seg-
ments are bent into arcs, so that no two arcs intersect
twice. The number of intersections in the new struc-
ture is the same as that in the original one, because, for
any two line segments intersecting in the polygon, the
corresponding arcs intersect once.

Notice that for an arc a, any other arc that intersects
a has an endpoint laying between the two ends of a. To
count the intersections in the new structure, we can use
a queue. Starting from one end of the new structure,
we add the endpoints of the arcs to the queue. Once
the other end of an arc is in the queue, we count the
number of endpoints between the two endpoints of the
arc, which is the number of intersections the arc con-
tributes. We then remove the two ends from the queue.
Upon reaching the other end of the structure, the queue
will be empty and all the intersections will be counted.
If we implement the queue with an augmented binary
tree [7, Chapter 14.1], finding the distance between the
two ends of an arc and deleting the other end of the arc
takes O(log n) time, so the number of intersections can
be counted in O(n log n) time.

Another way to count the intersections is to use an
array A of size 2n. Starting from one end of the struc-
ture, we walk to the other end. Once we come across
a starting end of an arc, we append a 1 to A. Once
we come across a finishing end of an arc a, we append
a 0 to A. Let the index of the starting end of a in A
be i, and that of the finishing end be j. We then set
A[i] to 0. Let sum(k) denote

∑
l≤k A[l]. The num-

ber of the intersections that a contributes is the num-
ber of endpoints we came across between A[i] and A[j],
which is sum(j) − sum(i). We can compute sum(k)

in O
(

logn
log logn

)
time with Dietz’s algorithm [10] in the

word RAM model. Then counting all intersections takes

O
(
n logn

log logn

)
time.

4 The Algorithm

In this section we show how to use the intersection
counting structure of the previous section to obtain an
efficient algorithm for the majority depth problem in

23rd Canadian Conference on Computational Geometry, 2011

426

CCCG 2011, Toronto ON, August 10–12, 2011

dn−d2 e-level

dn−d2 + 1e-level

p∗

Figure 3: The vertices and major sides when n is even

a a′b b′c c′d d′e e′f f ′g g′

Figure 5: The transformed arrangement

R2. In the following we will first describe the algo-
rithm when n is odd, then we describe the modifications
needed when n is even.

If n is odd, we first compute the median level of the
dual arrangement of S and the intersections between it
and p∗. If they intersect, p∗ splits the levels into sections
(as the schematic example shown in Figure 6). Each
section along with p∗ form a simple polygon except the
leftmost and rightmost sections, which form unbounded
regions. In order to count the vertices in the unbounded
region with the methods in Section 3, we need to find
the leftmost and rightmost vertices. Since the extreme
points of the set of vertices of A(T) can be found in
O(n log n) time by sorting the lines by slope [6], we can
find those two vertices in O(n log n) time. Then we can
add a vertical line to the left of the leftmost vertex, and
one to the right of the rightmost vertex to bound the
unbounded region (An example is shown in Figure 7).
Now we can count the vertices in each polygon, and
the ones on the median level whose major side does not
contain p∗.

If n is even we need to compute both the n
2 -level and

(n2 −1)-level. The polygons should be formed by part of
p∗ and the one of the two median levels which is further
away from p∗ (see the schematic example in Figure 8).
In Figure 9 is an example where all regions are bounded.
Then we need to count all the vertices in the polygons,
and count the vertices that on both those levels since
they should be counted twice for the depth of p.

p∗

Figure 7: The polygons when n is odd

The number of lines that intersect with p∗ is n, and
the number of lines that intersect with the two vertical
lines is no more than 2n. Since, in the polygons, each
line segment that intersects with the median level has a
unique extension on the median level, the total number
of line segments that intersect with the median level is
no more than m. Each line segment in the polygons
has two ends on the boundaries, therefore, the total
number of line segments in all the polygons is no more
than 3n+m.

We obtain two different algorithms for computing ma-
jority depth depending on which algorithm we use for
computing the median level and counting the vertices
in a polygon.

CCCG 2011, Toronto ON, August 10–12, 2011

427

23rd Canadian Conference on Computational Geometry, 2011

p∗

bn2 c-level

Figure 6: The regions when n is odd

p∗

n
2 -level

(n2 − 1)-level

Figure 8: The regions when n is even

Theorem 1 The majority depth in R2 can be computed
in

1. O((n+m) log n) time with Brodal and Jacob’s data
structure.

2. O
(

(n+m) logn
log logn

)
time in the word RAM model.

The complexity of these algorithms is determined by
the value of m, which is the number of vertices of the
median level.

5 Conclusion

We have given an algorithm for computing the majority
depth of a point p with respect to a set S of n points
in R2. The algorithm’s running time is dependent on
the size of the median level of the dual arrangement of
S. Even without leaving 2 dimensions, this work leaves
several open questions:

1. (Depth of a point) Is there an O(n logO(1) n) time
algorithm for computing the majority depth of a
point p with respect to a set S of n points in R2?

2. (Deepest point) Given a set S of n points in R2, how
quickly can we compute a point p whose majority
depth (with respect to S) is maximum?

3. (Centerpoint) Determine the maximum value k =
f(n) for which the following statement is true: For

any set S of n points in R2, there exists a point
p ∈ R2 whose majority depth, with respect to S, is
at least

(
n
2

)
/2 + k.

4. (Faster algorithm in the word RAM model) The
related problem of counting inversions has recently
been solved in O(n

√
log n) running time [5]. This

unfortunately does not improve our algorithm. Can
the factor logn

log logn in the running time of our algo-

rithm be replaced by
√

log n?

An algorithm for the first problem would have to
avoid computing the median level. The second prob-
lem is easily solved in O(n4) time and O(n2) space by
traversing the arrangement of lines through all

(
n
2

)
pairs

of points in S using the topological sweep algorithm [12].

References

[1] P. Agarwal and M. Sharir. Arrangements and their
applications. In Handbook of Computational Geome-
try, pages 49–119. Elsevier Science Publishers North-
Holland, 1998.

[2] G. Aloupis. Geometric measures of data depth. In DI-
MACS Series in Discrete Mathematics and Theoretical
Computer Science, 2006.

[3] G. Brodal and R. Jacob. Dynamic planar convex hull.
In Proceedings of the 43rd Annual IEEE Symposium on
Foundations of Computer Science, pages 617–626, 2002.

[4] T. Chan. Remarks on k-level algorithms in the plane.
Manuscript, 1999.

23rd Canadian Conference on Computational Geometry, 2011

428

CCCG 2011, Toronto ON, August 10–12, 2011

dn−22 e-level

dn2 e-level

p∗

Figure 9: The polygons when n is even

[5] T. Chan and M. Pǎtraşcu. Counting inversions, of-
fline orthogonal range counting, and related problems.
In Proceedings of the 21st ACM/SIAM Symposium on
Discrete Algorithms (SODA), pages 161–173, 2010.

[6] Y. Ching and D. Lee. Finding the diameter of a set of
lines. Pattern Recognition, 18(3-4):249–255, 1985.

[7] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. In-
troduction to Algorithms. The MIT Press, Cambridge,
MA USA, 2nd edition, 2001.

[8] E. Demaine and M. Pǎtraşcu. Tight bounds for dy-
namic convex hull queries (again). In Proceedings of the
23rd annual ACM symposium on Computational geom-
etry, SoCG ’07, pages 354–363, New York, NY, USA,
2007. ACM.

[9] T. Dey. Improved bounds for planar k-sets and re-
lated problems. Discrete & Computational Geometry,
19(3):373–382, 1998.

[10] P. Dietz. Optimal algorithms for list indexing and sub-
set rank. In F. Dehne, J. Sack, and N. Santoro, editors,
Algorithms and Data Structures, volume 382 of Lec-
ture Notes in Computer Science, pages 39–46. Springer
Berlin, 1989.

[11] H. Edelsbrunner. Algorithms in Combinatorial Geome-
try. Springer-Verlag, Heidelberg, Germany, 1987.

[12] H. Edelsbrunner and L. Guibas. Topologically sweep-
ing an arrangement. Journal of Computer and System
Sciences, 38(1):165–194, 1989.

[13] H. Edelsbrunner and E. Welzl. Constructing belts in
two-dimensional arrangements with applications. SIAM
Journal on Computing, 15(1):271–284, 1986.

[14] D. Halperin. Handbook of discrete and computational
geometry. chapter 24, pages 529–562. Chapman and
Hall / CRC, Boca Raton, FL, USA, 2nd edition, 2004.

[15] R. Liu. On a notion of data depth based on random
simplices. Annals of Statistics, 18(1):405–414, 1990.

[16] R. Liu and K. Singh. A quality index based on data
depth and multivariate rank tests. Journal of the Amer-
ican Statistical Association, 88(421):252–260, 1993.

[17] H. Oja. Descriptive statistics for multivariate distribu-
tions. Statistics and Probability Letters, 1(6):327–332,
1983.

[18] K. Singh. A notion of majority depth. Technical report,
Department of Statistics, Rutgers University, 1991.

[19] C. Small. A survey of multidimensional medians. In-
ternational Statistical Review, 58(3):263–277, 1990.

[20] G. Tóth. Point sets with many k-sets. Discrete & Com-
putational Geometry, 26(2):187–194, 2001.

[21] J. W. Tukey. Mathematics and the picturing of data.
In Proceedings of the International Congress of Mathe-
maticians: Vancouver, volume 2, pages 523–531, Mon-
treal, 1975. Canadian Mathematical Congress.

CCCG 2011, Toronto ON, August 10–12, 2011

429

23rd Canadian Conference on Computational Geometry, 2011

430

CCCG 2011, Toronto ON, August 10–12, 2011

Exact Algorithms and APX-Hardness Results for Geometric Set Cover

Timothy M. Chan∗ Elyot Grant†

Abstract

We study several geometric set cover problems in which
the goal is to compute a minimum cover of a given set
of points in Euclidean space by a family of geometric
objects. We give a short proof that this problem is
APX-hard when the objects are axis-aligned fat rectan-
gles, even when each rectangle is an ǫ-perturbed copy
of a single unit square. We extend this result to sev-
eral other classes of objects including almost-circular
ellipses, axis-aligned slabs, downward shadows of line
segments, downward shadows of graphs of cubic func-
tions, 3-dimensional unit balls, and axis-aligned cubes,
as well as some related hitting set problems. Our hard-
ness results are all proven by encoding a highly struc-
tured minimum vertex cover problem which we believe
may be of independent interest.

In contrast, we give a polynomial-time dynamic
programming algorithm for 2-dimensional set cover
where the objects are pseudodisks containing the ori-
gin or are downward shadows of pairwise 2-intersecting
x-monotone curves. Our algorithm extends to the
weighted case where a minimum-cost cover is required.

1 Introduction

In a geometric set cover problem, we are given a range
space (X, S)—a universe X of points in Euclidean space
and a pre-specified configuration S of regions or geomet-
ric objects. The goal is to select a minimum-cardinality
subfamily C ⊆ S such that each point in X lies inside
at least one region in C. In the related hitting set prob-
lem, the goal is instead to select a minimum cardinality
subset Y ⊆ X such that each set in S contains at least
one point in Y . In the weighted generalizations of these
problems, we are also given a vector of positive costs
w ∈ RS or w ∈ RX and we wish to minimize the total
cost of all objects in C or Y respectively. Instances with-
out costs (or with unit costs) are termed unweighted.

Geometric covering problems have found many ap-
plications to real-world engineering and optimization
problems in areas such as wireless network design, im-
age compression, and circuit-printing [11] [15]. Unfor-
tunately, even for very simple classes of objects such as

∗David R. Cheriton School of Computer Science, University of
Waterloo, tmchan@uwaterloo.ca

†Department of Combinatorics and Optimization, University
of Waterloo, egrant@uwaterloo.ca

unit disks or unit squares in the plane, computing the
exact minimum set cover is strongly NP-hard [18]. Con-
sequently, much of the research surrounding geometric
set cover has focused on approximation algorithms. A
large number of constant and almost-constant approx-
imation algorithms have been obtained for various hit-
ting set and set cover problems of low VC-dimension
via ǫ-net based methods [8] [13]. These methods have
spawned a rich literature concerning techniques for ob-
taining small ǫ-nets for various weighted and unweighted
geometric range spaces [12] [1] [22]. Results include
constant-factor linear programming based approxima-
tion algorithms for set cover with objects like fat rect-
angles in the plane and unit cubes in R3.

However, these approaches have limitations. So far,
ǫ-net based methods have been unable to produce any-
thing better than constant-factor approximations, and
typically the constants involved are quite large. Their
application is also limited to problems involving objects
with combinatorial restrictions such as low union com-
plexity (see [12] for details). A recent construction due
to Pach and Tardos has proven that small ǫ-nets need
not always exist for instances of the rectangle cover prob-
lem—geometric set cover where the objects are axis-
aligned rectangles in the plane [20]. In fact, their result
implies that the integrality gap of the standard set cover
LP for the rectangle cover problem can be as big as
Θ(log n). Despite this, a constant approximation using
other techniques has not been ruled out.

The approximability of problems like rectangle cover
also has connections to related capacitated covering
problems [10]. Recently, Bansal and Pruhs used these
connections, along with a weighted ǫ-net based algo-
rithm of Varadarajan [22], to obtain a breakthrough in
approximating a very general class of machine schedul-
ing problems by reducing them to a weighted cover-
ing problem involving points 4-sided boxes in R3—axis-
aligned cuboids abutting the xy and yz planes [9].
The 4-sided box cover problem generalizes the rectangle
cover problem in R2 and thus inherits its difficulty.

In light of the drawbacks of ǫ-net based methods,
Mustafa and Ray recently proposed a different ap-
proach. They gave a PTAS for a wide class of un-
weighted geometric hitting set problems (and conse-
quently, related set cover problems) via a local search
technique [19]. Their method yields PTASs for:

• Geometric hitting set problems involving half-

CCCG 2011, Toronto ON, August 10–12, 2011

431

23rd Canadian Conference on Computational Geometry, 2011

spaces in R3 and pseudodisks (including disks, axis-
aligned squares, and more generally homothetic
copies of identical convex regions) in the plane.

• By implication, geometric set cover problems with
lower half-spaces in R3 (by geometric duality, see
[5]), disks in R2 (by a standard lifting transforma-
tion that maps disks to lower halfspaces in R3, see
[5]), and translated copies of identical convex re-
gions in the plane (again, by duality).

Their results currently do not seem applicable to set
cover with general pseudodisks in the plane. On a re-
lated note, Erlebach and van Leeuwen have obtained a
PTAS for the weighted version of geometric set cover
for the special case of unit squares [14].

1.1 Our Results

We present two main results—a series of APX-hardness
proofs for several geometric set cover and related hitting
set problems, and a polynomial-time exact algorithm for
a different class of geometric set cover problems.

For a set Y of points in the plane, we define the down-
ward shadow of Y to be the set of all points (a, b) such
that there is a point (a, y) ∈ Y with y ≥ b.

Theorem 1 Unweighted geometric set cover is APX-
hard with each of the following classes of objects:

(C1) Axis-aligned rectangles in R2, even when all rectan-
gles have lower-left corner in [−1, −1+ǫ]×[−1, −1+
ǫ] and upper-right corner in [1, 1+ ǫ] × [1, 1+ ǫ] for
an arbitrarily small ǫ > 0.

(C2) Axis-aligned ellipses in R2, even when all ellipses
have centers in [0, ǫ] × [0, ǫ] and major and minor
axes of length in [1, 1 + ǫ].

(C3) Axis-aligned slabs in R2, each of the form [ai, bi] ×
[−∞, ∞] or [−∞, ∞] × [ai, bi].

(C4) Axis-aligned rectangles in R2, even when the bound-
aries of each pair of rectangles intersect exactly zero
times or four times.

(C5) Downward shadows of line segments in R2.

(C6) Downward shadows of (graphs of) univariate cubic
functions in R2.

(C7) Unit balls in R3, even when all the balls contain a
common point.

(C8) Axis-aligned cubes in R3, even when all the cubes
contain a common point and are of similar size.

(C9) Half-spaces in R4.

Additionally, unweighted geometric hitting set is
APX-hard with each of the following classes of objects:

(H1) Axis-aligned slabs in R2.

(H2) Axis-aligned rectangles in R2, even when the bound-
aries of each pair of rectangles intersect exactly zero
times or four times.

(H3) Unit balls in R3.

(H4) Half-spaces in R4.

Mustafa and Ray ask if their local improvement ap-
proach might yield a PTAS for a wider class of instances;
Theorem 1 immediately rules this out for all of the cov-
ering and hitting set problems listed above by proving
that no PTAS exists for them unless P = NP. Item
(C1) demonstrates that even tiny perturbations can de-
stroy the behaviour of the local search method. (C2)
rules out the possibility of a PTAS for arbitrarily fat
ellipses (that is, ellipses that are within ǫ of being per-
fect circles). (C5) and (C6) stand in contrast to our
algorithm below, which proves that geometric set cover
is polynomial-time solvable when the objects are down-
ward shadows of horizontal line segments or quadratic
functions. In the case of (C4) and (H2), the intersec-
tion graph of the rectangles is a comparability graph
(and hence a perfect graph); even then, neither set cover
nor hitting set admits a PTAS. (C7), (C8), (C9), (H3),
and (H4) complement the result of Mustafa and Ray by
showing that their algorithm fails in higher dimensions.

All of our hardness results are proven by directly
encoding a restricted version of unweighted set cover,
which we call SPECIAL-3SC :

Definition 2 In an instance of SPECIAL-3SC, we are
given a universe U = A∪W ∪X ∪Y ∪Z comprising dis-
joint sets A = {a1, . . . , an}, W = {w1, . . . , wm}, X =
{x1, . . . , xm}, Y = {y1, . . . , ym}, and Z = {z1, . . . , zm}
where 2n = 3m. We are also given a family S of 5m
subsets of U satisfying the following two conditions:

• For each 1 ≤ t ≤ m, there are integers 1 ≤ i <
j < k ≤ n such that S contains the sets {ai, wt},
{wt, xt}, {aj , xt, yt}, {yt, zt}, and {ak, zt} (sum-
ming over all t gives the 5m sets contained in S.)

• For all 1 ≤ t ≤ n, the element at is in exactly two
sets in S.

In section 2, we show:

Lemma 3 SPECIAL-3SC is APX-hard.

Our second result is a dynamic programming algo-
rithm that exactly solves weighted geometric set cover
with various simple classes of objects:

Theorem 4 There exists a polynomial-time exact al-
gorithm for the weighted geometric set cover problem
involving downward shadows of pairwise 2-intersecting
x-monotone curves in R2. Moreover, it runs in

23rd Canadian Conference on Computational Geometry, 2011

432

CCCG 2011, Toronto ON, August 10–12, 2011

O(mn2(m + n)) time on a set system consisting of n
points and m regions.

Our algorithm is a generalization and simplification of
a similar algorithm appearing in [10] for a combinatorial
problem equivalent to geometric set cover with down-
ward shadows of horizontal line segments in R2. We
believe that our current presentation is much shorter
and cleaner; in particular, we do not require shortest
path as a subroutine. We can also extend our algorithm
to some related geometric set systems:

Corollary 5 There exists a polynomial-time exact al-
gorithm for the weighted geometric set cover problem
involving a configuration of pseudodisks in R2 where the
origin lies within the interior of each pseudodisk. Fur-
thermore, it runs in O(mn2(m+n)) time on a set system
consisting of n points and m pseudodisks.

Proof. Via the topological sweep given in Lemma 2.11
of [4], we transform the arrangement of pseudodisks into
a topologically equivalent one in which the pseudodisks
are star-shaped about the origin. We note that the
transformation can be completed in O(m2 + mn) time
assuming a representation allowing appropriate prim-
itive operations. We then map the star-shaped pseu-
dodisks to the downward shadows of 2-intersecting x-
monotone functions on [0, 2π) via a polar-to-cartesian
transformation, enabling us to apply Theorem 4. �

1.2 Related Work

The problem of assembling a given rectilinear polygon
from a minimum number of (possibly overlapping) axis-
aligned rectangles was first proven to be MAX-SNP-
complete by Berman and Dasgupta [6], which rules out
the possibility of a PTAS unless P = NP. Since set cover
with axis-aligned rectangles can encode these instances,
it too is MAX-SNP-complete. However, the proof in [6]
cannot be applied to produce an instance of geometric
set cover using only fat rectangles.

In his recent Ph.D. thesis, van Leeuwen proves APX-
hardness for geometric set cover and dominating set
with axis-aligned rectangles and ellipses in the plane
[23]. Har-Peled provides a simple proof that set cover
with triangles is APX-hard, even when all triangles are
fat and of similar size [16]. Har-Peled also notes that
set cover with circles (that is, with boundaries of disks)
is APX-hard for a similar reason. However, neither the
results of van Leeuwen nor Har-Peled can be directly
extended to fat axis-aligned rectangles or fat ellipses.

There are few non-trivial examples of geometric set
cover problems that are known to be poly-time solv-
able. Har-Peled and Lee give a dynamic programming
algorithm for weighted cover of points in the plane by
half-planes [17]; their method runs in O(n5) time on an
instance with n points and half-planes. Our algorithm

both generalizes theirs and reduces the run time by a
factor of n. Ambühl et al. give a poly-time dynamic
programming algorithm for weighted covering of points
in a narrow strip using unit disks [3]; their method ap-
pears to be unrelated to ours.

An interesting PTAS result is that of Har-Peled and
Lee, who give a PTAS for minimum weight cover with
any class of fat objects, provided that each object is al-
lowed to expand by a small amount [17]. Our results
show that without allowing this, a PTAS cannot be ob-
tained.

2 APX-Hardness of SPECIAL-3SC

In this section, we prove Lemma 3. We recall that a pair
of functions (f, g) is an L-reduction from a minimization
problem A to a minimization problem B if there are
positive constants α and β such that for each instance
x of A, the following hold:

(L1) The function f maps instances of A to instances of
B such that OPT(f(x)) ≤ α · OPT(x).

(L2) The function g maps feasible solutions of f(x)
to feasible solutions of x such that cx(g(y)) −
OPT(x) ≤ β ·

(
cf(x)(y) − OPT(f(x))

)
, where cx

and cf(x) are the cost functions of the instances x
and f(x) respectively.

We exhibit an L-reduction from minimum vertex
cover on 3-regular graphs (hereafter known as 3VC) to
SPECIAL-3SC. Since 3VC is APX-hard [2], this proves
that SPECIAL-3SC is APX-hard (see [21] for details).

Given an instance x of 3VC on edges {e1, . . . , en} with
vertices {v1, . . . , vm} where 3m = 2n, we define f(x) be
the SPECIAL-3SC instance containing the sets {ai, wt},
{wt, xt}, {aj , xt, yt}, {yt, zt}, and {ak, zt} for each 4-
tuple (t, i, j, k) such that vt is a vertex incident to edges
ei, ej, and ek with i < j < k. To define g, we suppose
we are given a solution y to the SPECIAL-3SC instance
f(x). We take vertex vt in our solution g(y) of the
3VC instance x if and only if at least one of {ai, wt},
{aj, xt, yt}, or {ak, zt} is taken in y. We observe that g
maps feasible solutions of f(x) to feasible solutions of x
since ei is covered in g(y) whenever ai is covered in y.

Our key observation is the following:

Proposition 6 OPT(f(x)) = OPT(x) + 2m.

Proof. For 1 ≤ t ≤ m, let Pt = {{wt, xt}, {yt, zt}} and
Qt = {{ai, wt}, {aj, xt, yt}, {ak, zt}}. Call a solution C
of f(x) segregated if for all 1 ≤ t ≤ m, C either contains
all sets in Pt and no sets in Qt, or contains all sets in
Qt and no sets in Pt.

Via local interchanging, we observe that there exists
an optimal solution to f(x) that is segregated. Addi-
tionally, our function g, when restricted to segregated

CCCG 2011, Toronto ON, August 10–12, 2011

433

23rd Canadian Conference on Computational Geometry, 2011

solutions of f(x), forms a bijection between them and
feasible solutions of x. We check that g maps segre-
gated solutions of size 2m + k to solutions of x having
cost precisely k, and the result follows. �

Proposition 6 implies that f satisfies property (L1)
with α = 5, since OPT(x) ≥ m

2 . Moreover, cx(g(y)) +
2m ≤ cf(x)(y) since both {wt, xt} and {yt, zt} must be
taken in y whenever vt is not taken in g(y), and at least
three of {{ai, wt}, {wt, xt}, {aj, xt, yt}, {yt, zt}, {ak, zt}}
must be taken in y whenever vt is taken in g(y). To-
gether with Proposition 6, this proves that g satisfies
property (L2) with β = 1. Thus (f, g) is an L-reduction.

3 Encodings of SPECIAL-3SC via Geometric Set
Cover

In this section, we prove Theorem 1 using Lemma 3,
by encoding instances of various classes of geomet-
ric set cover and hitting set problems as instances of
SPECIAL-3SC. The beauty of SPECIAL-3SC is that
it allows many of our geometric APX-hardness results
to follow immediately from simple “proofs by pictures”
(see Figure 3). The key property of SPECIAL-3SC is
that we can divide the elements into two sets A and
B = W ∪ X ∪ Y ∪ Z, and linearly order B in such a
way that all sets in S are either two adjacent elements
from B, one from B and one from A, or two adjacent
elements from B and one from A. We need only make
[wt, xt, yt, zt] appear consecutively in the ordering of B.

For (C1), we simply place the elements of A on the
line segment {(x, x − 2) : x ∈ [1, 1 + ǫ]} and place the
elements of B, in order, on the line segment {(x, x+2) :
x ∈ [−1, −1 + ǫ]}, for a sufficiently small ǫ > 0. As we
can see immediately from Figure 3, each set in S can be
encoded as a fat rectangle in the class (C1).

(C2) is similar. It is not difficult to check that each
set can be encoded as a fat ellipse in this class.

For (C3), we place the elements of A on a horizontal
line (the top row). For each 1 ≤ t ≤ m, we create a new
row containing {wt, xt} and another containing {yt, zt}
as shown in Figure 3. This time, we will need the second
property in Definition 2—that each ai appears in two
sets. If {ai, wt} is the first set that ai appears in, we
place wt slightly to the left of ai; if it is the second set
instead, we place wt slightly to the right of ai. Similarly,
the placement of xt, yt (resp. wt) depends on whether a
set of the form {aj, xt, yt} (resp. {ak, wt}) is the first or
second set that aj (resp. ak) appears in. As we can see
from Figure 3, each set in S can be encoded as a thin
vertical or horizontal slab.

(C4) is similar to (C3), with the slabs replaced by
thin rectangles. For example, if {ai, wt} and {ai, wt′}
are the two sets that ai appears in, with wt located
higher than wt′ , we can make the rectangle for {ai, wt}

slightly wider than the rectangle for {ai, wt′} to ensure
that these two rectangles intersect 4 times.

For (C5), we can place the elements of A on the ray
{(x, −x) : x > 0} and the elements of B, in order, on
the ray {(x, x) : x < 0}. The sets in S can be encoded
as downward shadows of line segments as in Figure 3.

(C6) is similar to (C5). One way is to place the el-
ements of A on the line segment ℓA = {(x, x) : x ∈
[−1, −1 + ǫ]} and the elements of B (in order) on the
line segment ℓB = {(x, 0) : x ∈ [1.5, 1.5 + ǫ]}. For any
a ∈ [−1, −1+ ǫ] and b ∈ [1.5, 1.5+ ǫ], the cubic function
f(x) = (x − b)2[(a + b)x − 2a2]/(b − a)3 is tangent to
ℓA and ℓB at x = a and x = b. (The function intersects
y = 0 also at x = 2a2/(a + b) ≫ 1.5 + ǫ, far to the
right of ℓB.) Thus, the size-2 sets in S can be encoded
as cubics. A size-3 set {aj , xt, yt} can also be encoded
if we take a cubic with tangents at aj and xt, shift it
upward slightly, and make xt and yt sufficiently close.

For (C7), we place the elements in A on a circular
arc γA = {(x, y, 0) : x2 + y2 ≤ 1, x, y ≥ 0} and the
elements in B (in order) on the vertical line segment
ℓB = {(0, 0, z) : z ∈ [1−2ǫ, 1−ǫ]}. (This idea is inspired
by a known construction [7], after much simplification.)
We can ensure that every two points in A have distance
Ω(

√
ǫ) if ǫ ≪ 1/n2. The technical lemma below allows

us to encode all size-2 sets (by setting b = b′) and size-3
sets by unit balls containing a common point.

Lemma 7 Given any a ∈ γA and b, b′ ∈ ℓB, there exists
a unit ball that (i) intersects γA at an arc containing a of
angle O(

√
ǫ), (ii) intersects ℓB at precisely the segment

from b to b′, and (iii) contains (1/
√

2, 1/
√

2, 1).

Proof. Say a = (x, y, 0), b = (0, 0, z −h), b′ = (0, 0, z +
h). Consider the unit ball K centered at c = ((1 −
h2)x, (1 − h2)y, z). Then (ii) is self-evident and (iii)
is straightforward to check. For (i), note that a lies
in K since ‖a − c‖2 = h2 + z2 ≤ ǫ2 + (1 − ǫ)2 < 1.
On the other hand, if a point p ∈ γA lies in the unit
ball, then letting a′ = ((1 − h2)x, (1 − h2)y, 0), we have
‖p − c‖2 = ‖p − a′‖2 + z2 ≤ 1, implying ‖p − a‖ ≤
‖p − a′‖ + ‖a′ − a‖ ≤

√
1 − z2 + h = O(

√
ǫ). �

(C8) is similar to (C1); we place the elements in A
on the line segment ℓA = {(t, t, 0) : t ∈ (0, 1)} and the
elements in B on the line segment ℓB = {(0, 3−t, t) : t ∈
(0, 1)}. For any (a, a, 0) ∈ ℓA and (0, 3 − b, b) ∈ ℓB, the
cube [−3+b+2a, a]×[a, 3−b]×[−3+a+2b, b] is tangent
to ℓA at (a, a, 0), is tangent to ℓB at (0, 3 − b, b), and
contains (0, 1, 0). Size-3 sets {aj, xt, yt} can be encoded
by taking a cube with tangents at aj and xt, expanding
it slightly, and making xt and yt sufficiently close.

(C9) follows from (C7) by the standard lifting trans-
formation [5].

For (H1), we map each element ai to a thin vertical
slab. For each 1 ≤ t ≤ m, we map {wt, xt, yt, zt} to a

23rd Canadian Conference on Computational Geometry, 2011

434

CCCG 2011, Toronto ON, August 10–12, 2011

ai

aj

ak
wt

xt

yt

zt

aj

ak

ai

akajai

wt

xt

yt

zt

(C1)

(C5)

akajai

wt

(C3) and (C4)

(H2)(H1)

zt

yt

xt

wt

zt

xt

yt

akajai

wt

yt

xt

zt

Figure 1: APX-hardness proofs of geometric set cover problems.

cluster of four thin horizontal slabs as in Figure 3. Each
set in S can be encoded as a point in the arrangement.

(H2) is similar; see Figure 3.

(H3) follows from (C7) by duality.

(H4) follows from (C9) by duality.

4 Algorithm for Weighted Covering by Downward
Shadows of 2-Intersecting x-Monotone Curves

Here, we prove Theorem 4 by giving a polynomial-
time dynamic programming algorithm for the weighted
cover of a finite set of points X ⊆ R2 by a set S of
downward shadows of 2-intersecting x-monotone curves
C1, . . . , Cm. For 1 ≤ i ≤ m, define the region Si ∈ S
to be the downward shadow of the curve Ci and let it
have positive cost wi. Define n = |X |.

We shall assume that each Ci is the graph of a smooth
univariate function with domain [−∞, ∞], that all in-
tersections are transverse (no pair of curves intersect
tangentially), and that no points in X lie on any curve
Ci. It is not difficult to get around these assumptions,
but we retain them to simplify our explanation.

We shall abuse notation by writing Ci(x) for the
unique y ∈ R such that (x, y) lies on the curve Ci. We
say curve Ci is wider than curve Cj (written Ci ≻ Cj)
whenever Ci(x) > Cj(x) for all sufficiently large x. We
may also write Si ≻ Sj whenever Ci ≻ Cj . We note that
≻ is a total ordering and thus we can order all curves
by width, so we assume without loss of generality that
Ci ≻ Cj whenever i > j. The width-based ordering of

curves is useful because of the following key observation:

Proposition 8 If Ci ≻ Cj, then Sj \ Si is connected.

Proof. This is clearly true if Ci and Cj intersect once
or less. If Ci and Cj intersect transversely twice—say, at
(x1, y1) and (x2, y2) with x2 > x1—then the area above
Ci but below Cj can only be disconnected if Cj(x) >
Ci(x) for x < x1 and x > x2, implying Cj ≻ Ci. �

For all 1 ≤ i ≤ m and all intervals [a, b], define
X [a, b] to be all points in X with x-coordinate in [a, b],
and define X [a, b, i] to be X [a, b] \ Si. Define S<i to
be the set {S1, . . . , Si−1} of all regions of width less
than Si. Let M [a, b, i] denote the minimum cost of a
solution to the weighted set cover problem on the set
system (X [a, b, i], S<i) (with weights inherited from the
original problem). If such a covering does not exist,
M [a, b, i] = ∞. For simplicity, we assume that Cm, the
widest curve, contains no points in its downward shadow
(that is, X ∩ Sm is empty). Our goal is then to deter-
mine M [−∞, ∞, m] via dynamic programming; the key
structural result we need is the following:

Proposition 9 If X [a, b, i] is non-empty, then

M [a, b, i] = min
{

min
c∈(a,b)

{M [a, c, i] + M [c, b, i]},

min
j<i

{M [a, b, j] + wj}
}
.

Proof. Clearly M [a, b, i] ≤ M [a, c, i] + M [c, b, i] for all
c ∈ (a, b). Also, for j < i, M [a, b, j] + wj is the cost of

CCCG 2011, Toronto ON, August 10–12, 2011

435

23rd Canadian Conference on Computational Geometry, 2011

purchasing Sj and then covering the remaining points
in X [a, b] using regions less wide than Sj (and hence
less wide than Si). Thus M [a, b, j] + wj is a cost of a
feasible solution to (X [a, b, i], S<i) and hence is at least
M [a, b, i]. It follows that M [a, b, i] is bounded above by
the right hand side.

To show that M [a, b, i] is bounded below by the right
hand side, we let Z ⊆ S<i be a feasible set cover for
(X [a, b, i], S<i). We consider two cases:

Case 1: There is some c ∈ (a, b) such that (c, Ci(c))
is not covered by Z. Let Z<c be the set of all regions
in Z containing a point in X [a, c, i], and let Z>c be the
set of all regions in Z containing a point in X [c, b, i].
Let Z ∈ Z. Since Z ≺ Si, by Proposition 8, Z \ Si

is connected and thus cannot contain points both in
X [a, c, i] and X [c, b, i]. Hence Z<c ∩ Z>c = ∅ and thus
the cost of Z is at least M [a, c, i] + M [c, b, i].

Case 2: For all c ∈ (a, b), the point (c, Ci(c)) is cov-
ered by Z. Then Z covers X [a, b, i] ∪ Si and hence
covers all points in X [a, b]. Let Cj be the widest curve
in Z, noting that j < i. Then the cost of Z is at least
wj + M [a, b, j] since Z \ Sj must cover all points in
X [a, b, j].

It follows that Z must cost as much as either
minc∈(a,b){M [a, c, i] + M [c, b, i]} or minj<i{M [a, b, j] +
wj}, and the result follows. �

Proposition 9 immediately implies the existence
of a dynamic programming algorithm to compute
M [−∞, ∞, m] and return a cover having that cost.
There are at most n + 1 combinatorially relevant val-
ues of a and b when computing optimal costs M [a, b, i]
for subproblems, so there are O(mn2) distinct values of
M [a, b, i] to compute. Recursively computing M [a, b, i]
requires O(m + n) table lookups, so the total runtime
of our algorithm is O(mn2(m + n)), assuming a repre-
sentation allowing primitive operations in O(1) time.

References

[1] B. Aronov, E. Ezra, and M. Sharir. Small-size ǫ-nets for
axis-parallel rectangles and boxes. In ACM Symposium
on Theory of Computing (2009), 639-648.

[2] P. Alimonti and V. Kann. Some APX-completeness
results for cubic graphs. Theoretical Comp. Sci. 237
(2000) 123-134.

[3] C. Ambühl, T. Erlebach, M. Mihalák, and M.
Nunkesser. Constant-factor approximation for
minimum-weight (connected) dominating sets in unit
disk graphs. In APPROX and RANDOM (2006) 3-14.

[4] P. K. Agarwal, E. Nevo, J. Pach, R. Pinchasi, M. Sharir,
and S. Smorodinsky. Lenses in arrangements of pseudo-
circles and their applications. J. ACM 51(2) (2004),
139-186.

[5] M. de Berg, O. Cheong, M. van Kreveld, and M. Over-
mars. Computational Geometry: Algorithms and Ap-

plications (Third edition). Springer-Verlag, Heidelberg,
(2008).

[6] P. Berman and B. DasGupta. Complexities of efficient
solutions of rectilinear polygon cover problems. Algo-
rithmica 17(4) (1997), 331-356.

[7] H. Brönnimann and O. Devillers The union of unit balls
has quadratic complexity, even if they all contain the
origin. arXiv:cs/9907025v1 [cs.CG] (1999).

[8] H. Brönnimann and M. T. Goodrich. Almost optimal
set covers in finite VC-dimension. Discrete Comput.
Geom. 14 (1995), 263-279.

[9] N. Bansal and K. Pruhs. The geometry of scheduling.
IEEE 51st Annual Symposium on Foundations of Com-
puter Science (2010), 407-414.

[10] D. Chakrabarty, E. Grant, and J. Koenemann. On
column-restricted and priority covering integer pro-
grams. In Integer Programming and Combinatorial Op-
timization (2010) 355-368.

[11] Y. Cheng, S.S. Iyengar, and R.L. Kashyap. A new
method for image compression using irreducible covers
of maximal rectangles. IEEE Trans. Software Engrg. 14
(1988), 651-658.

[12] K. Clarkson and K. Varadarajan. Improved approx-
imation algorithms for geometric set cover. Discrete
Comput. Geom. 37 (2007), 43-58.

[13] G. Even, D. Rawitz, and S. Shahar. Hitting sets when
the VC-dimension is small. Information Processing Let-
ters 95(2) (2005), 358-362.

[14] T. Erlebach and E. J. van Leeuwen PTAS for weighted
set cover on unit squares. In APPROX and RANDOM
(2010), 166-177.

[15] A. Hegedüs. Algorithms for covering polygons with
rectangles. Comput. Aided Geom. Design 14 (1982),
257-260.

[16] S. Har-Peled. Being Fat and Friendly is Not Enough.
arXiv:0908.2369v1 [cs.CG] (2009).

[17] S. Har-Peled and M. Lee. Weighted geometric set cover
problems revisited. Unpublished manuscript, (2008).

[18] D.S. Hochbaum and W. Maass. Fast approximation
algorithms for a nonconvex covering problem. J. Algo-
rithms 8(3) (1987), 305-323.

[19] N.H. Mustafa and S Ray. Improved results on geometric
hitting set problems. Discrete Comput. Geom. 44(4)
(2010), 883-895.

[20] J. Pach, G. Tardos. Tight lower bounds for the size
of epsilon-nets. In Proc. 27th ACM Sympos. Comput.
Geom. (2011) 458-463.

[21] C.H. Papadimitriou, M. Yannakakis. Optimization, ap-
proximation, and complexity classes. J. Comput. Sys-
tems Sci. 43 (1991), 425-440.

[22] K. Varadarajan. Weighted geometric set cover via
quasi-uniform sampling. In ACM Symposium on The-
ory of Computing (2010) 641-648.

[23] E. J. van Leeuwen. Optimization and Approximation on
Systems of Geometric Objects. PhD thesis, Universiteit
van Amsterdam, (2009).

23rd Canadian Conference on Computational Geometry, 2011

436

CCCG 2011, Toronto ON, August 10–12, 2011

Enumerating Minimal Transversals of Geometric Hypergraphs

Khaled Elbassioni∗ Imran Rauf† Saurabh Ray‡

Abstract

We consider the problem of enumerating all minimal
hitting sets of a given hypergraph (V,R), where V is a
finite set, called the vertex set andR is a set of subsets of
V called the hyperedges. We show that, when the hyper-
graph admits a balanced subdivision, then a recursive de-
composition can be used to obtain efficiently all minimal
hitting sets of the hypergraph. We apply this decom-
position framework to get incremental polynomial-time
algorithms for finding minimal hitting sets and minimal
set covers for a number of hypergraphs induced by a
set of points and a set of geometric objects. The set of
geometric objects includes half-spaces, hyper-rectangles
and balls, in fixed dimension. A distinguishing feature
of the algorithms we obtain is that they admit an effi-
cient global parallel implementation, in the sense that
all minimal hitting sets can be generated in polylogarith-
mic time in |V |, |R| and the total number of minimal
transversals T , using a polynomial number of proces-
sors.

1 Introduction

Let (V,R) be a hypergraph, where V is a finite set called
the vertices and R is a family of subsets of V called
the hyperedges. We say a vertex v ∈ V hits hyperedge
R ∈ R when v ∈ R. A subset of vertices X ⊆ V is
said to be a hitting set (or transversal) for R if every
hyperedge R in R is hit by an element x in X. A hitting
set is minimal if none of its proper subsets is a hitting
set.

In this paper, we will consider hypergraphs induced
by a set of points and certain families of geometric ob-
jects in Rd. When the hypergraph is arbitrary, we ob-
tain the well-known hypergraph transversal or dualiza-
tion problem [1], which calls for finding all minimal hit-
ting sets for a given hypergraph. This problem has re-
ceived considerable attention in the literature (see, e.g.,
[2, 8, 9, 17, 22, 24]), since it is known to be polynomially
or quasi-polynomially equivalent with many problems in
various areas.

∗Max-Planck-Institut für Informatik, Saarbrücken, Germany,
elbassio@mpi-inf.mpg.de
†Friedrich-Schiller-Universität, Jena, Germany,

imran.rauf@uni-jena.de
‡Max-Planck-Institut für Informatik, Saarbrücken, Germany,

saurabh@mpi-inf.mpg.de

Clearly, the number T of minimal transversals of a
hypergraph (V,R) can be exponential in |V | and |R|,
and hence one can only hope for an algorithm whose
efficiency is measured in terms of the parameters |V |,
|R| and T . The currently fastest known algorithm [15]
for solving the hypergraph transversal problem runs in
quasi-polynomial time |V |No(logN), whereN is the com-
bined input and output size N = |R|+T . Several quasi-
polynomial time algorithms with some other desirable
properties also exist [4, 12, 13, 16, 25]. While it is still
open whether the problem can be solved in polynomial
time for arbitrary hypergraphs, polynomial time algo-
rithms exist for several classes of hypergraphs, e.g. hy-
pergraphs of bounded edge-size [3, 8], of bounded degree
[7, 9], of bounded-edge intersections [3], of bounded con-
formality [3], of bounded treewidth [9], and read-once
(exact) hypergraphs [11].

Recently [14], this polynomiality frontier has been ex-
tended to a number of geometric hypergraphs. In par-
ticular, polynomial-time algorithms were given for enu-
merating minimal hitting sets and minimal set covers,
when the hyperedges are induced by hyper-rectangles
(in Rd for fixed d), or half-planes (in R2). We observe
that the algorithms in [14] depend on the types of ranges
considered. For instance, in the case of rectangles, two
different types of algorithms are used for the hitting set
and set covering versions, and a substantially modified
algorithm is needed for half-planes. Furthermore, it is
not clear, how these algorithms can be generalized to
other geometric objects, such as balls, or half-spaces in
fixed dimension d ≥ 3.

In this paper, we present a simple and unified algo-
rithm that works for both the hitting set and set cover-
ing versions, and extends to more general objects, such
as balls, half-spaces, and polytopes with fixed number
of facets. In fact, as we will see, all that is needed is
that the hypergraph admits a certain balanced subdivi-
sion which can be shown to exist in several geometric
instances. One more important property of the algo-
rithms we obtain, is that they admit a global parallel
implementation, in the sense that all minimal hitting
sets can be generated in polylogarithmic time (in |V |,
|R| and the total number of minimal transversals T) us-
ing a polynomial number of processors (in the PRAM
model). Among all polynomially solvable classes of hy-
pergraphs, only very few are known to exhibit this nice
property, see [20, 21]. We remark that the general algo-
rithms given in [4, 13] do not satisfy this global paral-

CCCG 2011, Toronto ON, August 10–12, 2011

437

23rd Canadian Conference on Computational Geometry, 2011

lelism property, in the sense that they only produce each
output in parallel, that is, the time needed to produce T
minimal transversals is polylogarithmic in |V |, |R|, but
can be linear (or super-linear) in T . Finding a global
parallel algorithm (even with a quasi-polynomial num-
ber of processors) for the general case is an outstanding
open problem, and is very useful in practice since the
number of minimal transversals is typically very large.

Theorem 1 Let (V,R) be a hypergraph defined by a
set of points P ∈ Rd and set of ranges R ⊆ Rd. If
R is a set of half-planes, balls, or a polytopes with a
fixed number of facets, in fixed dimension d = O(1),
then there is an algorithm that enumerates all T mini-
mal hitting sets (resp., set covers) of R in parallel time
polylog(|V |, |R|, T) on poly(|V |, |R|, T) number of pro-
cessors.

Even though the bound in Theorem 1 is stated in
terms of the total number of minimal hitting sets T , we
will see that our algorithm can be modified to work in
an incremental setting, i.e, for a given integer T ′ ≤ T ,
it finds T ′ minimal hitting sets (resp., set covers) of
R in time polylog(|R|, T ′) · τ(|V |) on poly(|V |, |R|, T ′)
number of processors, where τ(|V |) is the time needed
to find a single minimal hitting set. The currently best
known parallel implementation for the latter problem
[19] has τ(|V |) = O(

√
|V |).

Our algorithm builds on and extends the covering de-
composition approach initially suggested in [20, 21], and
used in a number of subsequent works [12, 4]. So far,
the use of such decompositions has been successful for
developing polynomial time dualization algorithms for
limited cases, such as hypergraphs of bounded size or
bounded degree. In this paper, we show that the limi-
tations of the previous approaches can be overcome us-
ing a modified version. This allows us to obtain a large
class of hypergraphs for which covering decompositions
are effective.

The enumeration of minimal geometric hitting sets,
as the ones described above, arises in various areas such
as computational geometry, machine learning, and data
mining [10]. Moreover, our efficient enumeration algo-
rithms might be useful in developing exact algorithms,
fixed-parameter tractable algorithms, and polynomial-
time approximation schemes for the corresponding op-
timization problems (see, e.g., [18]).

2 Notation

In this paper, we will often write R for a hypergraph
(V,R) for notational convenience. Also, we will often
refer to hypergraphs as range spaces in accordance with
the terminology in the Computational Geometry liter-
ature. Accordingly, we will refer to the vertex set as

the ground set and the hyperedges as ranges. Given
a range spaces R, we will denote by Tr(R) the set of
all minimal hitting sets of R. Given a range (V,R),
and a subset V ′ ⊆ V , we will denote by R|V ′ the set
{R ∩ V ′ : R ∈ R}. The hypergraph (V ′,RV ′) is called
the projection of the hypergraph (V,R) on V ′.

3 Balanced Subdivisions

Given any range space (V,R), we say that a subset V ′ ⊆
V is stabbed by a range R ∈ R if there exist x, y ∈
V ′ s.t. x ∈ R and y /∈ R. A balanced subdivision for a
range space (V,R) is a collection of a constant number
of subsets V1, V2, . . . , Vk of V such that

1. For each i ∈ {1, . . . , k}, |Vi| ≥ ε|V | for some con-
stant 0 < ε ≤ 1.

2. For each range R ∈ R, there are two disjoint
subsets Vi and Vj in the collection which are not
stabbed by R.

Remark 1 In the above definition, the fact that a sub-
set V ′ ⊂ V is not stabbed by R ∈ R implies that V ′ is
also not stabbed by V \ R. Consequently, we conclude
that a balanced subdivision for any range space (V,R) is
also a balanced subdivision for the range space (V,Rc),
where Rc denotes the hypergraph defined by compliments
of ranges in R, i. e., Rc = {V \R | R ∈ R}.

In the next section, we show that if we can compute a
balanced subdivision for a range space then we can enu-
merate its minimal hitting sets in global parallel time.

In this section, we show that several geometrically
induced range spaces admit balanced subdivisions which
can be computed efficiently (in parallel). We consider
range spaces induced by a set of points P and a set of
geometric objects H in Rd. There are two natural range
spaces defined by them depending on whether we let the
points or the objects form the ground set. We denote
by (P,H) the range space in which P is the ground set
and each H ∈ H defines the range H ∩P . Similarly, we
denote by (H, P) the range space in which the ground
set is H and each p ∈ P defines the range {H ∈ H | p ∈
H}.

We now show that for any point set P ⊂ Rd, a bal-
anced subdivision exists and can be computed efficiently
for both (P,H) and (H, P) if H is a family of objects of
the following kind: (i) Half-Spaces in Rd (ii) Polytopes
with at most a constant number of facets in Rd and (iii)
Balls in Rd.

We will use the following results:

Theorem 2 (Fine Simplicial Partitions [23])
Given any set P of n points in Rd and any pa-
rameter 1 ≤ r ≤ n, there exists a partition

23rd Canadian Conference on Computational Geometry, 2011

438

CCCG 2011, Toronto ON, August 10–12, 2011

Π = {P1, P2, . . . , Pt} of t ≤ r disjoint subsets of
P and a set ∆ = {∆1, . . . ,∆t} of simplices with the
following properties: (i) Pi ⊆ ∆i (ii)

⋃
i Pi = P , (iii)

n/r ≤ |Pi| ≤ 2n/r for all i ∈ {1, . . . , t} and (iv) no
half-space in Rd intersects more than Cdr

1−1/d of the
simplices in ∆, where Cd is a constant for any fixed d.
The last property also implies that no half-space in Rd
stabs more than Cdr

1−1/d of the sets in Π. Further, for
any δ > 0, such a Π can be computed in time O(n1+δ).
When r is bounded by a constant, Π can be computed
in O(n) time.

Theorem 3 (Cuttings [5]) Given any set of n half-
spaces in Rd and any parameter 1 ≤ r ≤ n, there exists
a partition of Rd into r simplices such that none of the
simplices is stabbed by more than C ′dn/r

1/d of the given
half-spaces. Further, for any δ > 0, such a partition can
be computed deterministically in time O(nr1−1/d).

Parallel Implementation: Even though we only
mention sequential running times above, such fine
simplicial partitions and cuttings can be computed
in polylog(n) time using poly(n) processors. For
example, in the case of cuttings in any fixed dimension
d, while the simplices are allowed to be arbitrary, it
can be argued that they can always be chosen so that
they are among a polynomial number of canonical
simplices. In fact, it is not hard to argue that we can
restrict to simplices whose corners are defined by the
intersection of d of the hyperplanes defining the given
set of halfspaces and indeed the construction in [5]
does restrict to such simplices. The number of such
simplices is at most O(nd(d+1)). Once we have a poly-
nomial bound on the number of canonical simplices,
we can check all possible sets of t canonical simplices
in parallel using a polynomial number of proces-
sors and find a simplicial partition in polylogarithmic
time. A similar argument holds for simplicial partitions.

Half-Spaces. Let us first consider the case when H
is a set of half-spaces in Rd. Given any set P with n
points in Rd, we can set r to be a large enough constant
so that Cdr

1−1/d ≤ r−2. Then, clearly, the collection Π
given by Theorem 2 also gives us a balanced subdivision
of (P,H) with ε = 1/r and k ≤ r. To get a balanced
subdivision of (H, P), we apply Theorem 3 to the half-
spaces in H. Assuming that |H| = n, we set r to be a
large enough constant so that C ′dn/r

1/d ≤ n/2. Theo-
rem 3 gives a partition of Rd into r regions R1, . . . , Rr
each of which is stabbed by at most n/2 half-spaces in
H. Consequently, for each region Ri, we either have at
least n/4 half-spaces of H each of which contains Ri or
we have at least n/4 half-spaces of H none of which in-
tersects Ri. Let Hi be a set of those half-spaces. Then
|Hi| ≥ n/4. We arbitrarily partition each Hi into two
disjoint sets H1

i and H2
i each of size at least n/8. These

sets H1
i and H2

i for i ∈ {1, . . . , r} give us a balanced
subdivision of (H, P) with k = 2r and ε = 1/8 since
each point p ∈ P lies in some region Rj and hence does
not stab the disjoint sets H1

j and H2
j .

Remark 2 In the case of half-spaces, one may also re-
duce the problem of finding minimal set covers to that of
finding minimal hitting sets by using geometric duality,
which maps points in Rd to hyperplanes and vice versa
(see e.g. [6], Chapter 8). However this method does not
work for polytopes.

Polytopes. Suppose now that H is a set of polytopes
in Rd, each with at most f facets. In this case the
collection Π given by Theorem 2 with r being a large
enough constant so that f · Cdr1−1/d ≤ r − 2 gives us
the required balanced subdivision for (P,H). This is be-
cause each facet of a polytope can stab at most Cdr

1−1/d

members of Π and therefore a polytope with at most f
facets can stab at most f · Cdr1−1/d ≤ r − 2 members
of Π. To get a balanced subdivision for (H, P), we con-
sider for each H ∈ H, the set of at most f half-spaces
whose intersection forms H. Let H′ be the set of all
these half-spaces. Assuming that |H| = n, we have that
|H′| ≤ fn. We then invoke Theorem 3 for the half-
spaces in H′ with r being a large enough constant so
that C ′d(nf)/r1/d ≤ n/2. The regions in the resulting
partition are stabbed by at most n/2 half-spaces in H′
and hence at most n/2 polytopes in H. We can then
construct the balanced subdivision for (H, P) consist-
ing of sets H1

i and H2
i , i ∈ {1, . . . , r}, as in the last

paragraph.

Balls. Finally assume that H is a set of balls in Rd.
There is a standard lifting (veronese map) which maps
each point in Rd to a point in Rd+1 and each ball in Rd
to a half-space in Rd+1 so that the incidence relations
among them are preserved. Since balanced subdivisions
exist for half-spaces in Rd+1, we can conclude that bal-
anced subdivisions exist for balls in Rd as well (for both
(P,H) and (H, P)). The same trick can be applied to
other algebraically defined sets like ellipses, parabolas
etc.

Since we invoke Theorems 2 and 3 with r being a
constant, the collection in Theorem 2 and the partition
in Theorem 3 can be computed in time O(n). It follows
that balanced subdivisions for the above range spaces
can be computed in O(n+m) time where n is the size
of the ground set and m is the number of ranges.

4 The Enumeration Algorithm

Given a range space (V,R), a divide-and-conquer algo-
rithm to enumerate all minimal hitting sets of R is pre-
sented in Figure 1. If |V | is at most some fixed constant
µ, all minimal hitting sets of R can be enumerated by

CCCG 2011, Toronto ON, August 10–12, 2011

439

23rd Canadian Conference on Computational Geometry, 2011

just enumerating all subsets of V and outputting those
which form a minimal hitting set of R. We assume the
existence of a procedure Enumerate-Small for the enu-
meration of minimal hitting sets in these trivial cases.

Algorithm 1 Procedure Enumerate(V,R):

Input: A finite range space (V,R)
Output: The set of all minimal hitting sets of R
1: if |V | ≤ µ then
2: return Enumerate-Small(V,R)
3: end if
4: Type1-Set:=∅
5: Compute a balanced subdivision V1, . . . , Vλ of

(V,R)
6: for i = 1, . . . , λ do
7: Type1-Set := Type1-Set ∪ Enumerate(V \

Vi,R|V \Vi)
8: end for
9: Type1-Set := Remove-Duplicates(Type1-Set)

10: Type2-Set := ∅
11: for i = 1, . . . , λ do
12: Xi := Enumerate(V \ Vi,Ri)
13: end for
14: for each (M1, . . . ,Mλ) ∈ X1 × . . .×Xλ do
15: M :=

⋃
iMi

16: if M is a type 2 minimal hitting set of R then
17: Type2-Set := Type2-Set ∪ {M}
18: end if
19: end for
20: Type2-Set := Remove-Duplicates(Type2-Set)
21: return Type1-Set ∪ Type2-Set

When |V | > µ, we assume the existence of a balanced
subdivision Π = (V1, . . . , Vλ), where λ is a constant and
for each i ∈ {1, . . . , λ}, |Vi| ≤ ε|V | where 0 < ε < 1
is another constant. We classify the minimal hitting
sets of R into two types. Type 1 minimal hitting sets
are those that have an empty intersection with one of
the Vis. The remaining minimal hitting sets which con-
tain elements from each Vi are of type 2. Since each Vi
contains a constant fraction of the elements in V , type
1 hitting sets are easily enumerated recursively. This is
done in line 7 of Figure 1. Enumerating Type 2 minimal
hitting sets require more work.

Let us first observe that any minimal hitting set M
of R and for any v ∈ M , there is always some range
R ∈ R which requires v, i.e., R ∩M = {v}. We call
such a range a certificate range for v in M . Clearly,
M is also a minimal hitting set for the set of certificate
ranges of its elements.

Let M be any type 2 minimal hitting set and let R ∈
R be any range that has a nonempty intersection with
each of the Vis. Since Π is a balanced subdivision, there
are at least two sets Vj and Vk which are not stabbed
by R. Since R has a nonempty intersection with both

of them, it must contain both the sets as subsets. Now,
since M contains an element from each Vi, R contains
at least two elements of M implying that R cannot be a
certificate range for any element of M . This means that
for the purpose of enumerating type 2 minimal hitting
sets, we can discard all ranges which have a non-empty
intersection with each of the Vis. Let Ri = {R ∈ R :
R ∩ Vi = ∅} and let R̃ =

⋃
iRi.

Let M be any type 2 minimal hitting set of R. Since
R̃ contains all certificate ranges of M , M is also a min-
imal hitting set for R̃. Also, since the ranges in Ri do
not contain any element of Vi, M \ Vi is a hitting set
(not necessarily minimal) for Ri and therefore contains
some Mi ⊆M \Vi which is a minimal hitting set for Ri.

Notice that each element of M appears in at least one
of the Mis. This is because each v ∈ M has a certifi-
cate range R which belongs to some Ri implying that
v ∈Mi. In other words, M =

⋃
iMi. This suggests the

following algorithm for enumerating the minimal hitting
sets of type 2. For each i ∈ {1, . . . , λ}, recursively com-
pute the set Xi of all minimal hitting sets of (V \Vi,Ri).
Then, try all possible ways of picking one minimal hit-
ting set Mi ∈ Xi from each Xi and output M =

⋃
iMi

if it is a type 2 minimal hitting set for R. This way we
surely enumerate all type 2 minimal hitting sets. Now,
we need to bound the number of combinations we try.
We do it by proving an upper bound on each |Xi|.

Lemma 4 Let T be the number of minimal hitting sets
of R. Then, |Xi| ≤ T .

Proof. We show that each N ∈ Xi can be extended to
N ′ = N ∪ S for some S ⊆ Vi so that N ′ is a minimal
hitting set of R. The lemma then follows since each
distinct N ∈ Xi is extended to a distinct minimal hitting
set N ′ of R. Given any N ∈ Xi, let R̄ be the set of
ranges in R that are not hit by N . Clearly, each range
in R̄ has a non-empty intersection with Vi (otherwise it
would be in Ri and thus would be hit by N). Therefore,
there exists a set S ⊆ Vi which is a minimal hitting set
for R̄. Now, N ′ = N ∪ S is certainly a hitting set of
R. Furthermore, it is also minimal since each element
of N ′ has a certificate range. The certificate ranges for
each element v in N are also certificate ranges for v in
N ′ since these ranges belong to Ri and hence do not
contain any elements of S. Also, the certificate ranges
for each v in S are certificate ranges for v in N ′, since
these ranges belong to R̄ and hence do not intersect
N . �

It follows from the above lemma that the number of
combinations of Mi’s we need to try is at most Tλ. After
we find all type 1 minimal hitting sets we run a proce-
dure called Remove-Duplicates to remove any duplicates
we may have generated. Similarly, after we find all type
2 minimal hitting sets, we run Remove-Duplicates to

23rd Canadian Conference on Computational Geometry, 2011

440

CCCG 2011, Toronto ON, August 10–12, 2011

remove any duplicates. This ensures that in the end we
do not output any duplicates.

We now do an analysis of the running time of the al-
gorithm. In the analysis, we treat the number of ranges
m = |R| and the number T of the number of mini-
mal hitting sets of R as constants. We denote by t(n),
the running time of the procedure Enumerate on a hy-
pergraph (V,R) where |V | = n. The recursive calls in
Line 7 of Algorithm 1 for enumerating the type 1 min-
imal hitting sets take time λt((1 − ε)n). Similarly, the
total time spent in Line 12 is λt((1 − ε)n). The loop
starting on Line 14 is executed at most Tλ times. In
each iteration, checking whether M is a type 2 minimal
hitting set of R takes O(mn) time. Hence the total time
spent in the loop is O(mnTλ). Since there are at most T
distinct minimal hitting sets ofR, when we reach Line 9,
Type1-Set has at most λT minimal hitting sets. Each
of these have to be tested against a set of at most T dis-
tinct minimal hitting sets to see if it has already been
reported. Therefore, this takes O(λT 2n) time assuming
that it takes O(n) to check if two minimal hitting sets
are the same. Similarly, when we reach Line 20, the size
of Type2-Set is at most Tλ and each of the hitting sets
in it is compared against a set of at most T minimal
hitting sets to see if it has been reported before. This
takes O(Tλ+1n) time. We therefore have the following
recursion:

t(n) ≤ 2λt((1− ε)n) + λnT 2 +mnTλ + nTλ+1 + τ,

where τ is the time required to find a balanced sub-
division. Using the fact that t(n) is a constant when
n is smaller than some constant µ, we see that t(n) =

O((τ +nTλ+1 +nmTλ) ·n
log λ

log 1/(1−ε)). We therefore have
the following theorem.

Theorem 5 Procedure Enumerate(V,R) finds all min-
imal hitting sets of a range space (V,R) which admits
a balanced subdivision V1, . . . , Vλ with each |Vi| ≥ ε|V |,
whenever |V | is larger than a fixed constant µ, in time

O((τ + nTλ+1 + nmTλ) · n
log λ

log 1/(1−ε)), where n = |V |,
m = |R|, T is the number of minimal hitting sets of R
and τ is the time required to compute a balanced subdi-
vision.

Remark 3 The way the above algorithm is described
gives an output polynomial algorithm for generating
Tr(R). Using techniques from [20], we can modify the
algorithm to become incremental polynomial, that is, for
every M ′ ≤M the algorithm outputs M ′ transversals in
time polynomial in n, m and M ′.

Parallel Implementation of the Algorithm: Algo-
rithm 1 can be parallelized in an obvious way. Each
of the For loops can be executed in parallel, i.e., all
the iterations are done in parallel. Using poly(n,m, T)

processors, each of the other steps can be executed in
polylog(n,m, T) time. If we denote by t‖(n) the run-
ning time of such a parallel algorithm, again treating
m and T as constants, we get the following recurrence:
t‖(n) = t‖((1 − ε)n) + polylog(n,m, T). We therefore
have that t‖(n) is in polylog(n,m, T). It can be checked
that the total number of processors required is only
poly (n,m, T).

Using the techniques in [20], we can also get an incre-
mental version of this, i.e., for any M ′ ≤M , the running
time depends polylogarithmically on M ′, provided that
there is an efficient parallel algorithm for finding a single
minimal transversal of the input hypergraphR. The ex-
istence of the latter algorithm for general hypergraphs,
and in particular for range spaces, is an outstanding
open question (see e.g. [19]). The currently best known
parallel implementation for the later problem is due to
Karp, Upfal, and Wigderson [19] who gave a randomized
algorithm which makes only O(

√
n) parallel oracle calls

on O(n3/2) processors to compute a maximal indepen-
dent set (complement of a minimal transversal, in the
case of explicitly given hypegraphs) of an independence
system given by an oracle on n vertices.

The running time of the algorithm described above is
super-linear in the output size and hence not ideal for
some applications. Similarly, previous algorithms for
generating minimal hitting sets of half-planes [14] suf-
fer from the same short-coming. In some simple cases,
however, there exist algorithms which produce output
with polynomial delay i.e. the time spent between enu-
merating two minimal hitting sets is polynomial in the
size of the input and does not depend on the size of the
output. Such algorithms clearly have a running time
linear in the size of the output. We state the following
result without proof.

Theorem 6 Let P be a set of n points and R be a set
of m half-planes in R2. Then all minimal hitting sets of
the range spaces (P,R) and (R, P) can be generated in
poly(n,m) · k time where k is the size of the output.

References

[1] C. Berge. Hypergraphs. Elsevier-North Holand,
Amsterdam, 1989.

[2] J. C. Bioch and T. Ibaraki. Complexity of iden-
tification and dualization of positive boolean func-
tions. Information and Computation, 123(1):50–63,
1995.

[3] E. Boros, K. Elbassioni, V. Gurvich, and
L. Khachiyan. Generating maximal indepen-
dent sets for hypergraphs with bounded edge-
intersections. In LATIN ’04, pages 488–498, 2004.

CCCG 2011, Toronto ON, August 10–12, 2011

441

23rd Canadian Conference on Computational Geometry, 2011

[4] E. Boros and K. Makino. A fast and simple parallel
algorithm for the monotone duality problem. In
ICALP ’09, to appear, 2009.

[5] Bernard Chazelle. Cutting hyperplanes for divide-
and-conquer. Discrete & Computational Geometry,
9:145–158, 1993.

[6] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational Geometry, Algo-
rithms and Applications. SpringerVerlag, Amster-
dam, 1997.

[7] C. Domingo, N. Mishra, and L. Pitt. Efficient read-
restricted monotone cnf/dnf dualization by learn-
ing with membership queries. Machine Learning,
37(1):89–110, 1999.

[8] T. Eiter and G. Gottlob. Identifying the minimal
transversals of a hypergraph and related problems.
SIAM J. Computing, 24(6):1278–1304, 1995.

[9] T. Eiter, G. Gottlob, and K. Makino. New
results on monotone dualization and generating
hypergraph transversals. SIAM J. Computing,
32(2):514–537, 2003.

[10] T. Eiter, K. Makino, and G. Gottlob. Computa-
tional aspects of monotone dualization: A brief sur-
vey. Discrete Applied Mathematics, 156(11):2035–
2049, 2008.

[11] Thomas Eiter. Exact transversal hypergraphs and
application to Boolean µ-functions. Journal of
Symbolic Computation, 17(3):215–225, 1994.

[12] K. Elbassioni. On the complexity of the multiplica-
tion method for monotone CNF/DNF dualization.
In ESA ’06, pages 340–351, 2006.

[13] K. Elbassioni. On the complexity of mono-
tone dualization and generating minimal hyper-
graph transversals. Discrete Applied Mathematics,
156(11):2109–2123, 2008.

[14] K. Elbassioni, K. Makino, and I. Rauf. Output-
sensitive algorithms for enumerating minimal
transversals for some geometric hypergraphs. In
ESA, 2009.

[15] M. L. Fredman and L. Khachiyan. On the complex-
ity of dualization of monotone disjunctive normal
forms. Journal of Algorithms, 21:618–628, 1996.

[16] D. R. Gaur and R. Krishnamurti. Average case self-
duality of monotone boolean functions. In Cana-
dian AI ’04, pages 322–338, 2004.

[17] G. Gottlob. Hypergraph transversals. In FoIKS
’04: Proc. of the 3rd International Symposium on
Foundations of Information and Knowledge Sys-
tems, pages 1–5, 2004.

[18] F. Hüffner, R. Niedermeier, and S. Wernicke. Tech-
niques for practical fixed-parameter algorithms.
Comput. J., 51(1):7–25, 2008.

[19] R. M. Karp, E. Upfal, and A. Wigderson. The
complexity of parallel search. Journal of Computer
and System Sciences, 36(2):225–253, 1988.

[20] L. Khachiyan, E. Boros, K. Elbassioni, and V. Gur-
vich. A global parallel algorithm for the hypergraph
transversal problem. Information Processing Let-
ters, 101(4):148–155, 2007.

[21] L. Khachiyan, E. Boros, V. Gurvich, and K. El-
bassioni. Computing many maximal independent
sets for hypergraphs in parallel. Parallel Process-
ing Letters, 17(2):141–152, 2007.

[22] L. Lovász. Combinatorial optimization: some prob-
lems and trends. DIMACS Technical Report 92-53,
Rutgers University, 1992.

[23] Jiŕı Matousek. Efficient partition trees. Discrete &
Computational Geometry, 8:315–334, 1992.

[24] C. Papadimitriou. NP-completeness: A retrospec-
tive. In ICALP ’97, 1997.

[25] H. Tamaki. Space-efficient enumeration of mini-
mal transversals of a hypergraph. Technical Report
IPSJ-AL 75, 2000.

23rd Canadian Conference on Computational Geometry, 2011

442

CCCG 2011, Toronto ON, August 10–12, 2011

Helly Numbers of Polyominoes

Jean Cardinal ∗ Hiro Ito† Matias Korman∗ Stefan Langerman∗

Abstract

We define the Helly number of a polyomino P as the
smallest number h such that the h-Helly property holds
for the family of symmetric and translated copies of P
on the integer grid. We prove the following: (i) the only
polyominoes with Helly number 2 are the rectangles, (ii)
there does not exist any polyomino with Helly number
3, (iii) there exist polyminoes of Helly number k for any
k 6= 1, 3.

1 Introduction

Helly’s theorem on convex sets is a cornerstone of dis-
crete geometry, with countless corollaries and exten-
sions in both geometry and combinatorics. For in-
stance, Helly-type properties of convex lattice subsets
and hypergraphs have been studied since the 70’s [3].
On the other hand, the theory of polyominoes, con-
nected subsets of the square lattice Z2, has been devel-
oped since the 50’s with the seminal works of Solomon
Golomb [5] and the famous recreational mathematician
Martin Gardner.

In this paper, we propose a natural definition of the
Helly number of a polyomino P by considering families
of symmetric and translated copies of P . We show that
the only polyominoes with Helly number 2 are rectan-
gles. We prove the surprising fact that there does not
exist any polyomino with Helly number 3. Finally, we
exhibit polyominoes of Helly number k for any k ≥ 4.
Since there cannot be polyominoes of Helly number 1,
this completely characterizes the values of k for which
there exist polyominoes with Helly number k.

Definitions

We define a planar graph G = (Z2, E) that represents
the adjacency relation between grid points. Each vertex
(i, j) is connected to its four neighbors (i, j−1), (i−1, j),
(i + 1, j), and (i, j + 1). A subset of Z2 is connected if
its induced subgraph in G is connected.

Definition 1 A polyomino is a connected finite subset
of Z2.

∗Computer Science Department, Université Libre
de Bruxelles (ULB), Belgium, {jcardin, mkormanc,

stefan.langerman}@ulb.ac.be
†School of Informatics, Kyoto University, Japan,

itohiro@lab2.kuis.kyoto-u.ac.jp

Figure 1: Eight possible symmetries of a polyomino.

We often identify the point (i, j) ∈ Z2 with the unit
square [i, i+ 1]× [j, j + 1] ⊂ R2. With this transforma-
tion a polyomino becomes an orthogonal polygon whose
edges are on the unit grid. A copy of a polyomino P is
the image of P by the composition of an integer trans-
lation with one of the eight symmetries of the square
(that is, a mirror image and/or a 90, 180, or 270-degree
rotation of P). Figure 1 shows an example of a poly-
omino and its eight symmetries. The cardinality of a
polyomino will be denoted by |P | (and will be referred
as the size of P).

Definition 2 For any k ∈ N a polyomino P is called
k-Helly [7] if, for any finite family A of copies of P in
which A1∩. . .∩Ak 6= ∅ for any A1, . . . , Ak ∈ A, we have⋂
A∈AA 6= ∅. The Helly number H(P) of a polyomino

P is the smallest k ∈ N such that P is k-Helly.

By definition, any polyomino P that is k-Helly will
also be k′-Helly for any k′ ≥ k.

Previous work

A convex lattice set in Zd is the intersection of a convex
set in Rd with the integer grid Zd. In 1973, Doignon
proved that any family of convex lattice sets in Zd is
2d-Helly [3]. A matching lower bound is obtained by
considering all subsets of size 2d − 1 of {0, 1}d. In our
context, this implies that any convex polyomino (i.e. a
polyomino that is the intersection a convex set in R2

with Z2) is 4-Helly. Note that this is different from the
term convex polyomino, which usually refers to polyomi-
noes that are simultaneously row and column convex.

CCCG 2011, Toronto ON, August 10–12, 2011

443

23d Canadian Conference on Computational Geometry, 2011

Fractional Helly numbers of convex lattice subsets
are studied by Bárány and Matousek [1]. Recently,
Golumbic, Lipshteyn, and Stern showed that 1-bend
paths on a grid have Helly number 3 [6]. We note the
environment considered is slightly different, since they
considered that two paths have nonempty intersection
whenever they share an edge.

2 Helly Number up to 4

In this Section we study polyominoes of small Helly
number. Since we are considering finite polyominoes,
it is easy to see that no polyomino can have Helly num-
ber 1. Thus, we first look for polyominoes with Helly
number two.

Definition 3 A rectangle in Z2 is the cartesian product
of two intervals in Z. The bounding box of a polyomino
P is the smallest rectangle in Z2 that contains P .

It is easy to see that rectangles have Helly number 2.
We show that the converse also holds.

Theorem 1 A polyomino has Helly number 2 if and
only if it is a rectangle.

In the following we give a slightly stronger result; we
will show that the only polyominoes that satisfy the 3-
Helly property are rectangles.

Definition 4 A polyomino P has the small empty
quadrant structure if for some copy P ′ of P , there exist
values x1, y1 ∈ Z such that the intersection of P ′ with
the 2×2 rectangle [x1, x1+1]×[y1−1, y1] has cardinality
≥ 3, and P ′ contains no point in {(x, y) : x ≥ x1, y >
y1} (see Figure 2 (a)).

Definition 5 A polyomino P has the big empty quad-
rant structure if for some copy P ′ of P , there exist
values x1, y1, x2, y2 ∈ Z, y1 < y2, x1 < x2 such that
{(x1, y2), (x1, y1), (x2, y1)} ⊂ P ′ and P ′ contains no
point in the upper right quadrant {(x, y) : x > x1, y >
y1} (see Figure 2 (b)).

Given a rectangle [x0, x1]× [y0, y1], its height is y1 −
y0 + 1. Analogously, its width is x1 − x0 + 1. The
height and width of a polyomino P are equal to the
height and width of the smallest enclosing rectangle of
P , respectively.

Lemma 2 Every polyomino P whose height and width
are 2 or more either has the small empty quadrant or
the big empty quadrant structure.

Proof. Observe that if P has either height or width
exactly 1 it must be a rectangle. Hence, in particular,
this Lemma shows that any polyomino (other than some

(x1, y2)

(x1, y1) (x2, y1)

(a) (b)

(x1, y1)

∅

∅

Figure 2: Illustration of Lemma 2. In order for a poly-
omino P (of height at least 2) to not have the small
empty quadrant structure (case (a)), P cannot have
two consecutive points on its upper boundary. If this
occurs, we can find a large empty quadrant (case (b)).
The coordinates x1, x2, y1, y2 that generate the big or
small empty quadrant are shown in black.

rectangles), has one of the two structures. Let (x0, y0)
be the point of P highest x-coordinate along the upper
boundary of its bounding box.

We first show that if (x0, y0−1) 6∈ P , then there exists
i ∈ N such that (x0−i+1, y0), (x0−i, y0), (x0−i, y0−1) ∈
P . Proof is as follows: by definition of (x0, y0), we have
that (x0 + 1, y0) 6∈ P , and (x0, y0 + 1) 6∈ P . If we
suppose that (x0, y0−1) 6∈ P , then, in order for P to be
connected, we must have (x0 − 1, y0) ∈ P . By applying
the same argument iteratively on this new point, we
must have that eventually there exists an i such that
both (x0 − i − 1, y0) ∈ P and (x0 − i − 1, y0 − 1) ∈ P ,
otherwise P is a rectangle of height 1.

Therefore, if (x0, y0 − 1) 6∈ P , P has the small empty
quadrant structure. Now assume otherwise and let j
be the smallest integer such that (x0, y0 − j) ∈ P and
(x0, y0 − j − 1) 6∈ P . If the quadrant {(x, y) : x >
x0, y ≥ y0 − j} contains no point of P , then, by the
same argument as in the above claim, there must be a
point of P immediately left of the column x0 between
y0 and y0 − j. In other words, there must be an integer
j′ ∈ [0, j−1] such that |P ∩([x0−1, x0]×[y0−j′−1, y0−
j′])| ≥ 3, and again P has the small empty quadrant
structure.

Finally, if the quadrant {(x, y) : x > x0, y ≥ y0 − j}
is not empty, let (x′, y′) be the highest point in that
quadrant (pick one arbitrarily if many exist). In that
case, the three points (x0, y0), (x0, y

′), (x′, y′) form a big
empty quadrant structure. �

Lemma 3 If a polyomino P has the big empty quadrant
structure, then H(P) ≥ 4.

Proof. We construct an arrangement of four copies of
P such that every subset of three copies have a common

23rd Canadian Conference on Computational Geometry, 2011

444

CCCG 2011, Toronto ON, August 10–12, 2011

point, but there is no point common to all four copies.
We denote these copies by Pi, with i = 1, . . . , 4.

Consider the three points (x1, y2), (x1, y1), and
(x2, y1) given by the big empty quadrant structure
in P . We construct the copies Pi by flipping P
around the x and/or y axis so that those three
points map to all possible triples of points in the set
{(x1, y1), (x1, y2), (x2, y1), (x2, y2)}. Since (x2, y2) 6∈ P ,
each of the four points is missing from exactly one copy
Pi, but belongs to the other three.

Now we observe that the empty quadrants of the four
copies Pi cover Z2. Hence for any (x, y) ∈ Z2, there
exists at least one i ∈ {1, 2, 3, 4} such that (x, y) 6∈ Pi.
Therefore, the four copies have no common intersection
point. �

We now consider polyominoes that have the small
empty quadrant structure. We will use the following
observation.

Observation 1 For any polyomino P that is not a
rectangle, there exists a 2 × 2 rectangle R such that
|P ∩R| = 3.

Lemma 4 If a polyomino P has the small empty quad-
rant structure and is not a rectangle, then H(P) ≥ 4.

Proof. We construct an arrangement of at most 8
copies of P such that every subset of three copies have
a common point, but there is no point common to all
copies. Let (x1, y1) be the point given by the small
empty quadrant structure, and P ′ the corresponding
copy of P .

We first consider the case in which the intersection L
of P ′ with the 2× 2 rectangle [x1, x1 + 1]× [y1 − 1, y1]
has cardinality exactly 3. In that case, we can use a
similar construction as in Lemma 3, with four copies
of P ; we define the copies Pi for i = 1, 2, 3, 4 as the
four rotations of P that map the bounding box of L
to the same 2 × 2 rectangle. Those four points are the
respective intersection points of all four possible triples.
Similar to the previous case, the four empty quadrants
cover all the other points of Z2, hence there cannot be
a common intersection point.

It remains to consider the case in which the intersec-
tion L has size 4. In this situation we use the same con-
struction, but complete it with four more copies. From
Observation 1 and the fact that P is not a rectangle,
we know that there exists a 2× 2 rectangle R such that
|P ′ ∩ R| = 3. We add four additional copies Pi, with
i = 5, 6, 7, 8, that are the four rotations of a translated
copy of P ′ mapping R to the bounding box of L. Each
of the four points of this rectangle belongs to copies
P1, P2, P3, P4 (since |L| = 4), and to exactly three of
the four copies P5, P6, P7, P8 (since |P ′∩R| = 3). Hence
every triple of copies intersects. However, from the pre-
vious construction, there still exists no point common

to all 8 copies. This construction does not work for
rectangles, since Observation 1 does not hold in that
case. �

Corollary 5 There is no polyomino of Helly number 3.

Combining this result with the upper bound of [3], we
can compute the Helly number of any convex polyomino:

Corollary 6 Let P be a polyomino that is the intersec-
tion a convex set in R2 with Z2. If P is a rectangle then
H(P) = 2. Otherwise H(P) = 4.

3 Hypergraph Generalization

In this section we study some interesting properties of
polyominoes of Helly number k. Since these results hold
for subsets of a discrete set of points, we state these
results in a more general fashion. Instead of copies of
a given polyomino we can consider the same definitions
for families of subsets of Z2. Using this idea, one can
extend the Helly property to hypergraphs.

Definition 6 A hypergraph G = (V, E) is k-Helly if for
anyW ⊆ E such that e1∩. . .∩ek 6= ∅ for all e1, . . . , ek ∈
W, we have ∩e∈We 6= ∅. The Helly number H(G) of a
hypergraph G is the smallest value k such that G is k-
Helly.

Helly numbers of hypergraphs have been deeply stud-
ied (see for example the survey of Dourado, Protti, and
Szwarcfiter [4]). Observe that the above definition is
a generalization of the previous definition for the poly-
omino case. Indeed, the polyomino formulation is the
particular case in which V = Z2 and E contains all sub-
sets of points contained in copies of a fixed polyomino
P .

Let G be a hypergraph that is not k-Helly. By defini-
tion, there exists a subset W ⊆ E such that ∩e∈We = ∅
and e1 ∩ . . . ∩ ek 6= ∅ for any e1, . . . , ek ∈ W. Any such
family is called a a k-witness set of G. For every V ′ ⊂ V ,
define the restriction of G to V ′ as G|V ′ = (V ′, E|V ′),
where E|V ′ = {e ∩ V ′|e ∈ E}. With these definitions we
can prove an upper bound on the Helly number of any
hypergraph:

Theorem 7 Let G = (V, E) be a hypergraph. If |e| ≤ k
∀e ∈ E, then G is (k + 1)-Helly.

Proof. We will show the result by induction on k. Ob-
serve that the claim for k = 0 is trivial, hence we focus
on the induction step. Assume otherwise: let W ⊆ E
be a (k + 1)-witness set, and e be an edge of maximum
size among those of W (by hypothesis we know that
|e| ≤ k).

Consider the hypergraph G′ = (e,W|e \ {e}) (that is,
we disregard all other vertices except those contained

CCCG 2011, Toronto ON, August 10–12, 2011

445

23d Canadian Conference on Computational Geometry, 2011

in e). Since |e| ≤ k, its intersection with any other
edge of W must be of size at most k − 1. Furthermore,
every k-tuple of edges in G′ have a common intersection
(since every k+1 tuple inW including e had a common
intersection). Therefore, by induction G′ is k-Helly. In
particular all edges in G′ have a common intersection,
which by construction intersects e and contradicts the
witness property. �

Corollary 8 Any polyomino P satisfies H(P) ≤ |P |+
1.

The proof is direct from the fact that the associated hy-
pergraph is |P |-uniform. We also note that the bound of
Corollary 8 is tight: the polyomino {(0, 0), (1, 0),(0, 1)}
(commonly referred as El [2]) has cardinality 3 and con-
tains the small empty quadrant structure. In particular,
by Lemma 4 its Helly number must be at least 4.

In the following we give a few more tools to use when
proving that a given hypergraph is k-Helly (or equiva-
lently, that there cannot exist a k-witness).

Lemma 9 Any k-witnessW of a hypergraph G satisfies
|W| ≥ k + 1 and |e1 ∩ . . . ∩ e`| ≥ k − ` + 1 for all
e1, . . . , e` ∈ W.

Proof. Observe that the first claim is trivial, since if
W has size k or less it cannot have an empty intersec-
tion. The proof of the second claim is by contradiction:
assume otherwise and let e1, . . . , e` ∈ W such that such
that e1 ∩ . . . ∩ e` = {v1, . . . , vm} for some m ≤ k − `.
Since ∩e∈We = ∅, for any i ≤ k − ` there exists fi ∈ W
such that vi 6∈ fi.

Consider now the intersection of e1∩. . .∩e`∩f1∩. . .∩
fm: by construction, this set is empty. Moreover, the
size of the set {e1, . . . , e`, f1, . . . , fm} is at most `+m ≤
`+ k− ` = k, which contradicts the witness property of
W. �

For any hypergraph G and vertex v ∈ V , we define
cv = {e ∈ W, v ∈ e} as the edges that contain v. In the
following we show that we can ignore vertices that are
not heavily covered.

Lemma 10 LetW be a k-witness set of G and let V ′ =
{v ∈ V, |cv| ≥ k}. The set W|V ′ is a k-witness for G|V ′ .

Proof. Observe that ∩e∈We = ∅ ⇒ ∩e∈W|V ′ e = ∅.
Hence, it suffices to show that e1 ∩ . . .∩ ek ∩V ′ 6= ∅, for
any e1, . . . , ek ∈ W,

Let S = e1 ∩ . . . ∩ ek. Observe that, since W is a
witness set, we have S 6= ∅. Moreover all points of
S are covered by at least k hyperedges (since they are
contained in e1, . . . , ek). Hence we have S ⊆ V ′. In
particular, we obtain e1∩ . . .∩ek = e1∩ . . .∩ek∩V ′ 6= ∅
which proves the Lemma. �

q

Fq

bq/2c

3

Figure 3: Polyomino Fq.

2

qbq/2c

q bq/2c

Figure 4: Polyominoes A0 (solid blue) and B2 (dashed
in red). In the example q = 8.

Lemma 9 gives a lower bound on the size of a witness
set. We use a similar reasoning to find an upper bound
as well:

Lemma 11 Let G be any hypergraph such that H(G) =
k. There exists a (k − 1)-witness set W ⊆ E of P such
that |W| = k.

Proof. Let Wmin be the (k− 1)-witness set of smallest
size (pick any arbitrarily if many exist) and let m =
|Wmin|. By Lemma 9 we have m ≥ k. If m = k we are
done, thus we focus in the m > k case.

By minimality of Wmin, there cannot exist a proper
subsetW ′ ⊂ Wmin such that ∩A∈W′A = ∅ (otherwise we
would have a witness set of smaller size). In particular,
any subset {e1, . . . , ek} ⊂ Wmin must have non-empty
intersection. Since G is k-Helly, we have ∩e∈Wmin

e 6= ∅
which contradicts the witness property. �

4 Higher Helly Numbers

In the following we use the above tools to show the
existence of polyominoes of Helly number k (for any k ≥
5). For any q ∈ N, we define polyomino Fq is defined as
the union of rectangles [−bq/2c,−1]× [0, 0], [1, q]× [0, 0]
and [−1, 1]× [1, 1]. Observe that |Fq| = b3q/2c+ 3, see
Figure 3.

Lemma 12 For any q ≥ 4, we have H(Fq) = q + 1.

Proof. We show the lower bound by constructing a
q-witness set W of Fq. For any i ≤ q, we define
Ai as the copy of Fq translated such that the left-
most point is at position (i, 0). Analogously, we de-
fine polyomino Bi as the 180-degree rotation of Fq
translated so as the leftmost point is at position (i, 0)

23rd Canadian Conference on Computational Geometry, 2011

446

CCCG 2011, Toronto ON, August 10–12, 2011

A0

A1

Adq/2e−1

B0

B1

Bbq/2c

...

...

Figure 5: q-Witness set for polyomino Fq (for clarity,
each of the copies has been shifted vertically). Ob-
serve that, although the intersection of the witness set
is empty, any q elements of the set have nonempty inter-
section. In the figure, we depicted with a vertical strip
the point that is contained in all polyominoes except
Adq/2e − 1.

(see Figure 4). We define the witness set as W =
{A0, . . . , Adq/2e−1, B0, B0, . . . , Bbq/2c}. Observe that
|W| = dq/2e+ bq/2c+ 1 = q + 1 and that the intersec-
tion between polyominoes Ai and Bj is in the rectangle
[0, b3q/2c]× [0, 0] (for any i and j).

More interestingly, for any 0 ≤ i ≤ dq/2e − 1, poly-
omino Ai does not contain point (bq/2c+ i, 0) (and this
point is contained in all other polyominoes). The same
result holds for polyomino Bi: for any 0 ≤ i ≤ bq/2c,
point (q+i, 0) is contained in all polyominoes except Bi.
In particular, we have ∩C∈WC = ∅ and any subset of
size q has nonempty intersection (see Figure 5). Hence,
W is a q-witness set of Fq.

In order to finish the proof of the Lemma, we must
show that polyomino Fq indeed is (q+1)-Helly. Assume
that Fq is not (q+ 1)-Helly. Let W be a (q+ 1)-witness
set and let A be the leftmost copy of Fq in W (pick
any arbitrarily if more than one exist). Without loss of
generality, we can assume that A = A0. By Lemma 9,
there must exist at least q+ 1 other copies A of Fq such
that |A ∩A0| ≥ q.

First notice that if any two copies of the polyomino do
not align their longest segment horizontally, they only
have an intersection of size at most 4 with A0. More-
over, the only case when this intersection has size 4 is
if they are two copies flipped across the horizontal axis.
In the latter case, any further copy can have an inter-
section of size at most 3 with at least one of those two
copies. Since in either case we obtain a contradiction
with Lemma 9 and the fact that q ≥ 4, we can assume
that for any q+1-witness set, all copies ofW are aligned
horizontally.

Consider now the 3 lower points (bq/2c −
1,−1), (bq/2c,−1) and (bq/2c + 1,−1) of A0. Since
A0 is the leftmost copy of P and q ≥ 4 and copies
are aligned horizontally, the three points can only be
covered by at most two other copies (A1 and A2).
Therefore we apply Lemma 10 to show that any
(q + 1)-witness set of Z2 would be a witness set of
Z2\{(bq/2c−1,−1), (bq/2c,−1), (bq/2c+1,−1)}. Thus,
we focus our attention in the rectangle [0, b3q/2c]×[0, 0].

Observe that, since we are considering only this rect-
angle, the extra copies caused by reflections across the
horizontal axis are eliminated because they become the
same hyperedge in the restricted hypergraph. Hence, all
elements of W must be of the form Ai or Bj for some
i, j ≥ 0. Also notice that we have |A0 ∩ Ai| ≥ q if and
only if i ∈ {1, . . . , bq/2c − 1} (provided that q ≥ 4).
Analogously, if q ≥ 2 we have |A0 ∩ Bj | ≥ q ⇔ j ∈
{0, . . . , bq/2c− 1}. In particular, the set W can have at
most 2bq/2c elements, hence there cannot exist a (q+1)-
witness set.

�

Theorem 13 For any k ∈ N such that k 6= 1, 3, there
exists a polyomino P such that H(P) = k.

CCCG 2011, Toronto ON, August 10–12, 2011

447

23d Canadian Conference on Computational Geometry, 2011

5 Conclusion

In this paper we have completely characterized for which
values of k there exist polyominoes of Helly number k.
An interesting problem is to find a method to compute
the Helly number of a given polyomino. Using the re-
sults of Section 3, it is not hard to devise an algorithm
that runs in exponential time, testing all possible wit-
ness sets. Although finding an algorithm that works for
general hypergraphs is difficult [4], we wonder whether
one can devise an algorithm that runs in polynomial
time for any given polyomino P .

Finally note that we defined a copy of P as any image
of P with respect to translations and the 8 symmetries
of the square. Our results do not hold if we only consider
translations (or rotations and translations). Hence, it
would be interesting to see how much can the Helly
number of a given polyomino change when allowing or
forbidding these operations.

References

[1] I. Bárány and J. Matousek. A fractional Helly theo-
rem for convex lattice sets. Advances in Mathematics,
174(2):227 – 235, 2003.

[2] J. Beck. Combinatorial games: Tic–Tac–Toe theory. En-
cyclopedia of mathematics and its applications. Cam-
bridge Univ. Press, Cambridge [u.a.], 2008.

[3] J.-P. Doignon. Convexity in crystallographic lattices.
Journal of Geometry, 3:71–85, 1973.

[4] M. C. Dourado, F. Protti, and J. L. Szwarcfiter. Compu-
tational aspects of the helly property: a survey. Journal
of the Brazilian Computer Society, 12(1):7–33, 2006.

[5] S. W. Golomb. Polyominoes: Puzzles, Patterns, Prob-
lems, and Packings. Princeton University Press, 2nd edi-
tion, 1996.

[6] M. C. Golumbic, M. Lipshteyn, and M. Stern. Edge
intersection graphs of single bend paths on a grid. Net-
works, 54(3):130–138, 2009.

[7] J. E. Goodman and J. O’Rourke, editors. Handbook of
discrete and computational geometry. CRC Press, Inc.,
Boca Raton, FL, USA, 2004.

23rd Canadian Conference on Computational Geometry, 2011

448

CCCG 2011, Toronto ON, August 10–12, 2011

Open Guard Edges and Edge Guards in Simple Polygons

Csaba D. Tóth∗ Godfried Toussaint† Andrew Winslow‡

Abstract

An open edge of a simple polygon is the set of points in
the relative interior of an edge. We revisit several art
gallery problems, previously considered for closed edge
guards, using open edge guards. A guard edge of a poly-
gon is an edge that sees every point inside the polygon.
We show that every simple non-starshaped polygon ad-
mits at most one open guard edge, and give a simple
new proof that it admits at most three closed guard
edges. We characterize open guard edges, and derive an
algorithm that finds all open guard edges of a simple
n-gon in O(n) time in the RAM model of computation.
Finally, we present lower bound constructions for simple
polygons with n vertices that require bn/3c open edge
guards, and conjecture that this bound is tight.

1 Introduction

Let P be a simply connected closed polygonal domain
with n vertices. Two points p, q ∈ P are mutually visible
to each other if the closed line segment pq lies in P . In
a starshaped polygon P , all points in P are visible from
a single point x ∈ P , which is called a guard point for
P . The set of all guard points is the kernel of P .

For a set S ⊆ P of multiple guards, or the trajectories
of mobile guards, we adopt the notion of weak visibil-
ity [2]. A point p ∈ P is (weakly) visible to a set S ⊆ P
if it is visible from some point in S. If every point p ∈ P
is (weakly) visible from S, then S is a guard set.

Park et al. [8] considered guard sets restricted to
(closed) edges of a polygon. They proved that a non-
starshaped simple polygon has at most three closed
guard edges, and this bound is tight. They also de-
signed an O(n) time algorithm for finding all closed
guard edges in a simple n-gon. Later, it was shown
that a shortest guard segment along the boundary of
P , or anywhere in P can also be found in optimal O(n)
time [3, 4]. A watchman tour is a closed curve γ ⊂ P
which is a guard set for P . Tan [11] gave an O(n5) time
algorithm for finding a shortest watchman tour.

∗Department of Mathematics and Statistics, Univeristy of Cal-
gary, Calgary, AB, Canada, cdtoth@math.ucalgary.ca
†Department of Music, Harvard University, Cambridge, MA,

USA, Department of Computer Science, Tufts University, Med-
ford, MA, USA, School of Computer Science, McGill University,
Montreal, QC, Canada, godfried@cs.mcgill.ca
‡Department of Computer Science, Tufts University, Medford,

MA, USA awinslow@cs.tufts.edu

If several guards are available, we are interested in
the minimum number of guards that can jointly cover
any simple polygon with n vertices. By a classical result
of Klee, a set of bn/3c vertex guards are always suffi-
cient and sometimes necessary to cover a simple n-gon.
It is known that bn/4c closed edge guards are sometimes
necessary, and b3n/10c+1 are always sufficient [9]. It is
a longstanding conjecture that bn/4c+O(1) closed edge
guards are always sufficient. However, bn/4c (open or
closed) segment guards are always sufficient and some-
times necessary [7].

P
u

v P

u
v

Figure 1: The region visible by an open edge uv (left) and
a closed edge uv (right) in a simple polygon.

Viglietta [12] recently suggested the use of open edge
guards for various scenarios. A closed edge includes the
endpoints, and an open edge does not. See Fig. 1. In-
tuitively, a closed edge can “see around the corner” if
its endpoint is a reflex vertex, while an open edge can-
not. In this note, we examine two art gallery prob-
lems involving edges of polygons. First, guard edges of
a polygon; single edges that guard the entire polygon.
Then we consider edge guards; sets of edges that to-
gether guard the entire polygon.

2 Preliminaries

It is easy to express visibility in terms of shortest paths
in a simple polygon (c.f., [1]). Given two points, p and
q, inside a simple polygon P , the geodesic path(p, q) is
the shortest directed path from p to q that lies entirely
in P . Points p and q see each other iff path(p, q) is a
straight line segment. Every interior vertex of path(p, q)
is a reflex vertex of P . We characterize weak visibility
between a point and an edge in terms of geodesics.

Lemma 1 Let p be a point inside a simple polygon P .

(a) Point p is visible from an open edge uv iff p is the
only common vertex of path(p, u) and path(p, v);

(b) p is visible from a closed edge uv iff all common
vertices of path(p, u) and path(p, v) are in {p, u, v}.

CCCG 2011, Toronto ON, August 10–12, 2011

449

23rd Canadian Conference on Computational Geometry, 2011

Proof. (a) If p is the only common vertex of the two
geodesics, then uv, path(p, u), and path(p, v) form a
pseudo-triangle lying in P with corners p, u and v. Each
corner of a pseudo-triangle is weakly visible from the op-
posite side, hence p is visible from a point in uv (Fig. 2,
left). If q 6= p is the last common vertex of the two
geodesics, then q is an interior point of every geodesic
from p to any w ∈ uv, hence p is not visible from any
point of the open edge uv (Fig. 2, middle).

P

p

P p
v

uu

v

q

P

p

u

v

Figure 2: The geodesics path(p, u) and path(p, v). Left: p is
the only common vertex of path(p, u) and path(p, v). Mid-
dle: the common vertices are p and q. Right: The common
vertices are p and v.

(b) If p is the only common vertex of the two
geodesics, then p is visible from an interior point of uv
as in part (a). If u or v is the only common vertex (apart
from p) of the two geodesics, then point p is directly vis-
ible from u or v (Fig. 2, right). Finally, if q 6∈ {p, u, v}
is a common vertex of the two geodesics, then q is an
interior point of every geodesic from p to any w ∈ uv,
and hence p is not visible from any point of the closed
edge uv. �

3 Open Guard Edges

In this section we consider open guard edges. Observe
that every edge of a convex polygon is a guard edge,
since it lies in the kernel of the polygon; but there may
be up to n/4 open guard edges even if all edges are
disjoint from the kernel (Fig. 3, left). In this section,
we show that every non-starshaped simple polygon has
at most one open guard edge. This bound is tight, as
shown by the example in Fig. 3, right.

kernel(P)

P
P

Figure 3: Left: a starshaped n-gon P with n/4 open guard
edges where the kernel lies in the interior of P . Right: a
non-starshaped polygon with one open guard edge.

We prove the upper bound by contradiction: we prove
that a simple polygon with at least two open guard
edges is starshaped. Let P be a simple polygon, and

suppose that edges ab and cd are open guard edges. We
may assume without loss of generality that a, b, c, d
are in counterclockwise order along the boundary of P
(possibly, b = c or d = a).

Lemma 2 path(b, c) and path(a, d) are disjoint.
path(a, c) = ac and path(b, d) = bd are line segments.

Proof. Note that ab, path(b, c), cd, and path(a, d) form
a geodesic quadrilateral Q. Every geodesic between a
point in ab and a point in cd lies in Q. If path(b, c) and
path(a, d) have a common interior vertex q, then a or b
is not visible from the open edge cd by Lemma 1, and so
cd cannot be a guard edge. We conclude that path(b, c)
and path(a, d) are disjoint, and Q is a simple polygon.

The geodesics path(a, c) and path(b, d) lie inQ, so any
interior vertex of path(a, c) and path(b, d) is a vertex of
Q. If an interior vertex of path(a, c) is in path(b, c), then
c is not visible from ab. Similarly, if an interior vertex of
path(a, c) is in path(a, d), then a is not visible from cd.
Hence, path(a, c) has no interior vertices. Analogous
argument shows that path(b, d) has no interior vertices,
either. �

Lemma 3 The intersection point x = ac ∩ bd is in the
kernel of P .

Proof. Refer to Fig. 4. It is enough to show that an

ba

d

c

x

p

o

q

Figure 4: A schematic of the proof that a simple polygon
with two open guard edges must be starshaped. The guard
edges are ab and cd. The point x = ac ∩ bd is in the kernel
of the polygon, since every point p ∈ P is visible from x.

arbitrary point p in polygon P is visible from x. By
Lemma 2, ac and bd are diagonals of P . The trian-
gles ∆(abx) and ∆(cdx) lie inside P . If p ∈ ∆(abx) or
p ∈ ∆(cdx), then segment px lies in the same triangle.
Assume now that p is outside of both triangles. Since ab
and cd are open guard edges, p sees some points in their
relative interiors, say o ∈ ab and q ∈ cd. The quadri-
lateral Q = (o, p, q, x) is simple, and so it lies inside P .
Note that Q has convex vertices at o and q. No matter
whether Q is a convex or a non-convex quadrilateral, its
diagonal px lies inside Q, and hence inside P . �

Theorem 4 Every non-starshaped simple polygon has
at most one open guard edge.

23rd Canadian Conference on Computational Geometry, 2011

450

CCCG 2011, Toronto ON, August 10–12, 2011

Proof. If a simple polygon has two open guard edges,
then it has a nonempty kernel by Lemma 3, and thus
is starshaped. So every non-starshaped simple polygon
has at most one open guard edge. �

Remark. The upper bound of Theorem 4 does not
apply to polygons with holes. Note that an open edge on
the boundary of a hole cannot see the entire boundary of
the hole. So all open edge guards are on the boundary
of the outer polygon. By the result in [8] there are
at most 3 closed guard edges on the outer boundary
of a polygon with holes. Since every open guard edge
is a closed guard edge, as well, a polygon with holes
has at most 3 open guard edges. This upper bound
is tight, as shown by the following simple construction.
Let the outer polygon and a hole be two centrally dilated
triangles. Then all three open edges of the outer polygon
are guard edges.

4 Closed Guard Edges

In this section, we extend the argument of the previous
section to give a short proof for the following result of
Park et al. [8].

Theorem 5 ([8]) Every non-starshaped simple poly-
gon has at most three closed guard edges.

We proceed by contradiction, and show that the pres-
ence of four closed guard edges implies that the polygon
is starshaped. Let P be a simple polygon where g1, g2,
g3, and g4, in counterclockwise order, are guard edges.
Let g1 = ab and g3 = cd such that a, b, c, and d are in
counterclockwise order along P . Note that the vertices
a, b, c, and d are distinct.

Lemma 6 The geodesics path(b, c) and path(a, d) are
disjoint; and all vertices of the geodesics path(a, c) and
path(b, d) are in {a, b, c, d}.

Proof. Consider the geodesic quadrilateral Q formed
by ab, path(b, c), cd, and path(a, d). Every geodesic
between a point in ab and a point in cd lies in Q. Sup-
pose that an interior vertex q of path(b, c) is a vertex of
path(a, d). If q = a or an interior vertex of path(a, d),
then b is not visible from the closed edge cd by Lemma 1.
Similarly, if q = d, then c is not visible from the closed
edge ab. We conclude that path(b, c) and path(d, a) are
disjoint, and Q is a simple polygon.

The geodesics path(a, c) and path(b, d) lie inQ, so any
interior vertex of path(a, c) and path(b, d) is a vertex of
Q. If path(a, c) and path(b, c) have a common interior
vertex, then c is not visible from ab. Similarly, no two
geodesics from {a, b} to {c, d} can have any common
interior vertex. Hence all interior vertices of path(a, c)
and path(b, d) are in {a, b, c, d}. �

Corollary 7

• If {a, b, c, d} is in convex position, then path(a, c) =
ac and path(b, d) = bd. Fig. 5, left.

• Otherwise suppose w.l.o.g. that conv({a, b, c, d}) =
∆(abc). Then path(a, c) = (a, d, c) and
path(b, d) = bd. Fig. 5, right.

a b

cd

x

a b

c

d x

Figure 5: The convex hull of two closed guard edges, ab and
cd, is either a quadrilateral or a triangle.

Lemma 8 The intersection point x = path(a, c) ∩
path(b, d) is in the kernel of P .

Proof. It is enough to show that an arbitrary point p in
polygon P is visible from x. By Corollary 7, the trian-
gles ∆(abx) and ∆(cdx) lie inside P (one of the triangles
may be degenerate). If p is in ∆(abx) or ∆(cdx), then
segment px lies in the same triangle. Refer to Fig. 6.

p

g4

g1

g3

g3

a b

d
c

x

Figure 6: A schematic of the proof that a simple polygon
with four closed guard edges must be starshaped. Suppose
that g1 = ab, g2, g3 = cd, and g4 are guard edges. If a point
p ∈ P is not visible from x = path(a, c)∩path(b, d), then we
show that p is also not visible from g2 or g4.

Assume now that p is outside of both triangles and,
w.l.o.g. it is on the right side of the directed geodesics
path(a, c) and path(b, d). That is, p and the guard edge
g4 are on opposite sides of these geodesics.

If path(p, x) = px, then p is visible from x. Suppose,
to the contrary, that path(p, x) is not a straight line
segment. Assume w.l.o.g. that path(p, x) makes a right
turn at its last interior vertex q. Then path(p, d) also
makes a right turn at q. Since p is visible from the
guard edge cd, we must have q = c by Lemma 1(b).
Recall that any geodesic from p to a point in g4 crosses
both path(a, c) and path(b, d). Since path(p, x) makes
a right turn at c, every geodesic from p to a point in

CCCG 2011, Toronto ON, August 10–12, 2011

451

23rd Canadian Conference on Computational Geometry, 2011

g4 also make a right turn at c. However, c is disjoint
from g4, and by Lemma 1(b), p is not visible from g4,
contradicting our initial assumption. We conclude that
path(p, x) is a straight line segment, and so p is visible
from x. �

Proof of Theorem 5. If a simple polygon has four
closed guard edges, then it has a nonempty kernel
by Lemma 8, and thus is starshaped. So every non-
starshaped simple polygon has at most three closed
guard edges. �

5 Characterizing Open Guard Edges

In this section, we characterize the open guard edges of a
simple polygon P in terms of the left and right kernels
of P (defined below). This leads to a straightforward
algorithm to find all open guard edges in P .

Left and right kernels. Recall that the set of points
from which the entire polygon P is visible is the kernel,
denoted K(P), which is the intersection of all halfplanes
bounded by a supporting line of an edge of P and fac-
ing towards the interior of P . Lee and Preparata [5]
designed an optimal O(n) time algorithm for comput-
ing the kernel of simple polygon with n vertices. We
now define a weaker version of the kernel: the left and
right kernels of P , denoted Kleft(P) and Kright(P).

For every reflex vertex r, we define two polygons
Cleft(r) ⊂ P and Cright(r) ⊂ P . Shoot a ray from r in
a direction collinear with the edge incident to r preced-
ing (resp., following) r in counterclockwise order; and
let Cleft(r) (resp., Cright(r)) be the part of P on the left
(resp., right) of the ray. These polygons have previously
been defined in [3]. It is clear that if P is weakly visible
from a set S ⊂ P , then S must intersect both Cleft(r)
and Cright(r) for every reflex vertex r.

Now we define Kleft(P) as the intersection of polygons
Cleft(r) for all reflex vertices r; and Kright(P) as the
intersection of polygons Cright(r) for all r. See Fig. 7
for an example. Clearly, we have

K(P) = Kleft(P) ∩Kright(P).

By construction, both Kleft(P) and Kright(P) are con-
vex polygons, whose edges are collinear with some of
the edges of P .

Left and right kernel decompositions. In the fol-
lowing lemma we use two decompositions of a polygon
based on its left and right kernels. The left kernel de-
composition is the decomposition of the polygonal do-
main P in the following way: One cell of the decom-
position is the left kernel Kleft(P). The region inside P
but in the exterior of Kleft(P) is decomposed by extend-
ing each edge of Kleft(P) in clockwise direction. Refer
to Fig. 7. Since Kleft(P) lies on the left side of rays

Kleft(P)

P

Kright(P)

P

Figure 7: The left and right kernels of a polygon. The
dotted lines bound some polygons Cleft(r) and Cright(r), but
they are not part of the kernel decompositions.

emitted from reflex vertices of P , the clockwise exten-
sion of every edge of Kleft(P) reaches a collinear edge
of P . The right kernel decomposition is defined anal-
ogously: one cell is Kright(P), and the rest of P is de-
composed by counter-clockwise extensions of the edges
of Kright(P). Note that if an open edge of P is dis-
joint from the left kernel, then it is adjacent to a unique
region of the left kernel decomposition. Additionally,
each region of the decomposition, except for Kleft(P),
has exactly one common edge with the left kernel.

Lemma 9 An open edge e of a simple polygon P is a
guard edge of P iff e intersects both the left and the right
kernels of P .

Proof. Let e = uv be an open edge of P . First assume
that e is disjoint from the left kernel Kleft(P). Then e
is adjacent to a unique region in the left kernel decom-
position of P . This region is adjacent to a unique edge
k of Kleft(P), and k lies on a ray emitted by a reflex
vertex r on P . Then e and the polygon Cleft(r) lies on
opposite sides of the supporting line of k. Hence e does
not intersect Cleft(r), and so it is not a guard edge.

Now assume that e = uv is not a guard edge, that
is, there is a point p ∈ P such that p is not visible
from e. By Lemma 1(a), the geodesics path(p, u) and
path(p, v) have common interior vertices. Let r be their
last common vertex, which is necessarily a reflex vertex
of P , and assume w.l.o.g. that both geodesics make a
right turn at r. Then p ∈ Cleft(r), but e is disjoint from
Cleft(r). That is, e is disjoint from the left kernel of
P . �

Finding all open guard edges in O(n) time. We
use Lemma 9 to create a simple O(n) time algorithm for
finding all open guard edges of a simple polygon P with
n vertices (independent of whether P is starshaped or
not). The left and right kernels of P can be computed in
O(n) time using a modified version of the algorithm of
Lee and Preparata [5], originally designed for computing
the kernel K(P). For each edge of the left and right
kernels, mark any intersection with the collinear edge
of P . Now check the marks on all edges of P in O(n)

23rd Canadian Conference on Computational Geometry, 2011

452

CCCG 2011, Toronto ON, August 10–12, 2011

time, and report those that intersect both the left and
the right kernels.

6 Open Edge Guards

Recall that every simple polygon with n vertices can be
covered by b3n/10c+1 closed edge guards, and there are
n-gons that require at least bn/4c closed edge guards. It
turns out that the endpoints of the closed edge guards
are crucial for these bounds. Significantly more edge
guards may be necessary if the endpoints are removed.

We construct four different infinite families of poly-
gons that require bn/3c open edge guards for n vertices.
Refer to Fig. 8. The lower bounds for all our construc-
tions can be verified by a standard “hidden point” ar-
gument. We hide bn/3c points (gray dots in Fig. 8) in
the interior of a polygon such that each open edge guard
sees exactly one such point. That is, each hidden point
requires a unique open edge guard, and any set of fewer
than bn/3c open edge guards would miss at least one
hidden point.

It is not difficult to see that bn/2c open edge guards
are always sufficient. Partition the set of edges of the
polygon into two subsets for which the interior nor-
mals of the edges have either a positive or negative y-
component. Each subset of open edges jointly covers
the entire polygon. We conjecture this upper bound is
weak, and that bn/3c is the tight bound for the number
of open edge guards necessary and sufficient to guard
any simple polygon with n vertices.

References

[1] D. Avis, T. Gum, and G. T. Toussaint, Visibility between
two edges of a simple polygon, The Visual Computer,
2:342–357, 1986.

[2] D. Avis and G. Toussaint, An optimal algorithm for de-
termining the visibility of a polygon from an edge, IEEE
Tran. Comput. C-30:910–914, 1981.

[3] B. K. Bhattacharya, G. Das, A. Mukhopadhyay, and
G. Narasimhan, Optimally computing a shortest weakly
visible line segment inside a simple polygon, Comput.
Geom. Theory. Appl., 23:1–29, 2002.

[4] D. Z. Chen, Optimally computing the shortest weakly
visible subedge of a simple polygon, J. Algorithms
20:459–478, 1996.

[5] D. T. Lee and F. Preparata, An optimal algorithm for
finding the kernel of a polygon, J. ACM 26:415–421,
1979.

[6] B.-K. Lu, F.-R. Hsu, and C. Y. Tang, Finding the short-
est boundary guard of a simple polygon, Theor. Comp.
Sci., 263:113–121, 2001.

[7] J. O’Rourke, Galleries need fewer mobile guards: A vari-
ation on Chvtal’s theorem, Geometriae Dedicata 14:273–
283, 1983.

Figure 8: Examples of polygons requiring n/3 open edge
guards. The gray dots in each polygon indicates a set of
points that require a distinct edge to guard each point.

[8] J. Park, S. Y. Shin, K. Chwa, and T. C. Woo, On the
number of guard edges of a polygon, Discrete Comput.
Geom., 10:447–462, 1993.

[9] T. C. Shermer, Recent results in art galleries, Proc.
IEEE, 80:1384–1399, 1992.

[10] S. Y. Shin and T. Woo, An optimal algorithm for find-
ing all visible edges in a simple polygon, IEEE Tran.
Robotics and Automation 5:202–207, 1989.

[11] X. Tan, Fast computation of shortest watchman routes
in simple polygons, Inf. Proc. Lett. 77:27-33, 2001.

[12] G. Viglietta, Searching polyhedra by rotating planes,
manuscript, arXiv:1104.4137, 2011.

CCCG 2011, Toronto ON, August 10–12, 2011

453

23rd Canadian Conference on Computational Geometry, 2011

454

CCCG 2011, Toronto ON, August 10–12, 2011

Computing k-Link Visibility Polygons in Environments with a Reflective Edge

Salma S. Mahdavi ∗ Ali Mohades ∗ Bahram Kouhestani ∗

Abstract

In this paper we consider the k-link visibility polygon of
an object inside a polygonal environment with a reflec-
tive edge called a mirror. The k-link visibility polygon
of an object inside a polygon P is the set of all points in
P , which are visible to some points of that object with
at most k − 1 intermediate points, under the property
that consecutive intermediate points are mutually vis-
ible. We propose an optimal linear time algorithm for
computing the k-link visibility polygon of an object in-
side a polygon P with a reflective edge. The object can
be a point, a segment or a simple polygon. We observed
that in computing k-link visibility polygons the mirror
can affect in only two levels. We explain how to handle
these levels efficiently to achieve an optimal algorithm.

1 Introduction

The visibility problem is a fundamental topic in com-
putational geometry and different versions of it, such as
art gallery problems, have been studied. The visibility
polygon of an object is defined as the set of all points
visible to some points of that object. Several linear time
algorithms have been proposed to compute the visibil-
ity polygon of a point [8], a segment [4] or a polygon
[7]. The minimum link path between two points of a
polygon P is a path inside P that connects these points
and has the minimum number of straight edges, called
links. The link distance between two points is the num-
ber of links in their minimum link path. Suri [10] gave
an O(n) time algorithm for computing the minimum
link path between two points in a simple polygon. The
k-link visibility polygon of a point q can be defined by
using the minimum link distance concept; it is the set
of all points having the link distance of at most k from
q. Using the window partitioning the k-link visibility
polygon of a point can be computed in linear time [9].
In the visibility literature, reflective surfaces were first
mentioned by Klee [5]. He asked if every polygon whose
all edges are reflective can be illuminated from any in-
terior point. Tokarsky [11] answered no to this question
by constructing a polygon for which there exists a dark
point by putting a light source at a particular position.

∗Laboratory of Algorithm and Computational Geometry, De-
partment of Mathematics and Computer Science, Amirkabir
University of Technology, Tehran, Iran, ss.mahdavi@aut.ac.ir,
mohades@aut.ac.ir, b kouhestani@alum.sharif.edu.

In this polygon the dark point is collinear with both the
light source and an edge of the polygon.
When all the edges of the polygon are reflective but each
light beam is allowed to reflect once, Aronov et al. [2]
showed that the resulting visibility polygon of a source
light may not be simple. They present an O(n2 log2 n)
algorithm for computing visibility polygons in such en-
vironments. Later they allowed at most r reflections for
each light beam and presented an O(n2r log n) time and
O(n2r) space algorithm to compute visibility polygons
of a source light [1].
Recently Kouhestani et al. [6] showed how to compute
visibility polygons in environments with a single reflec-
tive edge in an optimal O(n) time. In this paper, we
extend this study and achieve a linear time algorithm
for computing k-link visibility polygons in such environ-
ments. If the polygon is entirely contained within one
of the 2 half-spaces determined by the line on which the
mirror lies, the k-link visibility polygon of an arbitrary
point can be easily computed by gluing P and the reflec-
tion of P in the mirror (called P ′) together along the
reflective edge. Known algorithms for computing the
k-link visibility polygon [9] can be slightly modified to
operate in such a polygon. To return the visibility poly-
gon, the union of two visibility polygons is computed in
linear time using the algorithm of Kouhestani et al. [6].
In the case that the polygon intersects both these half-
spaces and vertices of the mirror are reflex, the resulting
polygon from gluing P and P ′ is not simple anymore.
Apart from the difficulties to adopt known algorithms
to operate in this polygon, this method needs improve-
ments to run in an optimal time. Consider the smallest
value of k for which the k-link visibility polygon enters
P ′. In the computation of (k + 1)-link visibility poly-
gon, points of P which are visible from points of k-link
visibility polygon located in P must be added to those
points of P visible from the part of k-link visibility poly-
gon located in P . We have a similar situation for the
points of (k + 1)-link visibility polygon located in P ′.
Therefore, in order to return the (k + 1)-link visibility
polygon the union of four polygons must be computed.
It is not clear how to accomplish this task in linear time
to obtain an optimal algorithm.
Suppose the k-link visibility polygon is constructed in-
crementally and for example in ith level the i-link visi-
bility polygon is computed from the resulting polygon of
the previous level. We observed that the reflective edge
affects only two levels, therefore handling these levels ef-

CCCG 2011, Toronto ON, August 10–12, 2011

455

23rd Canadian Conference on Computational Geometry, 2011

ficiently can produce a linear time algorithm. We clarify
this observation in the first lemma of section 4.2.
This paper is organized as follows: Section 2 describes
notation and preliminaries, section 3 shows how to com-
pute the 2-visibility polygon of an object inside a poly-
gon with a reflective edge, from which in section 4 an
algorithm to compute k-link visibility polygons in such
an environment is proposed. Section 5 contains conclu-
sions and discussions.

2 Notation and Preliminaries

Let P be a simple polygon with n vertices. int(P) and
bd(P) denote the interior and boundary of P , respec-
tively. Two points x, y ∈ P are mutually visible (or can
see each other directly), if the open line segment, xy, lies
completely in int(P). An alternative definition used in
many visibility papers, allows the line segment to touch
the bd(P). Throughout this paper we use the former
definition which is sometimes called the clear visibility.
Two points x and y inside P are k-link visible (or for
simplicity k-visible), if they can reach each other using
k−1 intermediate points a1, ..., ak−1, under the property
that ai and ai+1 are mutually visible for 1 ≤ i ≤ (k − 2)
and x sees a1 and y sees ak−1. The visibility polygon of
a point q in P , denoted by VP (q) is the set of all points
in P visible to q. An edge of VP (q) that is not a part of
an edge of P is called a window of VP (q). Suppose wi is
a window of VP (q). wi partitions P into two subpoly-
gons. The subpolygon which does not contain VP (q) is
called the pocket of wi (pocket(wi)).
The k-link visibility polygon of a point q in P , denoted
by V k

P (q) is the set of all points in P which are k-visible
to q. The weak visibility polygon of a segment s de-
noted by WVP (s) is the set of all points of P visible to
some points on s, except the endpoints. In the same
manner, the k-(weak)visibility polygon of a segment s,
V k

P (s) can be defined. Let q be a point inside P . P
can be partitioned into regions such that all points in
the same region have the same link distance from q.
This partitioning is called the window partitioning with
respect to the point q and can be done in O(n) time
[9]. Two regions are neighbors if they share a common
window. The dual graph of the window partitioning is
achieved by considering a node for each region and con-
necting each two nodes if their corresponding regions
are neighbors.
Suppose one of the edges of P is reflective, this edge is
called a mirror. Two points x and y can see each other
through the mirror e (or indirectly), if and only if there
exist a point r lying on e, visible to both x and y such
that xr and yr lie on the opposite sides of the inward
normal at r and make the same angle with it. r is not
considered as an intermediate point and hence x and y
are 1-link visible. Figure 1 illustrates two points y and

z which are 2-link visible to the point x with the inter-
mediate points i1 and i2, respectively.

Figure 1: An illustration of 2-link visibility when one of
the edges of the polygon is reflective.

Let VP,e(q), (resp. V k
P,e(q)) denote the visibility polygon

(resp. the k-link visibility polygon) of a point q inside
P with the reflective edge e. Note that in V k

P,e(q), con-
secutive intermediate points can see each other directly
or by using the mirror e.

3 The 2-visibility polygon of objects in a polygon
with a single reflective edge

We first concentrate on computing the 2-visibility poly-
gon of an object when an edge of the polygon is reflec-
tive. Let P be a simple polygon with n vertices and e
be the reflective edge of P . Let O be an object inside
P . The general idea of computing V 2

P,e(O) is to com-
pute VP,e(O) and identify parts of P that are 1-visible
to VP,e(O). It is easy to see that any point of these parts
is visible to a window of VP,e(O). If O is a point or a
segment VP,e(O) is computed in O(n) time [6]. When
O is a simple polygon with m vertices, we use the fol-
lowing process to compute VP,e(O):
First we compute VP (O) in O(n+m) time by using the
algorithm of Langetepe et al. [7], and then determine
the parts of P that O sees through e. This can be done
with a slight modification to the algorithm of Kouhes-
tani et al. [6]. The union of these parts is VP,e(O)
which can be computed in O(n + m) time [6].

Lemma 1 Let Q be a simple polygon with m vertices
inside the simple polygon P . VP,e(Q) can be computed
in O(n + m) time.

V 2
P,e(O) is the set of all points in P which see some

points of O using at most one intermediate point. The
points of V 2

P,e(O) can be categorized into four groups:
(a) The points which see the intermediate point directly
for which the intermediate point sees the object directly.

23rd Canadian Conference on Computational Geometry, 2011

456

CCCG 2011, Toronto ON, August 10–12, 2011

(b) The points which see the intermediate point using
the mirror, but for which the intermediate point sees
the object directly.
(c) The points which see the intermediate point directly,
but for which the intermediate point sees the object us-
ing the mirror.
(d) The points which see the intermediate point using
the mirror for which the intermediate point sees the ob-
ject using the mirror.
We denote these groups by {−e, −e}, {+e, −e},
{−e, +e}, {+e, +e}, in which −e means seeing directly
and +e means seeing through the mirror e.

Lemma 2 Let P be a simple polygon with a reflective
edge e, and O be an object completely inside P . At most
two windows of VP,e(O) can intersect e.

Proof. Any line segment in P , can intersect with at
most two windows of a visibility polygon [3]. There-
fore, the edge e intersects at most two windows of
VP,e(O). �

Figure 2: The windows w1 = (c, i1, d) and w2 = (a, i2, b)
with interior points i1, i2. The shaded regions show the
pocket of w1 and w2.

Note that some windows of VP,e(O) may have an interior
point (see Figure 2).

Lemma 3 Suppose wi is a window of VP,e(O) and its
pocket dose not intersect the mirror edge e. Then, all
points of V 2

P,e(O) which are located in pocket(wi), are
directly visible from wi. Therefore, other windows of
VP,e(O) can not see additional points in pocket(wi) and
wi can not see new points in pocket(wi) through the
mirror.

Proof. Let wj be a window of VP,e(O) and wj 6= wi. If
a point x in pocket(wi) is visible to wj (either directly
or by using the mirror), the line segment (or the path)
wjx will intersect wi in a point y. Therefore, x and
y are visible and x can see wi directly (see Figure 3).
With a similar argument wi can not see new points in
its pocket through the mirror. �

Figure 3: The illustration of Lemma 3.

Lemma 4 Let wi be a window of VP,e(O) whose
pocket intersects the reflective edge e. The set of
points of V 2

P,e(O) located in pocket(wi) is equal to
Vpocket(wi),e(wi).

Proof. The proof is similar to the proof of the previous
lemma. �

Lemma 5 Let Q be a polygon constructed by adding
all Vpocket(wi),ei

(wi) to VP,e(O), where wi is a pocket of
VP,e(O) and ei is the intersection of e and pocket(wi).
Then, Q is V 2

P,e(O).

Proof. Windows of VP,e(O) are 1-visible to O, so newly
added points are 2-visible to O. Therefore, Q is a subset
of V 2

P,e(O). As mentioned before, points of V 2
P,e(O) can

be categorized into four groups. We show that a point
of each group lies in Q:
Case 1: {−e, −e}; a point of type {−e} is in VP (O), and
{−e, −e} is a point which is directly visible to VP (O), so
it is visible to a window of VP (O) and is located in the
pocket of this window. VP (O) is a subset of VP,e(O),
therefore, the point is in Q.
Case 2: {+e, −e}; a point of type {+e} is in VP,e(O),
{+e, −e} is a point which is directly visible to a window
of VP,e(O), so it is located in the pocket of this window,
therefore, it is in Q.
Case 3: {−e, +e}; a point of type {−e, +e} is visible to
VP (O) by using the mirror, VP (O) is a subset of VP,e(O),
so this point is visible to a window of VP,e(O) by using
the mirror, and therefore, it is in Q.
Case 4: {+e, +e}; {+e, +e} is a point visible to a win-
dow of VP,e(O) by using the mirror, so it is in Q. �

Now we can present an algorithm to compute the
2-visibility polygon of an object O in linear time.

CCCG 2011, Toronto ON, August 10–12, 2011

457

23rd Canadian Conference on Computational Geometry, 2011

Algorithm 3

1. Compute VP,e(O).

2. Let {w1, ..., wd} be the windows of VP (O) and ei be
the intersection of e and pocket(wi) for i = 1, 2, ..d.

3. Compute all Vpocket(wi),ei
(wi) and add them to

VP,e(O).

4. Return the resulting polygon.

The time complexity of the algorithm:
Step 1 is computed in O(n + m) time due to Lemma1.
Suppose ni is the number of vertices of pocket(wi) for
i = 1, 2, ..d. Vpocket(wi),ei

(wi) is computed in O(ni)
time. Each two pockets of VP,e(O) can at most share
one vertex, therefore, the sum of vertices of these pock-
ets is O(n) and step 3 is computed in linear time.
Therefore, we can conclude the following theorem.

Theorem 6 The 2-visibility polygon V 2
P,e(O) of an ob-

ject O inside a simple polygon P with a reflective edge
e, can be computed in O(n + m) time, where n is the
number of vertices of P and m is the complexity of O.

4 k-visibility polygons

4.1 The k-visibility polygon of an object

Let O and s = xy be an object and a segment inside a
simple polygon P with n vertices. The minimum link
path between O and s, is a path in P , connecting some
points of O to s, which has the minimum number of
links. The link distance between O and s, is the num-
ber of the links in their minimum link path. The set
of all points with the link distance of 1 from O is the
visibility polygon of O. Let wi be the window of VP (O)
which its pocket completely contains s. If there is no
such a window then the link distance between O and s
is 1. Otherwise, the link distance between O and s is
1 + the link distance between s and wi. The link dis-
tance between two segments can be computed in O(n)
time [10, 9]. Therefore, the link distance between an
object and a segment can be computed in linear time.
Note that the window partitioning is computed using
the link distance concept [9], so the time complexity of
the window partitioning of an object is linear.

Lemma 7 Let P be a simple polygon with n vertices
and O be an object inside P with the complexity of m.
V k

P (O) can be computed in O(n + m) time.

Proof. A point x inside P is in V k
P (O) if the link dis-

tance between O and x is less or equal to k. By using
the window partitioning of O all points with the link dis-
tance of at most k from O can be computed in O(n+m)
time. �

4.2 The k-visibility polygon of an object inside an
environment with a single reflective edge

Let e be a reflective edge in P . Two points in P are
k-visible if they can see each other using at most k − 1
intermediate points. Consecutive intermediate points
see each other directly or by using e. V k

P,e(O) is the set
of all points which are k-visible to some points of O. By
using the computation of the 2-visibility polygon of O,
we present an algorithm to compute V k

P,e(O).
For an example of a 3-link visibility polygon of a point
in the presence of a mirror, see Figure 4. In this figure,
windows of each level are shown with the same color.

Lemma 8 Let P be a simple polygon with a reflective
edge e and O be an object inside P . Let m be the link
distance between O and e. Suppose Q = V m+1

P,e (O) is
constructed. VP,e(Q) is equal to VP (Q).

Proof. O and e are m-link visible, therefore, e is com-
pletely inside V m+1

P (O) and no pockets of V m+1
P (O) in-

tersect e. Let pocki be a pocket of V m+1
P (O). Similar to

Lemma 3, all points of V m+2
P (O) in pocki are directly

visible to the window of pocki. Therefore, VP,e(Q) is
equal to VP (Q). �

Now we present an algorithm to compute V k
P,e(O):

Algorithm 4.2

1. Compute the link distance between O and e and
store it in m.

2. If k < m, then, compute V k
P (O) and return.

3. If k ≥ m, then,

(a) Compute Q = V m−1
P (O).

(b) If k = m, compute VP,e(Q) and return.

(c) Compute R = V 2
p,e(Q)

(d) Let {w1, w2, ..., wd} be windows of R.

(e) Compute V k−m−1
pocket(wi)

(wi) for all i = 1, 2, ..., d

and add them to R

(f) Return the resulting polygon

Theorem 9 Let P be a simple polygon with n vertices
and O be an object inside P , with the complexity of m.
Let e be a reflective edge of P . V k

P,e(O) can be computed
in O(n + m) time.

Proof. The algorithm 4.2 computes V k
P,e(O). Lemma 8

ensures the correctness of the algorithm. We show that
the time complexity of this algorithm is O(n+m). Steps
3(a), 3(b), 3(c) and 3(d) are computed in O(n+m) time
due to Lemma 7, Lemma 1 and Theorem 6. Suppose
the number of vertices of pocket(wi) is ni, for all i =

23rd Canadian Conference on Computational Geometry, 2011

458

CCCG 2011, Toronto ON, August 10–12, 2011

Figure 4: The 3-link visibility polygon of a point, when
one of the edges of the polygon is reflective.

1, 2, ..., d. V k−m−1
pocket(wi)

(wi) is computed in O(ni). The

sum of all ni for i = 1, 2, ..., d is less or equal to n.
Therefore, step 3(e) runs in O(n) time and the algorithm
has the time complexity of O(n + m). �

Note that the time complexity of computing V k
P,e(O) is

independent to the value of k and for any k = 1, ..., n,
V k

P,e(O) is computed in O(n + m) time.

5 Conclusion

In this paper we presented a linear time algorithm to
compute the k-link-visibility polygon of an object inside
a polygonal environment with a reflective edge. The
object is considered to be a point, a segment or a simple
polygon. If the polygon has two or more reflective edges,
a light beam can be reflected repeatedly between these
mirrors. It is not clear how to compute the visibility
polygon of a point when there is no restriction on the
number of the reflections. An interesting question will
be how to compute the k-link visibility polygon of a
point in a polygon with m reflective edges when each
light beam can reflect at most t time. This question is
the subject of our future study.

Acknowledgments

We would like to thank Mansour Davoudi and Farnaz

Sheikhi for their fruitful comments.

References

[1] B. Aronov, A. Davis, T. K. Dey, S. P. Pal and D. C.
Prasad. Visibility with multiple reflections . Discrete
and Computational Geometry, 20: 61-78, 1998.

[2] B. Aronov, A. Davis, T. K. Dey, S. P. Pal and D. C.
Prasad. Visibility with one reflection. Discrete and
Computational Geometry, 19: 553-574, 1998.

[3] P. Bose, A. Lubiw, and J. Munro. Efficient visibility
queries in simple polygons. Computational Geometry:
Theory and Applications, 23: 313-335, 2002.

[4] L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and
R. E. Tarjan. Linear-time algorithms for visibility and
shortest path problems inside triangulated simple poly-
gons. Algorithmica, 2: 209-233, 1987.

[5] V. Klee. Is every polygonal region illuminable from
some point? Computational Geometry: Amer.Math.
Monthly, 76: 180, 1969.

[6] B. Kouhestani, M. Asgaripour, S. S. Mahdavi, A. Nouri
and A. Mohades. Visibility Polygons in the Presence of
a Mirror Edge. In Proc. 26th European Workshop on
Computational Geometry, 26: 209-212, 2010.

[7] E. Langetepe, R. Penninger and J. Tulke. Computing
the visibility area between two simple polygons in linear
time. In Proc. 26th European Workshop on Computa-
tional Geometry, 26: 237-240, 2010.

[8] D. T. Lee. Visibility of a simple polygon. Computer
Vision, Graphics, and Image Processing, 22: 207-221,
1983.

[9] A. Maheshwari, J. -R. Sack and H. N. Djidjev. Link
Distance Problems. In J.-R. Sack and J. Urrutia, edi-
tors, Handbook of Computational Geometry, 519-558,
2000.

[10] S. Suri. A linear time algorithm for minimum link paths
inside a simple polygon. Computer Graphics Vision,
and Image Processing, 35: 99-110, 1986.

[11] G. T. Tokarsky. Polygonal rooms not illuminable from
every point. American Mathematical Monthly, 102:
867-879, 1995.

CCCG 2011, Toronto ON, August 10–12, 2011

459

23rd Canadian Conference on Computational Geometry, 2011

460

CCCG 2011, Toronto ON, August 10–12, 2011

Edge-guarding Orthogonal Polyhedra

Nadia M. Benbernou∗ Erik D. Demaine† Martin L. Demaine† Anastasia Kurdia Joseph O’Rourke‡

Godfried Toussaint§ Jorge Urrutia¶ Giovanni Viglietta‖

Abstract

We address the question: How many edge guards are
needed to guard an orthogonal polyhedron of e edges,
r of which are reflex? It was previously established [3]
that e/12 are sometimes necessary and e/6 always suf-
fice. In contrast to the closed edge guards used for these
bounds, we introduce a new model, open edge guards
(excluding the endpoints of the edge), which we argue
are in some sense more natural in this context. After
quantifying the relationship between closed and open
edge guards, we improve the upper bound to show that,
asymptotically, (11/72)e (open or closed) edge guards
suffice, or, in terms of r, that (7/12)r suffice. Along
the way, we establish tight bounds relating e and r for
orthogonal polyhedra of any genus.

1 Introduction

We consider a natural variation of the famous Art
Gallery Problem: given an orthogonal polyhedron P
(possibly with holes) in R3, select a minimum number
of edges of P (called edge guards) so that the interior of
P is fully guarded (i.e., each point of P is visible to at
least one guard).

Although traditionally edge guards are closed in that
they occupy the entire edge, we suggest that open edge
guards, which exclude their endpoints, are a more nat-
ural model. We establish that at most three times as
many open edge guards are needed to cover the same
polyhedron as closed edge guards, a tight bound. De-

∗Department of Mathematics, Massachusetts Institute of Tech-
nology, Cambridge, MA, USA, nbenbern at mit.edu

†MIT Computer Science and Artificial Intelligence Labora-
tory, 32 Vassar St., Cambridge, MA 02139, USA, {edemaine,

mdemaine}@mit.edu
‡Department of Computer Science, Smith College, Northamp-

ton, MA, USA, orourke@cs.smith.edu
§Department of Music, Harvard University, Cambridge, MA,

USA, Department of Computer Science, Tufts University, Med-
ford, MA, USA, School of Computer Science, McGill University,
Montreal, QC, Canada, godfried at cs.mcgill.ca

¶Instituto de Matemáticas, Universidad Nacional Autónoma
de México. Partially supported by SEP-CONACYT of Mexico,
Proyecto 80268 and by Spanish Government under Project MEC
MTM2009-08652.

‖Department of Computer Science, University of Pisa, Italy,
vigliett@di.unipi.it. Partially supported by MIUR of Italy
under project AlgoDEEP prot. 2008TFBWL4.

spite this apparent weakness, we improve the previous
upper bound for closed edge guards to a better bound
for open edge guards.

Open guards, open polyhedra. In line with our fo-
cus on open edge guards, we also focus on guarding
open polyhedra, i.e., bounded polyhedra excluding their
boundaries. Consider an orthogonal polyhedron to rep-
resent an empty room with solid walls, with the task to
place guards who can detect unwelcome intruders. Be-
cause an intruder cannot hide within a wall but rather
must be located inside the room, there is no need to
guard the walls of the room, i.e., the boundary of the
polyhedron. A guarding problem can alternatively be
viewed as an illumination problem, with guards act-
ing as light sources. Incandescent lights are modeled
as point guards, and fluorescent lights are modeled as
segment guards. In the latter case, it is more realistic to
disregard the endpoints of the edge guards. The amount
of light that a point interior to the polyhedron receives
is proportional to the total length of the segments illu-
minating that point. Employing the open edge-guard
model ensures that if a point is illuminated, it receives
a strictly positive amount of light, and makes the model
more realistic.

Notice that these two definitions of illuminated points
(visible to an open edge guard or receiving a strictly
positive amount of light from closed edge guards) cease
to be equivalent if we consider polyhedra with boundary.

Previous work. Although guarding orthogonal poly-
gons is a relatively well-studied topic, few positive re-
sults exist for orthogonal polyhedra. To the best of
our knowledge, the only results relevant to the problem
studied in this paper were given by Urrutia in his sur-
vey [3, Sec. 10]: for a polyhedron of e edges, e/6 closed
edge guards always suffice, and e/12 guards are some-
times necessary (Figure 1). He also conjectured that
the latter is the correct bound, i.e., that e/12 + O(1)
suffice. Because no proof of the upper bound was given
in [3], another contribution here is that our proof for
the (11/72)e bound incorporates the essence of Urru-
tia’s unpublished e/6 proof.

CCCG 2011, Toronto ON, August 10–12, 2011

461

23rd Canadian Conference on Computational Geometry, 2011

Figure 1: Lower bound example from [3]: k guards are
required to guard a polyhedron with a total of 12k +12
edges.

2 Properties of orthogonal polyhedra

We start with precise definitions of necessary concepts.
Given two points x and y, we denote by xy the (closed)
straight line segment joining x and y, and by x̃y the
corresponding open segment, i.e., the relative interior of
xy.

Orthogonal polyhedra. A cuboid is defined as a com-
pact subset of R3 bounded by 6 axis-orthogonal planes.
The union of a finite non-empty set of cuboids is an
orthogonal polyhedron if its boundary is a connected 2-
manifold.

A face of an orthogonal polyhedron is a maximal pla-
nar subset of its boundary, whose interior is connected
and non-empty. Faces are orthogonal polygons with
holes, perhaps with degeneracies such as hole bound-
aries touching each other at single vertex, etc. A vertex
of an orthogonal polyhedron is any vertex of any of its
faces. An edge is a minimal positive-length straight line
segment shared by two faces and connecting two ver-
tices of the polyhedron. Each edge, with its two adja-
cent faces, determines a dihedral angle, internal to the
polyhedron. Each such angle is 90◦ (at a convex edge)
or 270◦ (at a reflex edge).

Visibility and guarding. Visibility with respect to a
polyhedron P is a relation between points in R3: point
x sees point y (equivalently, y is visible to x) if xy \ {x}
lies entirely in the interior of P . Note that, according to
the previous definition, the boundary of P occludes vis-
ibility; no portion of xy, except the endpoint x, can lie
on the boundary of P . Also, x is assumed to be invisible
to itself when it belongs to the boundary. Given a point
x ∈ P , its visibility region V (x) is the set of points that
are visible to x. Similarly, the visibility region of a set
X ⊆ R3, denoted by V (X), is the set of points that are
visible to at least one point in X .

The Art Gallery Problem we consider in this paper
is: given an orthogonal polyhedron P , efficiently select
a (sub)set of its edges e1, e2, . . . , ek, called the guarding

set, so that the whole interior of P is guarded by the
interiors of the selected edges. In other words, the inte-
rior of P must coincide with V (ẽ1)∪V (ẽ2)∪ . . .∪V (ẽk).
Our goal is also to minimize k, the number of selected
edges. We bound k with respect to the total number e
of edges of P , or the number r of its reflex edges.

The notion of ε-guarding implies that each point is
guarded by at least one positive-length segment. Guard-
ing in our open polyhedra model is equivalent to ε-
guarding in that, if a point is guarded, then it is also
guarded by a positive-length segment, lying on some
guard.

A

B

C

D

E F

Figure 2: The six vertex types.

Vertex classification. Based on the number of incident
reflex and convex edges, the vertices of orthogonal poly-
hedra form six distinct classes, denoted here by A, B, C,
D, E and F, and are introduced as follows. Consider the
eight octants determined by the coordinate axes inter-
secting at a given vertex, and place a sufficiently small
regular octahedron around the vertex, such that each
of its faces lies in a distinct octant. By definition, the
set of faces that fall inside (or outside) the polyhedron
is connected: recall that the boundary of a polyhedron
is a 2-manifold. Consider all possible ways of parti-

23rd Canadian Conference on Computational Geometry, 2011

462

CCCG 2011, Toronto ON, August 10–12, 2011

tioning the faces of the octahedron into two non-empty
connected sets, up to isometry (refer to Figure 2):

• There is essentially a single way to select 1 face
(resp. 7 faces). This corresponds to an A-vertex
(resp. a B-vertex).

• There is a single way to select 2 faces (resp. 6 faces).
This case does not correspond to a vertex of the or-
thogonal polyhedron: it implies that the considered
point is not a vertex of any face on which it lies.

• There is a single way to select 3 faces (resp. 5 faces).
This corresponds to a D-vertex (resp. a C-vertex).

• There are three ways to select 4 faces. One of them
implies that the point lies in the middle of a face,
hence it does not correspond to a vertex. The other
two choices correspond to an E-vertex and an F-
vertex, respectively.

Auxiliary results. We now present two useful proper-
ties of orthogonal polyhedra that will be employed to
prove our main results. Let us denote by A the number
of A-vertices in a given orthogonal polyhedron, and so
on, for each vertex class.

Lemma 1 In every orthogonal polyhedron with r > 0
reflex edges, 3A + D > 28.

Proof. Consider the bounding cuboid of the polyhe-
dron and the set of orthogonal polygons (perhaps with
holes, without degeneracies), formed by intersection of
the faces of the cuboid and the polyhedron. The vertices
of those polygons are either A-vertices or D-vertices of
the polyhedron (convex vertices are A-vertices, and re-
flex vertices are D-vertices). Our strategy is to only look
at the vertices belonging to the bounding faces and en-
sure that there is a sufficient number of them. Namely,
we only need to show that there are at least

(a) 10 A-vertices, or

(b) 9 A-vertices and 1 D-vertex, or

(c) 8 A-vertices and 4 D-vertices.

Suppose each face of the bounding cuboid contains
exactly one rectangle. If all the vertices of these rectan-
gles coincide with the corners of the bounding cuboid,
then the polyhedron is convex, contradicting the as-
sumptions. Hence, there is a vertex x that is not a
corner of the bounding cuboid. Let f denote a face
containing x. At least one of the vertices, denoted by
y, adjacent to x in the rectangle contained in f , is such
that x̃y does not lie on an edge of the bounding cuboid.
Let f ′ be the bounding face opposite to f , and f ′′ be
the bounding face chosen as shown in Figure 3: out of

x′

y′

x

y

f
f ′

f ′′

Figure 3: An illustration of the proof of Lemma 1.

the 4 faces surrounding f , f ′′ is the one that lies on the
“side” of xy. f and f ′ contain two disjoint rectangles,
and thus exactly 8 distinct A-vertices. Additionally, f ′′

has two extra A-vertices, lying on an edge x′y′ paral-
lel to xy (refer to Figure 3). Collectively, f , f ′ and f ′′

contain at least 10 A-vertices, so (a) holds.
On the other hand, if there exists a bounding face f

whose intersection with the polyhedron is not a single
rectangle, then we need to analyze the following three
cases. Let f ′ be the bounding face opposite to f .

• If f contains at least two polygons (those polygons’
boundaries must be disjoint because f is a bound-
ing face), then collectively f and f ′ contain at least
12 distinct A-vertices, so (a) holds. Indeed, every
orthogonal polygon has at least 4 convex vertices.

• If f contains a polygon with at least one hole, then
the polygon’s external boundary contains at least
4 convex vertices (equiv. A-vertices), and the hole
has at least 4 reflex vertices (equiv. D-vertices). f ′

also contains at least 4 convex vertices (A-vertices).
Together f and f ′ contain at least 8 A-vertices and
4 D-vertices, so (c) holds.

• If f contains just one polygon, which is not convex,
then such a polygon has at least 5 convex vertices
and one reflex vertex. Together with f ′, there are
at least 9 A-vertices and 1 D-vertex, so (b) holds.

�

Theorem 2 For every orthogonal polyhedron with e
edges in total, r > 0 reflex edges and genus g > 0,

1

6
e + 2g − 2 6 r 6 5

6
e − 2g − 12

holds. Both inequalities are tight for every g.

Proof. Let c = e−r be the number of convex edges. Let
A be the number of A-vertices, etc.. Double counting

CCCG 2011, Toronto ON, August 10–12, 2011

463

23rd Canadian Conference on Computational Geometry, 2011

the pairs (edge, endpoint) yields (refer to Figure 2)

2c = 3A + C + 2D + 3E + 2F, (1)

2r = 3B + 2C + D + 3E + 2F. (2)

The angle deficit (with respect to 2π) of A- and B-
vertices is π/2, the deficit of C- and D-vertices is −π/2,
the defect of E- and F-vertices is −π. Hence, by the
polyhedral version of Gauss-Bonnet theorem (see [2,
Thm. 6.25]),

A + B − C − D − 2E − 2F = 8 − 8g. (3)

Finally, since all the variables involved are non-negative,

9B + 3C + 3E + F > 0. (4)

Subtracting 3 times (3) from 2 times (4) yields

−3A + 15B + 9C + 3D + 12E + 8F > 24g − 24.

Further subtracting (1) and adding 5 times (2) to the
last inequality yields

2c − 10r + 24g − 24 6 0,

which is equivalent to 1
6e + 2g − 2 6 r.

To see that the left-hand side inequality is tight for
every r and g, consider the staircase-like polyhedron
with holes depicted in Figure 4. If the staircase has k
“segments” and g holes, then it has a total of 6k+12g+6
edges and k + 4g − 1 reflex edges.

Figure 4: A polyhedron that achieves the tight left-hand
side bound in Theorem 2.

According to Lemma 1, 3A + D > 28, unless the
polyhedron is a cuboid. Then

9A + 3D + 3E + F > 84. (5)

Subtract 3 times (3) from 2 times (5):

15A − 3B + 3C + 9D + 12E + 8F > 24g + 144.

Subtract (2) and add 5 times (1):

2r − 10c + 24g + 144 > 0,

which is equivalent to r 6 5
6e − 2g − 12.

To see that the right-hand side inequality is also tight,
consider a cuboid with a staircase-like well carved in it,
and a number of cuboidal “poles” carved out from the
surface of the well (i.e., the negative version of Figure 4).
If the staircase has k “segments” and g poles, then the
polyhedron has a total of 6k + 12g + 18 edges and 5k +
8g + 3 reflex edges. �

Notice that the statement of the previous theorem does
not hold if we change the definition of orthogonal poly-
hedron by dropping the condition of connectedness of
the boundary. Indeed, consider a cube and remove sev-
eral smaller disjoint cubic regions from its interior. The
resulting shape has unboundedly many reflex edges and
just 12 convex edges.

Finally, the next proposition characterizes visibility
regions of points belonging to polyhedra.

Proposition 3 The visibility region of any point in a
polyhedron or on its boundary is an open set.

Proof. Let x be a point in a polyhedron P . Let f
be a face of P , not containing x. The region of space
“occluded” by f is a closed set O(x, f), shaped like a
truncated unbounded pyramid with apex x and base f .
The number of faces is finite. Forming the union of all
O(x, f), for every face f not containing x, we obtain a
closed set O(x).

The region occluded by the faces containing x is the
corresponding (unbounded) solid angle, external with
respect to P , which is a closed set. Its union with O(x)
is again a closed set, and therefore the complement of
O(x) is an open set, which by definition is V (x). �

Observe that the visibility regions of open and closed
edges are also open sets, since they are unions of open
sets.

3 Open vs. closed edge guards

We now establish the relationship between the number
of open and closed edge guards required to guard the
interior of an orthogonal polyhedron.

Theorem 4 Any orthogonal polyhedron guardable by k
closed edge guards is guardable by at most 3k open edge
guards, and this bound is tight.

Proof. Given a set of k closed edges that guard the
entire polyhedron, we first construct a guarding set of
open edges of size at most 3k and then show that this set
also guards the entire polyhedron. The construction is
simple: for each closed edge uv from the original guard-
ing set, place the open edge ũv into the new guarding
set. For the endpoint u, also add a reflex edge ũw with
w 6= v, if such edge exists, or any other edge incident
to u otherwise. Similarly, an incident edge is selected
for the other endpoint v. Hence, for each edge of the
original guarding set, at most 3 open edges are placed
in the new guarding set.

To prove the equivalence of the two guarding sets, we
need to show that the volume that was guarded by an
endpoint u of the closed edge from the original guarding
set, is guarded by some point belonging to the interior

23rd Canadian Conference on Computational Geometry, 2011

464

CCCG 2011, Toronto ON, August 10–12, 2011

of uv or the interior of uw, as chosen above, i.e., V (u) ⊆
V (ũv) ∪ V (ũw).

Let x be any point previously guarded by u, x ∈ V (u).
By Proposition 3, a ball B centered at x belongs to
V (x). Then we create a right circular cone C with apex
u, whose base is centered at x and is contained in B.
Clearly, C ⊂ V (u). Let D be a small-enough ball cen-
tered at u that does not intersect any face of the polyhe-
dron except those containing u (refer to Figure 5). We
prove that D ∩ P ⊆ V (ũv ∩ D) ∪ V (ũw ∩ D).

If u is an A-vertex, then D ∩ P ⊆ V (ũv ∩ D). If
u is a B-vertex (as illustrated), then of the 8 octants
determined by orthogonal planes crossing at u, one is
external to P . Out of the 7 octants that need to be
guarded, 6 are guarded by ũv ∩ D. The same holds for
ũw, and together they guard all 7 octants (two of the
octants guarded by ũv are missing a face, but those two
faces are guarded by ũw).

In all other cases (u is a C-, D-, E- or F -vertex),
either uv or uw is a reflex edge. Assume without loss
of generality that uv is reflex. Then, ũv ∩ D sees all of
D ∩ P (refer to Figure 2).

D

C

B

u

v

w

y

x

z

ρ

Figure 5: Construction from the proof of Theorem 4.

The boundaries of D and C intersect at a circle of
radius ρ > 0. Let y be the center of that circle. There
is a point z on ũv ∩ D or on ũw ∩ D that sees y, and
hence the entire open segment ũz sees y. Pick a point t
on ũz such that ||ut|| < ρ. Then t sees x.

A similar argument holds for the visibility region of
the other endpoint, v, of uv.

To see that 3 is the best achievable ratio between
the number of open and closed edge guards, consider
the polygon in Figure 6 and extrude it to an orthogo-
nal prism. Each large dot in that figure represents the
projection of some distinguished point located in the in-
terior of the prism. The only (closed) edges that can see
more than two selected points are the highlighted edges
(on the lower or upper base of the prism). Picking those
edges as guards yields the minimum set of guards, and
together they guard the entire polyhedron. On the other
hand, the relative interior of any edge can see at most

Figure 6: Matching ratio in Theorem 4. Notice that the
same example also solves the corresponding problem for
2D polygons.

one point of interest. At least as many open edge guards
as there are distinguished points are necessary. �

Note that the above analysis does not hold in the case
of closed polyhedra, i.e., when the boundary does not
obstruct visibility, since we can no longer argue that a
single closed edge guard is locally dominated by 3 open
edge guards.

4 Upper bound

We now establish an upper bound on the number of
open edge guards required to guard an orthogonal poly-
hedron.

Theorem 5 Every orthogonal polyhedron with e edges
in total and r reflex edges is guardable by ⌊ e+r

12 ⌋ open
edge guards.

Proof. Let ex and rx be the number of X-parallel edges
and reflex edges, respectively; ey, ez, ry, rz are simi-
larly defined. Without loss of generality, assume X is
the direction that minimizes the sum ex + rx, so that
ex + rx 6 e+r

3 . Of course, a guard on every X-parallel
edge suffices to cover all of P , but we can do much better
with a selected subset of these edges. We argue below
that selecting the three types of X-parallel edges circled
in Figure 7 suffice (as do three other symmetric configu-
rations). Let the number of X-edges of each of the eight
types shown be α, . . . , δ′ as labeled in Figure 7.

Hence we could place α+β′ + δ′ guards, or γ +β′ + δ′

guards, or β + α′ + γ′ guards, or δ + α′ + γ′ guards.
By choosing the minimum of these four sums, we

place at most

(α + β + γ + δ + 2α′ + 2β′ + 2γ′ + 2δ′) /4

=
ex + rx

4
6 e + r

12

guards.
Next we prove that our guard placement works.
We consider any point p in P and show that p is

guarded by the edges selected in Figure 7. Let ω be the

CCCG 2011, Toronto ON, August 10–12, 2011

465

23rd Canadian Conference on Computational Geometry, 2011

α β

γδ

α′ β′

γ′δ′

Figure 7: Possible configurations of X-edges. The X-
axis is directed toward the reader. The circled configu-
rations are those selected in the proof of Theorem 5.

X-orthogonal plane containing p and let Q be the inter-
section of the (open) polyhedron P with ω. To prove
that p is guarded, we first shoot an axis-parallel ray from
p. For our choice of guarding edges, the ray is directed
upward. Let q be the intersection point of the ray and
the boundary of Q that is nearest to p. Next, grow left-
wards a rectangle whose right side is pq until it hits a
vertex v of Q. If it hits several simultaneously, let v be
the topmost. There are three possible configurations for
v, shown in Figure 8, and each corresponds to a selected
configuration in our placement of guards (Figure 7). If
v lies in the interior of the guarding edge, then p is
guarded. If v is an endpoint of such an edge, then we
show that p is guarded by a sufficiently small neighbor-
hood of v that belongs to the guarding edge. Every face
of P that does not intersect ω has a positive distance
from ω. Let d be the smallest such distance. Then, the
points of the guarding edge at distance strictly less than
d from v see p.

If a different triplet of guarding edges is chosen, the
above construction is suitably rotated by a multiple of
90◦. �

ppp

qqq
vv

v

Figure 8: An illustration of the proof of Theorem 5.

Our placement of guards in the single slices resembles
a construction given in [1], in a slightly different model.

By combining the results of Theorem 5 with those of
Theorem 2, we obtain two corollaries.

Corollary 6 Let e denote the number of edges of an
orthogonal polyhedron and let g denote its genus. Then
11
72e − g

6 − 1 open edge guards are sufficient to guard the
interior of the polyhedron.

Corollary 7 Let r denote the number of reflex edges
of an orthogonal polyhedron and let g denote its genus.
Then 7

12r−g+1 open edge guards are sufficient to guard
the interior of the polyhedron.

5 Conclusions

We have elucidated the relationship between the re-
quired number of closed edge guards and open edge
guards. We also improved the current state of the art
and obtained a better upper bound (11

72e vs. the pre-
viously known e

6) on the number of edge guards that
suffice for coverage.

We remark that, due to the observation following
Theorem 2 , our methods do not improve on the e

6 upper
bound when applied to orthogonal shapes with discon-
nected boundary. Indeed, in this case the e+r

12 given
by Theorem 5 still holds, but the r to e ratio can be
arbitrarily close to 1.

We conclude with a few possible future directions.
The same construction used in Theorem 5 could be an-
alyzed more closely to achieve a tighter upper bound. In
contrast with the fact that the polyhedra with highest r
to e ratio are responsible for the worst cases in our anal-
ysis, such polyhedra are nonetheless intuitively easy to
guard by selecting a small fraction of their reflex edges.
Isolating these cases and analyzing them separately may
yield an improved overall bound.

We also conjecture that suitably placing guards on
roughly half of the (open) reflex edges solves our Art
Gallery Problem in any orthogonal polyhedron, which
would imply that 1

2r + O(1) guards suffice (this many
are needed in Figure 4 when g = 0).

Observe that our construction in Theorem 5 places
guards in just one direction. It would be interesting to
investigate this restriction of the Art Gallery Problem
(i.e., with the additional constraint that edge guards
are mutually parallel), perhaps showing that the lower
bound given in Figure 1 can be improved in this more
restrictive scenario.

On the other hand, refining our construction by plac-
ing guards in all three directions, according to some
local properties of the boundary, is likely to yield better
upper bounds.

References

[1] J. Abello, V. Estivill-Castro, T. Shermer, and J. Urru-
tia, Illumination of orthogonal polygons with orthogonal
floodlights. Internat. J. Comp. Geom. 8: 25–38 (1998).

[2] S. Devadoss and J. O’Rourke. Discrete and Comptua-
tional Geometry. Princeton University Press, 2011.

[3] J. Urrutia. Art gallery and illumination problems. In J.-
R. Sack and J. Urrutia, editors, Handbook of Computa-
tional Geometry, pages 973–1027. North-Holland, 2000.

23rd Canadian Conference on Computational Geometry, 2011

466

CCCG 2011, Toronto ON, August 10–12, 2011

Wireless Localization within Orthogonal Polyhedra

Tobias Christ∗ Michael Hoffmann∗

Abstract

In the wireless localization problem, given a polygon
P ⊂ R2, we have to place guards and fix their angular
range such that P can be described using these guards.
The guards describe P if for every point pair p ∈ P and
q /∈ P , there is a guard that sees p but does not see
q. We consider the analogous problem in 3D: given a
polyhedron P ⊂ R3, place guards—which now are poly-
hedral cones—that collectively describe P . Generalizing
a known result for 2-dimensional orthogonal polygons,
we show that for any given 3-regular orthogonal polyhe-
dron P ⊂ R3 with n vertices, it suffices to put a natural
vertex guard onto every other vertex. (A natural ver-
tex guard is a guard that is placed at a vertex v of P
and the defining cone coincides with P in a sufficiently
small neighborhood of v.) Furthermore, we show how
to describe P with 3n/8 (general) vertex guards.

1 Introduction

Art gallery problems are a classic topic in discrete and
computational geometry. The wireless localization (or
sculpture garden) problem, introduced by Eppstein et
al. [5], differs from the classical setting in two respects:
First, the guards are more powerful because they can
“see through walls”; and second, their job is harder, be-
cause rather than asking them to collectively see/cover
the entire polygon (which is very easy, not being im-
peded by walls), the guards must collectively describe
the polygon instead.

The motivation for this model stems from communi-
cation in wireless networks. For illustration, suppose
you run a café (modeled as a polygon P) and you want
to provide wireless Internet access. But you do not want
the whole neighborhood to use your infrastructure. In-
stead, Internet access should be limited to those people
who are located within the café. To achieve this, you
can install a certain number of devices, called guards,
each of which broadcasts a unique (secret) key in an
arbitrary but fixed angular range. The goal is to place
guards and adjust their angles in such a way that ev-
erybody who is inside the café can prove this fact just
by naming the keys received and nobody who is outside
the café can provide such a proof.

∗Institute of Theoretical Computer Science, ETH Zürich,
tobias.christ@inf.ethz.ch, hoffmann@inf.ethz.ch

It is convenient to model a guard as a subset of the
plane, namely the area where the broadcast from this
guard can be received. This area can be described
as an intersection or union of at most two halfplanes.
The definition directly carries over to the 3-dimensional
case, where a guard is a polyhedral cone, that is, an
unbounded polyhedron with at most one vertex and a
connected 1-skeleton.

We define a guarding of P to be a set of guards with
the property that for each pair of points (p, q), where
p ∈ P and q /∈ P , there is a guard g that distinguishes
p and q, meaning p ∈ g and q /∈ g. It can be shown
that this notion is equivalent to a description of P us-
ing a combination of the operations union and inter-
section over the guards or—in logical terminology—a
monotone Boolean formula over the guards, that is, a
formula using the operators And and Or only, negation
is not allowed. (See [2], Observation 1. If each pair (p, q)
can be distinguished by a guard, we can find a formula
in disjunctive normal form for P : For any point p, let
Gp the intersection of all guards that contain p. Then
P =

⋃
p∈P Gp.)

a b

cd
P =

∩ (a ∪ b)
d ∩ c

P =

a

b
c

a ∩ b ∩ c

Natural locations for guards are points on the bound-
ary of P . A guard that is placed at a vertex of P is
called a vertex guard. A vertex guard on a vertex v is
called natural if its shape is given by the shape of P at
v. More precisely, if the intersection of an ε-ball around
v with g equals the intersection with P . A guard placed
anywhere on an edge e of P and the shape of which is
given by the shape of P at e is called a natural edge
guard (in 2D, edge guards are just the halfplanes de-
fined by an edge, in 3D they are wedges whose only
edge is the line through e). In 3D, there is a third class
of natural guards. We call the closed halfspace defined
by a face f of P a natural face guard on f . Note that
both edge and face guards are cones without apex, so
their exact position is undefined. We can think of them
to be placed anywhere on their only edge (or anywhere
on the bounding plane, respectively).

CCCG 2011, Toronto ON, August 10–12, 2011

467

23d Canadian Conference on Computational Geometry, 2011

Dobkin et al. [4] showed that n natural edge guards
are sufficient for any simple polygon with n edges. Using
both natural vertex guards and natural edge guards,
n − 2 guards are sufficient and can be necessary [2];
using general vertex guards 8n/9 are sufficient [3]. In
the most general setting we do not have any restriction
on the placement and the angles of guards. The best
known upper bound is b 4n−25 c and the best lower bound
is d 3n−45 e [2]. We believe that the upper bound can be
improved to roughly 3n/4 and the lower bound to 2n/3,
but this is still work in progress. The classical art gallery
problem for orthogonal polygons was considered in [1].

For the 3D case, Dobkin et al. [4] observed that plac-
ing a face guard onto every face of a polyhedron suffices.
To our knowledge, the 3-dimensional wireless localiza-
tion problem has not been studied since then. In this
work we focus on orthogonal polyhedra and prove that
n/2 natural vertex guards suffice to guard a polyhedron
with n vertices. If we allow general vertex guards, we
can improve the bound to 3n/8. We observe that there
are orthogonal polyhedra that cannot be guarded by
fewer than n/4 guards.

2 Notation and Basic Observations

An orthogonal polyhedron P is a polyhedron where all
faces are orthogonal to one of the coordinate axes. Faces
orthogonal to the x-axis (y-axis, z-axis) are called x-
faces (y-faces, z-faces, respectively). Consequently, all
edges of P are parallel to one of the coordinate axes
and are called x-edges, y-edges and z-edges accordingly.
Think of the x-axis as being oriented from left to right,
the y-axis front to back, and the z-axis bottom up.

A polyhedron is a solid and closed subset of the
space. We define its vertex set V (P), its edge set
E(P) and its set of faces F (P) in the usual way. Let
n = n(P) = |V (P)| be the number of vertices. Fur-
thermore, we restrict our attention to bounded orthog-
onal polyhedra with the additional property that ex-
actly three edges meet at every vertex. In other words,
the graph of P has to be cubic. Eppstein and Mum-
ford [6] use a similar definition and additionally require
the polyhedral surface bounding a polyhedron to have
the topology of a sphere. They call this class of poly-
hedra simple orthogonal polyhedra. We do not use this
notation, as in this work, we do not need any topologi-
cal conditions and allow the polyhedra to form handles
(that is, their genus might be greater than 0) and to
contain cavities (that is, their surface may be discon-
nected). Therefore, we use the term 3-regular instead.
We define the type of a vertex v as follows. Assuming
v to be the origin, the type of v is the set of octants
P locally occupies around v. We call v convex, if only
one octant is inside P . There are eight different possi-
ble types of convex vertices. We call v reflex if all but

convex
reflex
semiconvex
semireflex

Figure 1: Vertex types.

one octant around v are in P . There are eight possible
types of reflex vertices. Furthermore, there are vertex
types where exactly three octants are occupied, so two
of the adjacent edges are convex and one is reflex. We
call such a vertex semiconvex. There are 24 different
semiconvex types. Finally, there are vertex types where
all but three octants are occupied, denoted as semire-
flex. See Genc [7], p. 38, for a classification of possible
vertex types of general orthogonal polyhedra.

By definition guards are unbounded polyhedra with
at most one vertex. In this context we restrict our-
selves to 3-regular orthogonal guards. From now on, a
guard is an unbounded orthogonal cone with at most
one x-edge, at most one y-edge and at most one z-edge.
Consequently, a guard has at most one x-face, at most
one y-face and at most one z-face.

The type of an edge e ∈ E(P), is given by its direction
(parallel to the x-, y-, or z-axis) and by which quadrants
around e are occupied by P in the plane orthogonal to
e. Either one quadrant is occupied, in which case we
call e a convex edge or three quadrants are occupied, in
which case we call e a reflex edge. For example, we say
an edge e is a convex z-(++) edge if e is vertical and
locally around e, the points in P are the points with
both higher x- and y-coordinate. Or we say e is a reflex
x-(+−) edge if e is parallel to the x-axis and P occupies
all but one quadrant around e, namely it leaves out the
quadrant that lies behind e (higher y-coordinates) and
below e (lower z-coordinates). There are 4 convex and
4 reflex edge types in any of the three directions, so
totally, there are 24 different edge types. For each type,
we fix a direction of the edge: We define the convex
x-(++) edges to be directed in negative x-direction (to
the left). Similarly, we define the reflex x-(++) edges
to be oriented in positive x-direction (to the right). If
we rotate P around the x-axis, an x-(++) edge either
becomes a x-(+−) or a x-(−+) edge. So rotating several
times around all possible axes, each time by π/2, an edge
can change from any type to any other type. We define
the directions of all types in such a way that rotating
by π/2 around any of the three coordinate axes flips the
orientation of an edge.

Observation 1 The edges of P can be oriented accord-
ing to their type such that rotating by π/2 around any
coordinate axis reverses the orientation.

23rd Canadian Conference on Computational Geometry, 2011

468

CCCG 2011, Toronto ON, August 10–12, 2011

convex x-types

+− −+

convex y-types

convex z-types

−−++

+− −+−−++

reflex x-types

reflex y-types

reflex z-types

Figure 2: All possible edge types and their orientations.

See Figure 2 for a possible orientation of all edge
types. There are exactly two ways to orient the convex
types such that the observations holds and, indepen-
dently, exactly two ways to orient the reflex types such
that the observation holds. From now on, we think of
every edge to be oriented as shown in Figure 2.

Observation 2 At a vertex v ∈ V (P) either all adja-
cent edges are pointing to v or all adjacent edges are
pointing away from v.

First consider just one convex vertex type. After ob-
serving the property for this type, it follows for all other
convex vertex types directly. Repeatedly rotating the
vertex by π/2 around any coordinate axis, we can go
from one convex type to any other convex type. With
each single rotation, the orientation of all three adja-
cent edges flip. So if the edges were pointing towards
the vertex before, they are all pointing away after the
rotation and vice versa, see Figure 3.

With this observation we have reproved that the
graph of a 3-regular orthogonal polyhedron is bipartite,
as observed for simple orthogonal polyhedra by Epp-
stein and Mumford [6]. (Their proof is somewhat easier,
as it is a direct consequence of the fact that the graph is
planar and the numbers of edges of every face is even.)

Corollary 1 The graph of a 3-regular orthogonal poly-
hedron is bipartite.

In 2D, placing a natural vertex guard onto every other
vertex of an orthogonal polygon gives a valid guard-
ing, see [5], Theorem 9, where this is proved for simple

Figure 3: How the orientations of the edges adjacent to
a convex and a semiconvex vertex flip when the poly-
hedron gets rotated by π/2 around a coordinate axis.

polygons. Because guarding a polygon and guarding its
complement are equivalent problems (cf. [2], Observa-
tion 5), the same holds for polygons with holes.

Theorem 2 [5] An orthogonal polygon with n vertices
(possibly containing holes) can be guarded by n/2 guards
placing a natural vertex guard onto every other vertex.

For a face f of a polyhedron, let f denote the plane
that contains f . A set G of guards covers a point r if
there is an ε > 0 such that for any point pair p, q ∈ Bε(r)
with p ∈ P and q /∈ P there is some guard in G that
contains p but does not contain q. We say that a set
G of guards covers a face f ∈ F (P), if G covers some
point p in the interior of f . (p is in the interior of f if
p ∈ f and p /∈ e for any e ∈ E(P).) and G covers f
completely, if G covers all points in the interior of f . If
{g} covers f , then g has a face fg with fg = f .

Theorem 3 For any integer k ≥ 2, there are 3-regular
orthogonal polyhedra with 4k vertices that cannot be
guarded by fewer than k guards.

Proof. Take a 2-dimensional orthogonal polygon Q
with 2k pairwise non-collinear edges. Let P be a (right)
prism with base Q. P has 2k + 2 faces, k of which are
x-faces. Consider a guarding G of P . Each face f of P
has to be covered by at least one guard. No two x-faces
are coplanar, so any guard can cover at most one x-face.
Therefore, there are at least k guards in G. �

3 Guarding with n/2 Natural Vertex Guards in 3D

Theorem 4 A 3-regular orthogonal polyhedron P can
be guarded with n(P)/2 natural vertex guards.

Proof. Place a guard onto every vertex where all edges
are pointing inwards. We show that for every in-
side/outside point pair (p, q) there is a guard g that
distinguishes p and q. Denote the axis-parallel cube
spanned by p = (px, py, pz) and q = (qx, qy, qz) by Q.

CCCG 2011, Toronto ON, August 10–12, 2011

469

23d Canadian Conference on Computational Geometry, 2011

q

p

q

p

q

p

r ∈ V (P) r ∈ e ∈ E(P)

r ∈ f ∈ F (P)

v

v convex v reflex

v semiconvex v semireflex

Figure 4: The three subcases of Case 1: Vertex v can
have any of the types to the right.

Edge orientations and hence guardings are symmetric
under a rotation by an angle of π around a coordinate
axis. Therefore we may suppose without loss of gen-
erality that either qx ≤ px, qy ≤ py and qz ≤ pz, or
px ≤ qx, py ≤ qy and pz ≤ qz.

First consider the case that qx ≤ px, qy ≤ py and qz ≤
pz. Look at Q ∩ P and pick the point r = (rx, ry, rz) ∈
P ∩ Q which minimizes rx + ry + rz. The point r can
arise in three different ways, as depicted in Figure 4: If
r ∈ V (P), r is a convex vertex such that P occupies the
(+ + +)-octant. Therefore, there is a guard on it which
distinguishes p and q. If r = e∩f is the intersection of an
edge e ∈ E(P) and a face f ofQ, f must be adjacent to q
and emust be a convex edge orthogonal to it. Therefore,
e is pointing outward of Q to a guard g distinguishing
p and q. If r is on an edge of Q and in the interior of
a face f of P , look at f as a 2D-polygon: Drawing a
horizontal and a vertical line through r divides f into
four quadrants. f has a convex vertex in each quadrant,
in particular in the quadrant opposite to f ∩ Q. No
matter which type v has as a vertex of P , it is going to
distinguish p and q.

In the case where px ≤ qx, py ≤ qy and pz ≤ qz,
we have to use a slightly different argument. Let A
be the face of Q that is adjacent to p and orthogonal
to the z-axis. Consider the 2-dimensional orthogonal
polygon P ′ we get by intersecting P with the plane A
and picking the connected component of the intersection
that contains p. Let r be the point in P ′ ∩ A that
maximizes rx + ry. As in the first case, there are three
sub-cases to consider. If r = A∩e, e ∈ E(P), we observe
that e is a convex z-edge of type (−−), so it is oriented

p

q

Q

A

A ∩ P

e
r

p

q

Q

P ′

g

gg

r

g

Figure 5: Case 2: Following e we find a guard g, which
has one of several possible types.

downwards. So we can follow e to its end point outside
Q where we find a guard g that distinguishes p and q,
see Figure 5. If r is the intersection of an edge of A with
a face f of P , then r divides f into four quadrants, in
each of which we find a convex vertex of f (thought of
as 2D-polygon). In particular, there is a convex vertex
v of f in the quadrant opposite to the one containing
f ∩ Q and there is a guard on v that distinguishes p
and q. Finally, if r is a vertex of A, which means that
A is completely contained in P , then pick another face
B of Q adjacent to p, and repeat the argument. If all
faces adjacent to p are completely inside P , then look
at the top face C of Q and observe that C ∩ P must
have at least one reflex vertex r. This vertex r lies on a
reflex z-edge of P , which is pointing upward to a guard
outside of Q that distinguishes p and q, see the example
to the right in Figure 5. �

4 Improving the Bound to 3n/8

Let P be an arbitrary 3-regular orthogonal polyhedron
with n vertices. Every vertex is incident to one x-edge,
one y-edge and one z-edge. Thus, there are exactly n/2
edges in each direction. In the guarding described above
we used one guard per z-edge. In order to reduce the
number of guards, we now place a natural edge guard
onto roughly half of the z-edges only, namely onto those
that are pointing downwards.

Such a guarding for sure covers all x– and y-faces,
but we have not done anything about the z-faces yet.
An easy solution would be to place a natural face guard
gf onto every z-face f . This would yield a valid guard-
ing, but the number of z-faces could be as large as n/4
(even after permuting the coordinate axes). So instead,
we replace every natural edge guard ge on a z-edge e
pointing down to a vertex v of f by a vertex guard
gv: gv := ge ∩ gf if f has the interior of P above and
gv := ge ∪ gf if f has the interior of P below. So—
in some sense—we combine the natural edge guards

23rd Canadian Conference on Computational Geometry, 2011

470

CCCG 2011, Toronto ON, August 10–12, 2011

f

f

E

p

p′

q

Figure 6: An increasing event.

and the natural face guards to vertex guards. (Note
that these new guards are not necessarily natural ver-
tex guards.) However, some z-faces may not be covered
still. We call a z-face f good, if the guards we place
on vertices of f cover f completely, and we call f bad,
otherwise. If a z-face f is bad, then we put a natural
face guard gf onto f . So we have to make sure that
this does not happen too often and that we will not use
more than roughly n/8 face guards in this way. Let G
be the set of vertex guards as described above together
with the face guards on bad z-faces.

Lemma 5 G is a valid guarding of P .

Proof. We use a sweep argument. For simplicity, we
assume that P has no coplanar z-faces. Imagine sweep-
ing a plane E orthogonal to the z-axis upwards and look
at the intersection polygon Q = P ∩ E. Whenever E
is coplanar with a z-face f of P (called the event face),
the intersection polygon Q changes: the new intersec-
tion polygon Q′ is either bigger or smaller, Q′ = Q ∪ f
or Q′ is (the closure of) Q \ f . We call the first case an
increasing event, the second case a decreasing event.

The claim is that using guards encountered so far
only, we are able to guard P as far as we have seen it:
At any moment the set G̃ of guards that lie below the
sweep plane E, together with an imaginary face guard
gE that is the closed halfspace below E, is a guarding of
the part P̃ = P ∩gE of P below E. We prove this claim
by induction on the number of event faces processed.

At the beginning P̃ is empty. At some point, we hit
the first z-face f of P . The vertices of f correspond to z-
edges of P starting at f and going upwards. According
to our rule, there is a guard on every second vertex of
f , which we can think of as a 2-dimensional guarding
for f extending to the region orthogonally above f .

Increasing Event. Let f be an increasing event face,
that is, the interior of P lies above f (Figure 6). We
claim that after E has passed f (but no other event face
yet), we still have a valid guarding for P̃ . Consider a
point pair p ∈ P̃ and q /∈ P̃ . We may suppose without

loss of generality that both p and q lie in the closed
halfspace below f : If one of the points, say, p lies above
f , then consider the orthogonal projection p′ of p onto
f instead. As all guards in G̃ are located in the closed
halfspace below f , none of them distinguishes p and p′.

If p and q are both below f , then by induction there
is a guard that distinguishes them. If both p and q lie
in f , then we are in a 2-dimensional situation and find
a guard that distinguishes them because our guarding
contains a 2-dimensional guarding of Q′. (The vertices
of Q′ correspond to z-edges. There is a guard on every
other z-edge that—intersected with Q′—is a natural 2D
vertex guard of Q′. See Theorem 2.)

If p ∈ f and q lies below, then either there is a face
guard gf that does the job or f is a good face. In the
latter case, the new vertex guards (i.e., those placed
when handling the event face f) collectively cover f . If
p ∈ f , then one of these new guards distinguishes p and
q. Otherwise, a point p′ slightly below p lies within P as
well. By induction there is some old guard (i.e., a guard
placed before handling the event face f) to distinguish
p′ from q. As such a guard cannot distinguish between
p and p′, it also distinguishes p and q. Symmetrically,
if q ∈ f and p is below, consider a point q′ located
slightly below q and note that q′ /∈ P because the event
is increasing. By induction, there is an old guard that
distinguishes p and q′ but cannot distinguish q and q′.
Hence this guard also distinguishes p and q.

Decreasing Event. Consider a point pair p ∈ P̃ and
q /∈ P̃ . As above, we may suppose without loss of
generality that p lies in the closed halfspace below f .
However, if q lies above the event face f—that is, the
orthogonal projection q′ of q onto f lies in f—we can-
not simply replace q by q′, because q′ ∈ P . But we
know that some guard that was placed when handling
the event face f distinguishes q and q′, and every guard
placed when handling f contains the closed halfspace
below f . Therefore, if p lies below f , then this guard
distinguishes p and q. If p ∈ f , then recall that we
have a 2-dimensional guarding for Q′, which must con-
tain a guard that can distinguish p and q′. This guard
classifies q′ as outside and so it does with q. Hence it
distinguishes p and q. We may thus assume that q lies
in the closed halfspace below f as well. It follows induc-
tively that there exists an old guard that distinguishes
p and q. �

Lemma 6 Under a random rotation around the z-axis
by a multiple of π/2 and independently, a reflection with
respect to the plane z = 0 with probability 1/2, a z-face
with 4 or 6 vertices is good with probability at least 1/2.

Proof. Each vertex v of f corresponds to a z-edge ev
of P . ev either starts at v going upwards or it ends
at v. We call v a starting vertex or an ending vertex,
respectively. If v is a starting vertex and ev is pointing

CCCG 2011, Toronto ON, August 10–12, 2011

471

23d Canadian Conference on Computational Geometry, 2011

to v, there is a guard gv on v. Else, if ev is oriented
upwards or v is an ending vertex, there is no guard on
v. Under a reflection in the xy-plane, starting vertices
turn into ending vertices and vice versa, see Figure 7.

Consider f as a 2D-polygon. If it has 6 vertices, ex-
actly 5 are convex and one is reflex. One of the convex
2D-vertex-types appears twice, the other three appear
exactly once and are referred to as unique, therefore. If
f has 4 vertices, they are all unique. So in any case we
have at least three unique (convex) vertices. Moreover,
these vertices appear consecutively along the boundary
of f , which implies that for at least one of them the
incident z-edge is directed towards the vertex.

If there is a guard on some unique vertex of f , then f
is good because this guard covers f completely. (Note
that f may be bad if there is a guard at some non-
unique vertex only, see Figure 7 (B).) If two adjacent
unique vertices of f are starting, then—by the remark
above—at least one of them has a guard. When reflect-
ing P at the plane z = 0, all ending vertices turn into
starting vertices and vice versa. Hence, if two adjacent
unique vertices of f are ending, then at least of them
has a guard after this reflection and so f is good with
probability at least 1/2. It remains to consider the case
that the three unique vertices of f follow the pattern
starting–ending–starting or ending–starting–ending and
neither of the starting vertices, with and without reflec-
tion, has a guard (Figure 7 (C)). When rotating around
the z-axis by π/2 or 3π/2, starting vertices remain start-
ing and ending vertices remain ending. But edge orien-
tations flip and so a starting vertex without guard turns
into a starting vertex with guard. As a result, both the
original face and the reflected variant turn good after
such a rotation. So again with probability at least 1/2,
the face f appears as a good face. �

Theorem 7 Let P be a 3-regular orthogonal polyhe-
dron. Then P can be guarded with 3n(P)/8 guards.

Proof. Guard P as described at the beginning of the
section. Whenever we have to use a face guard gf , we
charge it to the edges of f . The edges of a z-face f are
also edges of P and each x- or y-edge appears exactly
once as an edge of a z-face. So the edges of a z-face f of
degree d ≥ 8 each get charged at most 1/d ≤ 1/8. The
edges of a face f with degree d = 4 or d = 6 get charged
1/d ≤ 1/4 if we have to use a face guard gf . If we pick
a random rotation around the z-axis and independently
decide to reflect P with respect to the plane z = 0 with
probability 1/2, we have shown that f ends up as a
bad face with probability at most 1/2. So the x- or
y-edges gets charged at most 1/4 with probability at
most 1/2 and 0 otherwise. So the expected charge of
an x− or y-edge is at most 1/8. The vertex guards get
charged to their corresponding z-edge. Under a random

v
gv

v′
(A) (B)

(C)

Figure 7: (A) a bad face that turns good after reflection;
(B) a face that is bad even though there is a vertex
v with a guard gv on it: gv does not cover the face
completely; (C) a face that stays bad after reflecting,
but both itself and the reflected version turn good after
rotating around the z-axis by π/2.

rotation, a z-edge gets charged 1 with probability 1/2
and 0 otherwise. Therefore, the expected total charge
is going to be at most 1

8n+ 1
2n/2 = 3n/8, so there is a

rotation (possibly combined with a reflection) such that
at most 3n/8 guards are used. �

References

[1] J. Abello, V. Estivill-Castro, T. Shermer, and J. Urru-
tia. Illumination of orthogonal polygons with orthogonal
floodlights. Internat. J. Comput. Geom. Appl., 8(1):25–
38, 1998.

[2] T. Christ, M. Hoffmann, Y. Okamoto, and T. Uno. Im-
proved bounds for wireless localization. Algorithmica,
57:499–516, July 2010.

[3] T. Christ and A. Mishra. Wireless localization with ver-
tex guards. In Abstracts of the 27th European Workshop
on Computational Geometry (EuroCG ’11), Morschach,
Switzerland, March 2011.

[4] D. P. Dobkin, L. Guibas, J. Hershberger, and
J. Snoeyink. An efficient algorithm for finding the CSG
representation of a simple polygon. Algorithmica, 10:1–
23, 1993.

[5] D. Eppstein, M. T. Goodrich, and N. Sitchinava. Guard
placement for efficient point-in-polygon proofs. In Proc.
23rd Annu. Sympos. Comput. Geom., pages 27–36, 2007.

[6] D. Eppstein and E. Mumford. Steinitz theorems for or-
thogonal polyhedra. In Proc. 26th Annu. Sympos. Com-
put. Geom., pages 429–438, 2010.

[7] B. Genc. Reconstruction of Orthogonal Polyhedra. PhD
thesis, University of Waterloo, 2008.

23rd Canadian Conference on Computational Geometry, 2011

472

CCCG 2011, Toronto ON, August 10–12, 2011

Weak Visibility Queries in Simple Polygons

Mojtaba Nouri Bygi ∗ Mohammad Ghodsi †

Abstract

In this paper, we consider the problem of computing
the weak visibility (WV) of a query line segment in-
side a simple polygon. Our algorithm first preprocesses
the polygon and creates data structures from which any
WV query is answered efficiently in an output sensitive
manner. In our solution, the preprocessing is performed
in time O(n3 log n) and the size of the constructed data
structure is O(n3). It is then possible to report the WV
polygon of any query line segment in time O(log n+ k),
where k is the size of the output. Our algorithm im-
proves the current results for this problem.

1 Introduction

Two points inside a polygon are visible to each other
if their connecting segment remains completely inside
the polygon. The visibility polygon V P (q) of a point q
in a simple polygon P is the set of P points that are
visible from q. A common approach to this problem is
to decompose the polygon into the visibility regions in
such a way that all points inside a region have equivalent
visibility data [2]. Two visibility polygons are equivalent
if they are composed of the same sequence of vertices
and edges of the underlying polygon. If all the visibility
regions and their corresponding visibility polygons are
calculated in the preprocessing phase, for any point q,
V P (q) can then be obtained by refining the visibility
polygon of the region that contains q.

In a simple polygon with n vertices, V P (q) can
be reported in time O(log n + |V P (q)|) by spending
O(n3 log n) preprocessing time and O(n3) space [2, 7].
An improvement was presented in [1] where the prepro-
cessing time and space were reduced to O(n2 log n) and
O(n2) respectively, at the expense of more query time
of O(log2 n+ |V P (q)|).

The visibility problem has also been considered for
line segments. A point v is said to be weakly visible to
a line segment pq if there exists a point w ∈ pq such
that w and v are visible to each other. The problem of
computing the weak visibility polygon (or WVP) of pq

∗Department of Computer Engineering, Sharif University of
Technology, nouribaygi@ce.sharif.edu
†Computer Engineering Department, Sharif University of

Technology, and Institute for Research in Fundamental Sciences
(IPM), Tehran, Iran. ghodsi@sharif.edu. This author’s research
was partially supported by the IPM under grant No: CS1389-2-01

inside a polygon P is to compute all points of P that
are weakly visible from pq. If P is a polygon without
holes, Chazelle and Guibas [3] gave an O(n log n) time
algorithm for this problem. Guibas et al. [6] showed
that this problem can be solved in O(n) time if a tri-
angulation of P is given along with P . Since P can be
triangulated in O(n) [4], the algorithm of Guibas et al.
runs in O(n) time [6]. Another linear time solution was
obtained independently in [8].

The weak visibility problem in the query version has
been considered by few. It is shown in [2] that a simple
polygon P can be preprocessed in O(n3 log n) time and
O(n3) space such that given an arbitrary query line seg-
ment inside the polygon, O(k log n) time is required to
recover k weakly visible vertices. This result was later
improved in [1] where the preprocessing time and space
were reduced to O(n2 log n) and O(n2) respectively, at
the expense of more query time of O(k log2 n).

In this paper, we improve these results by showing
that the weak visibility polygon of a line segment pq can
be reported in an output sensitive time of O(log2 n +
k) after preprocessing the input in time and space of
O(n3 log n) and O(n3) respectively.

2 Preliminaries

In this section we introduce some basic terminologies
used throughout the paper. For a better introduction
to these terms, we refer the readers to Guibas et al. [6],
Bose et al. [2], and Aronov et al. [1]. For simplicity,
we assume that no three vertices of the polygon are
collinear.

2.1 Visibility Decomposition

Let P be a simple polygon with n vertices. Also let p
and q be two points in the polygons. A visibility de-
composition of P is to partition P into a set of visibility
regions, such that for each region, the same sequence of
vertices and edges of P are visible from any point inside
the region.

Two visibility regions are neighboring if they are sepa-
rated by an edge. In a simple polygon, two neighboring
visibility regions differ only in one vertex in their visi-
bility sequences. This fact is used to reduce the space
complexity of maintaining the visibility sequences of the
regions [2]. This is done by defining the sink regions.
A sink is a region with the smallest visibility sequence

CCCG 2011, Toronto ON, August 10–12, 2011

473

23d Canadian Conference on Computational Geometry, 2011

compared to all of its adjacent regions. It is therefore
sufficient to only maintain the visibility sequences of the
sinks, from which the visibility sequences of all other re-
gions can be computed. By constructing a directed dual
graph (see Figure 1) over the visibility regions, one can
maintain the difference between visibility sequences of
neighboring regions[2].

Figure 1: Decomposed visibility regions and its dual
graph [2].

The number of visibility regions in a simple polygon
is O(n3), and the number of sink regions is O(n2) [2].

2.2 Linear time algorithm for computing WVP

Here, we explain the O(n) time algorithm of Guibas
et al. [6] for computing WVP(pq) of a line segment pq
inside a simple polygon P with n vertices, as described
in [5]. For any line segment pq, we can cut P into two
polygons P1 and P2 along the supporting line of pq (see
Figure 2). It can be seen that WVP(pq) is the union of
the WVPs of the two sub-polygons from pq. So here we
assume that pq is an edge of P .

p qu v

Figure 2: P is divided by uv into two sub-polygons.

Let SPT(p) denote the shortest path tree in P rooted
at p. We traverse SPT(p) using a depth-first search
and check the turn at every vertex vi in SPT(p). If the
path SP(p, vj) makes a right turn at vi, then, we find
the descendant of vi in the tree with the largest index
j (see Figure 3). We compute the intersection point

z of vjvj+1 and vkvi, where vk is the parent of vi in
SPT(p), in O(1) (because there is no vertex between
vj and vj+1), and finally remove the counter-clockwise
boundary of P from vi to z by inserting the segment
viz.

Let P ′ denote the remaining portion of P . We fol-
low the same procedure for q, except that this time we
check the turn at every vertex and see whether the path
make its first left turn. After finishing the procedure,
we output the remaining portion of P ′ as WV P (pq).

replacements

pp qq

vk

vk

z

z

vi

vi vj

vj

vj−1

vj−1

vj+1

vj+1

Figure 3. A line segment observer among
convex objects.

[3] G. S. Brodal and R. Jacob. Dynamic planar convex
hull. In In Proc. 43rd IEEE Sympos. Found. Comput.
Sci, pages 617–626, 2002.

[4] B. Chazelle, L. J. Guibas, and D. T. Lee. The power of
geometric duality. InProc. 24th Annu. IEEE Sympos.
Found. Comput. Sci., pages 217–225, 1983.

[5] S. Ghali and A. J. Stewart. Incremental update of
the visibility map as seen by a moving viewpoint in
two dimensions. InSeventh International Eurograph-
ics Workshop on Computer Animation and Simulation,
pages 1–11, Aug. 1996.

[6] S. Ghali and A. J. Stewart. Maintenance of the set of
segments visible from a moving viewpoint in two di-
mensions. InProc. 12th Annu. ACM Sympos. Comput.
Geom., pages V3–V4, 1996.

[7] S. K. Ghosh and D. M. Mount. An output sensitive
algorithm for computing visibility graphs. Technical
Report CS-TR-1874, Department of Computer Sci-
ence, University of Maryland, July 1987.

[8] K. Nechvle and P. Tobola. Dynamic visibility in the
plane. InProc. Seventh Int. Conf. in Central Europe
on Computer Graphics and Visualization, WSCG ’99,
pages 187–194, 1999.

[9] M. H. Overmars and J. van Leeuwen. Maintenance
of configurations in the plane.J. Comput. Syst. Sci.,
23:166–204, 1981.

[10] M. Pocchiola and G. Vegter. The visibility com-
plex. Internat. J. Comput. Geom. Appl., 6(3):279–308,
1996.

[11] S. Rivière. Dynamic visibility in polygonal scenes
with the visibility complex. InProc. 13th Annu. ACM
Sympos. Comput. Geom., pages 421–423, 1997.

[12] P. Tobola. Local approach to dynamic visibility in
the plane. InProceedings of the 7-th International
Conference in Central Europe on Computer Graphics,
Visualization and Interactive Digital Media’99, pages
202–208, 1999.

[13] G. Vegter. Computational topology. In J. E. Good-
man and J. O’Rourke, editors,Handbook of Discrete
and Computational Geometry, chapter 32. CRC Press
LLC, Boca Raton, FL, 2th edition, 2004.Figure 3: In both cases, the from the root makes its first

right turn at vj [5].

3 The Proposed Algorithm

In this section, we show how to modify the presented al-
gorithm, so that the WVP can be computed efficiently
in an output sensitive manner. First, we show how to
compute the shortest path trees in an output sensitive
manner, and then we present the first version of our
algorithm. Finally, in Section 3.3, we improve this al-
gorithm and present the final result.

3.1 Computing the shortest path trees

In our algorithm, we use both of the shortest path trees
of p and q. In [6], it is shown how to compute the
Euclidean shortest paths inside a simple polygon P of
n vertices from a given point p to all other vertices in
O(n) time. But, this algorithm requires O(n) of query
time which is way beyond our goal. To overcome, we
show how to preprocess a simple polygon, so that for
any given point, we can compute any part of its shortest
path tree in an output sensitive way.

The shortest path tree SPT(p) is composed of two
kinds of edges: the primary edges, which are from the
root p to its direct visible vertices, and the secondary
edges that connect other two vertices of polygons (see
Figure 4).

We can compute the primary edges using the same
output sensitive algorithm of computing the visibility

23rd Canadian Conference on Computational Geometry, 2011

474

CCCG 2011, Toronto ON, August 10–12, 2011

polygon [2]. More precisely, with a processing cost of
O(n3 log n) time and O(n3) space, we can in query time
of O(log n) have a pointer to the sorted list of the visible
vertices from p in O(log n) time.

primary edges

1st type secondary edges

2nd type secondary edges

p
u

v

Figure 4: The shortest path tree from p and its different
edge types.

We also need to access the list of the secondary edges
of a node in constant time. For this, we compute all pos-
sible values of secondary edges of a vertex in preprocess-
ing time and in query time, we detect the appropriate
list without any further cost.

Depending on the number of possible parents of a
vertex v, we recognize two kinds of secondary edges:
The 1st type of secondary edges (1st type for short) are
those connected to a primary edge, and the 2nd type are
the ones that connect other two vertices of the polygon.

For the 2nd type edges, as there are O(n) possible
parents for v, and for each parent, there may be O(n)
edges emitting from v, we need O(n2) space to store all
possible combinations of the 2nd type edges emitting
from v. In total, we need O(n3) space to store all these
edges. We can also compute a local shortest path tree
in each case (a SPT with the parent of v as its root),
and compute the sorted list of edges in O(n log n), or in
total O(n3 log n) time.

The parent of a 1st type edge is the root of the tree.
As the root can be in any of the O(n3) different visibility
regions, computing all possible combinations of the 1st
type edges emitting from a vertex, requires to consider
all these parents (remember that if the root of two SPTs
are in the same region, then the combinatorial structure
of the two trees are the same). We can compute the first
type edges for each region in O(n4 log n) time and store
them in O(n4) space. In Section 3.3 we will show how
to improve this result by a linear factor.

Theorem 1 Given a simple polygon P , we can prepro-
cess it into a data structure with O(n4) space and in
O(n4 log n) time so that for any query point p, the short-
est path tree from p can be reported in O(log n + k),
where k is the size of the tree that is to be reported.

Proof. First, we use Bose’s algorithm for computing
the visibility polygon of point p. For this, we need O(n3)
space and O(n3 log n) time in the preprocessing phase.

For the secondary edges, we need O(n4 log n) time and
O(n4) space to compute and store the 1st type edges,
and O(n3 log n) time and O(n3) space to store the 2nd
type ones.

In query time, we can locate the visibility region of p
in O(log n) and have the sorted list of the visible ver-
tices from p. Therefore, we can use the primary edges
of SPT(p) without paying any further costs (remember
that each visible vertex from p corresponds to a primary
edge in SPT).

As we have computed the 1st type edges of the SPT
for all the regions, we can access a pointer to the sorted
list of these edges in O(1). Similarly, at any node of
the tree, we have the list 2nd type edges from that
node. Therefore, the cost of traversing the SPT would
be the number of visited nodes of the tree, plus the
initial O(log n) cost, i.e., O(log n + k), where k is the
number of the traversed edges of SPT. �

3.2 Computing the query version of WVP

In this section, we use the linear algorithm of Guibas et
al. [6] for computing WVP of a simple polygon and show
how to compute the query version of this problem. We
build the data structure explained in previous section,
so that we can compute the SPT of any point inside the
polygon in query time.

This algorithm is not output sensitive by itself. See
the example of Figure 5. As stated in Section 2.2, first
we traverse SPT(p) using DFS and check the turn at
every vertex of SPT(p). Consider vertex v. As we tra-
verse the shortest path from p to v, or SP (p, v), we
must check all the children of v and this checking can
costs O(n). But when we traverse SPT(q), v would be
omitted, therefore, the time we spend for processing its
children would be useless.

p q

v

Figure 5: Processing vertex v imposes redundant O(n)
time.

To achieve an output sensitive algorithm, we store
some additional information about the vertices of the
polygon.

CCCG 2011, Toronto ON, August 10–12, 2011

475

23d Canadian Conference on Computational Geometry, 2011

We say that a vertex v of a simple polygon is left crit-
ical (LC for short) with respect to a point p, if SP (p, v)
makes its first left turn at v or one of its ancestors. In
other words, each shortest path from p to a non-LC ver-
tex is a convex chain that makes only clockwise turns at
each node. Having the critical state of all vertices with
respect to a point p, we say that we have the critical
information with respect to p.

Having the critical information of p and q, we can
change the algorithm for computing WVP as follows:
In the first round, we traverse SPT(p) using DFS. At
each vertex, we check whether this vertex is left critical
with respect to q. If so, we are sure that the descendants
of this vertex are not visible from pq, so we postpone
its processing to the time we reach it from q, and check
the other branches of SPT(p). Otherwise, we proceed
with the algorithm and check whether SPT(p) makes
a right turn at this vertex. In the second round, we
traverse SPT(q) and perform the normal procedure of
the algorithm.

Lemma 2 All the vertices that we traverse in SPT(p)
and SPT(q) are vertices of WVP(pq).

Proof. Assume that we meet v when we are traversing
SPT(p) and v 6∈ WVP(pq). Also, assume that u is the
parent of v in SP (pv). Then, u or one of its ancestors
must be LC with respect to q, otherwise the Guibas et
al. algorithm will detect it as a WVP vertex. So, as
one of the ancestors of v is LC, we would not reach v
when traversing SPT(p). The same argument applies to
SPT(q). �

As the combinatorial structure of shortest path trees
of all points in a visibility region are the same, we just
need to compute the critical information of a point a
in each region S, and use this information for all points
of that region. In the preprocessing phase, for each
visibility region we compute critical information of a
point inside it, and assign this information to that re-
gion. In query time and upon receiving a line segment
pq, we locate p and q. Using the critical information of
their regions, we apply the above algorithm and com-
pute WVP(pq).

So far, we have assumed that pq is a polygon edge.
The following lemma generalizes the position of pq in
P .

Lemma 3 If pq is a line segment inside the simple poly-
gon P , we can decompose P into two sub-polygons P1

and P2, such that they both have pq as an edge. In
addition, we can use the critical information and the
secondary edges data of the visibility regions of P for
these sub-polygons.

Proof. We build the ray shooting structure in P , in
O(n) time and space [3]. In query time, we find the

intersection points of the supporting line of pq with the
border of P . Locating these intersection points among
the vertices of P , we can create two simple polygons, P1

and P2, in O(log n) time . Each of these two polygons
has pq on its edge. As the visibility regions of the gen-
erated polygons are a subset of the visibility regions of
the original polygon, and we have computed the critical
information and the SPT edges for all the regions of P ,
we have the needed data for p and q in both P1 and P2.
See an example in Figure 6.

p q

p’ q’

Figure 6: If the query line segment pq is inside the poly-
gon, we split it along the supporting line of pq.

For simplicity, we can translocate pq a little higher
(or lower) from its supporting line to p′q′. As the visi-
bility regions of p and p′ (also q and q′) are the same,
WVP(pq) and WVP(p′q′) have the same combinatorial
structures. We need to filter the primary edges origi-
nating from p and q to those that are in P1 (or P2). As
we have the sorted list of these edges, this filtering can
be done in O(log n) by a simple range searching. By
traversing these primary edges at each vertex of P1, we
can use the stored critical information and secondary
edges of that vertex. Depending on which side of the
line pq we are on, we use the critical information of p or
q in the weak visibility computations.

�

Now, we analyse the time and space of the above al-
gorithm. As there are O(n3) visibility regions, we need
O(n4) space to store the critical information of each ver-
tex. For each region, we compute SPT of a point, and by
traversing the tree, we update the critical information
of each vertex with respect to this region. We assign an
array of size O(n) to each region to store these informa-
tion. We also build the structure described in Section
3.1 for computing SPT in time O(n4 log n) and O(n4)
space. In query time, we locate the visibility regions of

23rd Canadian Conference on Computational Geometry, 2011

476

CCCG 2011, Toronto ON, August 10–12, 2011

p and q in O(log n). As we traverse SPTs of p and q,
by Lemma 2, each vertex that we see is on WVP(pq).
Because the processing time we spend in each vertex is
O(1), the total query time is O(log n+ |WV P (pq)|).

Theorem 4 Using O(n4 log n) time to preprocess a
simple polygon P and maintain a data structure of
size O(n4), it is possible to report WV P (pq) in time
O(log n+ |WV P (pq)|).

3.3 Improving the algorithm

To improve the result of Theorem 4, we will modify two
parts of our algorithm. First, we show that it is suffi-
cient to compute the critical information of the sink vis-
ibility regions (see Section 2.1), from which we can de-
duce the critical information of all other regions. Also,
in computing SPT in Section 3.1, we will show that if we
compute 1st type of secondary edges of the sink regions,
we can compute these edges for the non-sink regions in
query time. As there are O(n2) sinks in a simple poly-
gon, the processing time and space of our algorithm
would reduce to O(n3 log n) and O(n3) respectively.

In query time, if both p and q belong to sink regions,
we have critical information of both regions and we pro-
ceed the algorithm as stated before. On the other hand,
if one of these points lie on a non-sink region, we show
how to obtain the secondary edges and the critical in-
formation for that region in O(log n+ |WV P (pq)|).

Lemma 5 Consider two visibility regions that share a
common edge. If we have the 1st type secondary edges
of a region for each vertex visible from it, these edges
are the same for its neighboring region, except for one
edge.

p

u
v

Figure 7: Combinatorial changes of SPT by moving be-
tween neighboring regions.

Proof. When we cross the border of two neighboring
regions, a vertex becomes visible, or invisible [2]. In Fig-
ure 7 for example, when p crosses the border specified
by u and v, a 1st type secondary edge of u becomes a
primary edge of p, and all edges of v become 1st type

secondary edges. We can see that no other vertex would
be affected by this movement. Processing these changes
can be done in constant time, since it includes the fol-
lowing changes: removing a secondary edge of u (uv),
adding a primary edge (pv) and moving an array pointer
(edges of v) from 2nd type edges to 1st type edges. Note
that we know the exact position of these elements, so
we do not have the overhead time of finding them in
their corresponding lists. Finally, we can identify the
sole edge which involves with these changes in the pre-
processing time (the edge corresponding to the crossed
critical constraint), so, the time we spend in the query
time would be O(1). �

Lemma 6 In the path from a sink to another visibility
region, we can handle the changes of the critical infor-
mation of the point in constant time.

p

u
v p

u v

pp uu v
v

(a) (b)

(c) (d)

2

0 0 0

1

1 1
1

Figure 8: The critical information of v w.r.t p, as p
moves between the two regions. a) v is LC but not u,
b) u and v are not LC, c) both u and v are LC, d) u is
LC but not v.

Proof. Suppose that we want to maintain the critical
information of p and we are crossing the critical con-
straint defined by the edge uv. Depending on the crit-
ical status of u and v w.r.t. p, four possible situations
may occur (see Figure 8). In the first three cases, the
critical status of v will not change and no further ac-
tion is required. In the forth case, however, the critical
status of u will change. To handle this case, we mod-
ify the way we store the critical status of each vertex
w.r.t. p. More precisely, at each vertex v we store the
number of LC vertices we met, or critical numbers, in

CCCG 2011, Toronto ON, August 10–12, 2011

477

23d Canadian Conference on Computational Geometry, 2011

the path SP (p, v) (see Figure 9). Computing and stor-
ing the critical numbers along the critical info will not
change our time and space requirements. Now consider

p 1

1

1

1
2

0

0

Figure 9: We store the number of LC vertices we met
from p in SPT(p).

the forth case in Figure 8. When v becomes visible to
p, it is no longer LC w.r.t. p. So, we change the critical
number of v to 0, but instead of changing the critical
numbers of its children, we store −1 in v as its critical
number, indicating that the critical numbers of all the
vertices of its subtree must be subtracted by 1. The ac-
tual propagation of this subtraction will happen when
we are traversing SPT(p). We also modify the query
time algorithm to reflect this change. If we are comput-
ing WVP(pq), and because v is LC w.r.t. q, we stopped
at the path SP(p, v), we store a pointer to this path at
v. When we are traversing SP(q, v) and we find out that
v is no LC w.r.t. q, we resume the stored pass. �

In the preprocessing time, we construct the dual pla-
nar graph of the visibility regions. We use the dual
directed graph that was built by algorithm of Bose et
al. [2] (Figure 1). In this graph, every node represents
a visibility region, and an edge between two nodes cor-
responds to a gain of one vertex in the visibility set in
one direction, and a loss in the other. By Lemma 5 and
6, we also know that these two neighboring regions have
the same critical information and secondary edges, ex-
cept for one vertex. We associate this vertex with the
edge. We also compute the critical information and 1st
type secondary edges of all the sink regions.

In query time, we locate the region containing point
p, and follow any path from this region to a sink. As
each arc represents one vertex seen by the query point
p and therefore seen by pq, the number of arcs that
we pass would be O(|WV P (pq)|). When traversing the
path from sink back to the region of p, we update the
critical information and the secondary edges of the vis-
ible vertices in each region. Upon coming back to the
original region, we would have the critical information
and the secondary edges of this region. We perform
the same procedure for q. Having the critical informa-
tion and the 1st type edges of p and q, we can compute
WVP(pq) with the algorithm of Section 3.2. Putting all
together, we have the following result

Theorem 7 A simple polygon P can be preprocessed
in O(n3 log n) time and O(n3) space such that given
an arbitrary query line segment inside the polygon, it
takes O(log n + |WV P (pq)|) time to list all vertices of
WVP(pq).

4 Conclusion

In this paper, we showed how to answer weak visibil-
ity queries in a simple polygon in an efficient way. We
presented an algorithm to report WV P (pq) of any line
segment pq in O(log n+ |WV P (pq)|) time by spending
O(n3 log n) time to preprocess the polygon and main-
taining a data structure of size O(n3).

Currently, we are working on a different approach for
the same problem, to construct a data structure of size
O(n2) which can be computed in time O(n2 log n) so
that the weak visibility polygon WV P (pq) from any
query line segment pq ∈ P can be reported in O(log2 n+
|WV P (pq)|) time. Also, we are investigating whether
our techniques can be extended to the cases of polygons
with holes.

Acknowledgement

The authors would like to thank the anonymous reviewers
for their helpful comments.

References

[1] B. Aronov, L. Guibas, M. Teichmann and L. Zhang.
Visibility queries and maintenance in simple polygons.
Discrete and Computational Geometry, 27(4):461-483,
2002.

[2] P. Bose, A. Lubiw, and J. I. Munro. Efficient visibility
queries in simple polygons. Computational Geometry:
Theory and Applications, 23(3):313-335, 2002.

[3] B. Chazelle and L. J. Guibas. Visibility and intersec-
tion problems in plane geometry. Discrete and Compu-
tational Geometry, 4:551-581, 1989.

[4] B. Chazelle. Triangulating a simple polygon in linear
time. Discrete and Computational Geometry, 6:485-524,
1991.

[5] S. K. Ghosh. Visibility Algorithms in the Plane. Cam-
bridge University Press, New York, NY, USA, 2007.

[6] L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and
R. E. Tarjan. Linear time algorithms for visibility and
shortest path problems inside triangulated simple poly-
gons. Algorithmica, 2:209-233, 1987.

[7] L. Guibas, R. Motwani, and P. Raghavan. The robot
localization problem in two dimensions. SIAM J. Com-
put., 26(4):11201138, 1997.

[8] G. T. Toussaint. A linear-time algorithm for solving the
strong hidden-line problem in a simple polygon. Pattern
Recognition Letters, 4:449-451, 1986.

23rd Canadian Conference on Computational Geometry, 2011

478

CCCG 2011, Toronto ON, August 10–12, 2011

The Possible Hull of Imprecise Points∗

William Evans† Jeff Sember†

Abstract

We pose the problem of constructing the possible hull
of a set of n imprecise points: the union of convex hulls
of all sets of n points, where each point is constrained
to lie within a particular region of the plane. We give
an optimal algorithm for the case when n = 2, and the
regions are a point and a simple (possibly nonconvex)
polygon. We then describe how the algorithm leads to
an optimal algorithm for the case when n ≥ 2, and each
region is a simple polygon.1

1 Introduction

Let S = {s1, . . . , sn} be a planar point set.2 If we
are not given the locations of these points, but are
told only that each point si lies within a particular re-
gion of uncertainty Ri, then the points are imprecise.
The convex hull of a set of imprecise points cannot
be determined since it is one of possibly many feasi-
ble hulls (each of which is the convex hull of a feasible
set {s1 ∈ R1, . . . , sn ∈ Rn}).

Kreveld and Löffler investigate the problem of find-
ing the feasible hull with maximal or minimal area or
boundary length [3]. The problem of determining the
intersection of all feasible hulls has also been investi-
gated [5],[6],[2],[1],[7].

We define the possible hull of a set of imprecise points
(or their corresponding regions of uncertainty) as being
the union of the feasible hulls of the points. To moti-
vate this problem, consider the scenario where each is-
land in a group of islands contains a sensor whose exact
location is uncertain, and that each pair of these sen-
sors can detect any object that passes between them. To
avoid being detected, a boat traveling near the islands
would need to remain outside of their possible hull.

One reason that possible hulls have received little at-
tention until now is that when the regions of uncer-
tainty are convex, the possible hull is simply the convex
hull of the regions [5]. In this paper, we investigate
possible hulls of more general uncertain regions. We

∗Research supported by NSERC and Institute for Computing,
Information and Cognitive Systems (ICICS) at UBC
†Department of Computer Science, University of British

Columbia, [will,jpsember]@cs.ubc.ca
1An applet demonstrating these results can be found at

http://www.cs.ubc.ca/~jpsember/uh.html.
2All sets in this paper are assumed to be multisets.

present an algorithm for constructing the possible hull
of a point and a simple (possibly nonconvex) polygon,
and describe how this algorithm can be used as a sub-
routine to construct the possible hull of two or more
simple polygons. See Figure 1.

R1
R2

R1
R2

Figure 1: Possible hulls of pairs of uncertain regions.

2 Properties

We will denote the convex hull of a point set S by
CH(S), and the possible hull of uncertain regions R =
{R1, . . . , Rn} by PH(R) (or, when clear from the con-
text, by PH). Formally,

PH(R) =
⋃

{s1∈R1,...,sn∈Rn}
CH({s1, . . . , sn}).

From this definition, we can derive the following addi-
tional properties of possible hulls.

Lemma 1 PH({A}) = A.

Lemma 2 PH({A,B}) =
⋃

a∈A,b∈B
ab.

Lemma 3
⋃

Ri∈R
Ri ⊆ PH(R).

Lemma 4 If A and B are nonempty sets of uncertain
regions, then PH(A ∪ B) = PH({PH(A), PH(B)}).

Proof. Let Q = PH({PH(A), PH(B)}). Suppose p is
a point within PH(A∪B). Then there exists a feasible
set S of A ∪ B such that p ∈ CH(S). Let Sa and Sb be
the subsets of S corresponding to the subsets A and B.
By using the definition of convex hull, it is easy to show
that (i) CH(S) = CH(CH(Sa) ∪ CH(Sb)), and (ii) there
exist points a and b within CH(Sa) ∪CH(Sb) such that
p ∈ ab. Now, without loss of generality, either (i) a, b ∈
CH(Sa), or (ii) a ∈ CH(Sa) and b ∈ CH(Sb). If (i),

CCCG 2011, Toronto ON, August 10–12, 2011

479

23d Canadian Conference on Computational Geometry, 2011

then ab ⊆ CH(Sa), and since (by definition) CH(Sa) ⊆
PH(A), ab ⊆ PH(A), which implies (by Lemma 3)
that ab ⊆ Q. If (ii), then since CH(Sa) ⊆ PH(A) and
CH(Sb) ⊆ PH(B), Lemma 2 implies ab ∈ Q. Hence
PH(A ∪ B) ⊆ Q.

If p is a point in Q, then by Lemma 2, p ∈ ab, where
a ∈ PH(A) and b ∈ PH(B). There must then exist
feasible sets Sa of A and Sb of B where a ∈ CH(Sa) and
b ∈ CH(Sb). Note that ab is within CH(Sa ∪ Sb), and
since Sa ∪ Sb is a feasible set of A ∪ B, CH(Sa ∪ Sb) is
within PH(A ∪ B); hence Q ⊆ PH(A ∪ B). �

Lemma 5 The possible hull of any set of two or more
connected uncertain regions is simply connected.

Proof. Let R = {A,B} be a set of connected uncertain
regions (Lemma 4 implies that the proof extends by in-
duction to sets of more than two regions). By Lemma 2,
every point of PH is connected within PH to both A
and B; and by Lemma 3, both A and B lie within PH.
Hence PH is connected, and we need only show that
it has no holes. We will do this by showing that every
exterior point of PH is the source of a ray exterior to
PH. Let q be any point exterior to PH. First, ob-
serve that if no lines through q that are tangent to A
exist, then (i) every line through q will intersect A, and
(ii) at least one line through q will intersect A to both
sides of q. Since the same argument applies to B, if no
such lines exist for A or B, then some segment ab ex-
ists (where a ∈ A and b ∈ B) that contains q, implying
that q ∈ PH, a contradiction. Hence, we can assume
that there exist directed lines L1 and L2 through q that
are right-tangent to (without loss of generality) A. Let
W1 (resp., W2) be the wedge lying on or to the right
(resp., left) of both L1 and L2. Note that W1 contains
A. Note also that W2 cannot intersect B, otherwise
some segment ab exists that contains q. Let R be any
ray from q lying in W2. Observe that no point r ∈ R
can lie on a segment ab, since for any choice of a ∈ A,
the portion of ray −→ar lying at or beyond r lies within W2

(Figure 2). Hence, by Lemma 2, R does not intersect
PH. �

q

A

B

R
r

a

W1

W2 L1

L2

Figure 2: Lemma 5

Corollary 6 Let (p1, . . . , pk, p1) be a cyclic sequence of
points. If each consecutive pair (pi, pi+1) are endpoints

of a segment known to lie within PH, and P is a sim-
ple polygon whose edges lie on these segments, then the
interior of P lies within PH.

Theorem 7 The possible hull of any set of two or more
connected uncertain regions is star-shaped.

Proof. Let R = {A,B} be a set of two connected
uncertain regions (Lemma 4 can be applied to prove
the claim for sets of more than two regions). We will
prove that PH is star-shaped by showing that it has a
nonempty kernel.

Let I = CH(A) ∩ CH(B). If I 6= ∅, then let s be
any point in I. Observe that there must exist points
a1, a2 ∈ A, and b1, b2 ∈ B where s lies on both a1a2
and b1b2. Let q be any point in PH. By Lemma 2,
there exist points a′ ∈ A, b′ ∈ B such that q ∈ a′b′.
Without loss of generality we can assume that a1, b1,
and a′ are on or to the left of −→sq, and that a2, b2, and
b′ are on or to the right of −→sq. There are now two cases
(Figure 3): s, b1, and a2 are either to the left or to the

right of
−−→
a1b2. In both cases, we can construct a cyclic

sequence of points defining a polygon (per Corollary 6)
that lies within PH, and which contains sq. (In the
former case, the sequence is (a1, b2, a2, b

′, a′, b1); and in
the latter case, it is (b1, a2, b

′, a′).) Since this holds for
any q ∈ PH, s is in the kernel of PH.

s q

b1

a1

a2
b2

a′

b′

s q

b1
a1

a2
b2

a′

b′

(i) (ii)

Figure 3: Theorem 7

If I = ∅, then there exists line L1 right-tangent to A
and left-tangent to B, and line L2 left-tangent to A and
right-tangent to B. Let s be the point where L1 and L2

cross, and q be any point in PH. By Lemma 2, q ∈ ab,
for some a ∈ A, b ∈ B. Note that there exist points
a′ ∈ A and b′ ∈ B such that s ∈ a′b and s ∈ ab′. We
can again construct a sequence of points that defines a
polygon that lies within PH and contains sq. If s lies to
the right of ab, this sequence is (b, a, b′, a′); otherwise,
it is (a, b, a′, b′). �

From this point on, we will assume that each region
of R is a polygon (or a point, which can be viewed
as a degenerate polygon). We will refer to an edge of
each such polygon as a native segment, and to a segment
connecting vertices of distinct polygons of R as a bridge
segment.

23rd Canadian Conference on Computational Geometry, 2011

480

CCCG 2011, Toronto ON, August 10–12, 2011

Theorem 8 If R is a set of uncertain polygons with a
total of n vertices, then PH(R) is a star-shaped polygon
with at most n vertices.

Proof sketch. PH is star-shaped, by Theorem 7. It
can be shown (we omit the details) that every point on
the boundary of PH lies on either a native segment or
a bridge segment of R; hence, PH is a polygon. To
bound its complexity, it can also be shown that each
boundary vertex v that is not already a vertex of R
can be associated with a subset of the boundary of one
of the polygons A of R that (i) is disjoint from the
subset associated with any other vertex of PH, and (ii)
contains a vertex of A (in the interior of PH) to which
we can charge v. �

3 Point and Polygon

By Lemma 5, the possible hull of a point s and a polygon
P , PH = PH({s, P}), is equal to the possible hull of
s and the boundary of P . Hence, it will suffice for our
algorithm to construct the possible hull of a point and
a simple polygonal chain.

Our algorithm is reminiscent of Melkman’s algorithm
for finding the convex hull of a simple polygonal chain
[4] for two reasons: first, both are on-line algorithms;
and second, both look for points where the chain enters
and emerges from the interior of the hull, and rely upon
the simplicity of the chain to perform this efficiently.

We motivate our algorithm with the following obser-
vation: the possible hull of a point s and a chain P
is equal to a union of triangles, where each triangle’s
vertices are s and the endpoints of an edge of P .

Let (p1, . . . , pn) be the ordered vertices of P . We will
denote the connected subset of P from a to b by (a . . . b).
We start with point u initialized to p2, and the cur-
rent possible hull H initialized to PH({s, (p1 . . . p2)}) =
4sp1p2. We advance u along P , processing each new
edge (or part of an edge) in one of two ways. If the edge
is exterior to H, then we expand H by adding its as-
sociated triangle; and if the edge is interior to H, then
we skip the edge and advance u until it emerges from
H. In either case, at the start of each iteration, u is a
point that is on both P and the boundary of H. When
u reaches pn, H will equal PH({s, P}).

We assume the vertices of H (which, by Theorem 8,
is a simple polygon) have a ccw ordering. For added
flexibility, we will associate with H a variable orienta-
tion whose values are ccw or cw. If a and b are adjacent
vertices of H, with b ccw from a, then we will consider b
to follow a when H has ccw orientation, and to precede
a when H has cw orientation. Our algorithm has these
steps:

1. Initialize H to be 4sp1p2, and u to be p2.

2. If u = pn, stop.

3. Set the orientation of H to ccw (resp., cw) if s lies
to the left (resp., right) of uv, where v is the vertex
of P following u.3

4. If the points of P immediately following u lie in the
interior of H, go to step 6.

5. Expansion step. Let T = 4suv (uv’s contribu-
tion to the hull). Starting with x = u, advance
x along H, deleting those edges that lie within T ,
until the first of three events occurs:

(i) H has no more edges (Figure 4). Replace H
with T , advance u to v, and go to step 2.

s

p1

pn

v
u

T

s

p1

pn

v
u

T
H H

Figure 4: Expansion step, case (i), before and after
changes to H.

(ii) x reaches the point where edge ab of H inter-
sects sv. Replace ab with edges uv, vx, and
xb (Figure 5). Advance u to v, and go to step
2.

s

p1

pnv
u

T
s

p1

pnv
u

T

xb
a

H H

Figure 5: Expansion step, case (ii), before and after
changes to H.

(iii) x reaches the point where edge ab of H in-
tersects uv. Replace ab with ux and xb (Fig-
ure 6). Advance u to x, and go to step 2.

pn

T

p1

v u

s

a

b

x

pn

p1

v u

s

a

b

T

H H

Figure 6: Expansion step, case (iii), before and after
changes to H.

3In each of the figures that follow, H has ccw orientation ac-
cording to this rule.

CCCG 2011, Toronto ON, August 10–12, 2011

481

23d Canadian Conference on Computational Geometry, 2011

6. Interior step. Starting with x = u, advance x
along P until the first of two events occurs:

(i) x reaches pn; stop.

(ii) x reaches the point where P emerges from H’s
interior (Figure 7). Split cd, the edge of H
containing this point, into edges cx and xd.
Advance u to x, and go to step 2.

pn

p1

s, c

u

v

xd
H

Figure 7: Interior step, case (ii).

We will use induction to show that at the start of
each iteration of the algorithm, the following invariants
hold:

1. H is the possible hull of s and (p1 . . . u).

2. u lies on the boundary of H.

The invariants clearly hold for the base case, since the
initial hull, H, is triangle 4sp1u (where u = p2), and is
thus equal to PH({s, (p1 . . . u)}).

Suppose the invariants hold for every iteration until u
reaches a particular position along P , and an expansion
step is to be performed. If every edge of H lies within
T (case i), then T is the possible hull of (p1 . . . v), and
the invariants are satisfied. Suppose instead that some
edge of H does not lie within T . Consider the boundary
points of H following u. Since s lies in the kernel of H,
the first such point where the boundary crosses an edge
of T must lie on sv (case ii), or in the interior of uv (case
iii). In the former case, modifying the boundary of H as
stated has the effect of expanding H to include 4suv(=
T); and in the latter, it has the effect of expanding H
to include 4sux(⊂ T). Since u is advanced to v in the
former and x in the latter, we are thus adding exactly
that portion of the hull contributed by those points of
P between the old and new u, which satisfies invariant
(1); and since the new u is not interior to H, invariant
(2) is also satisfied.

Now consider the case where an interior step is to be
performed. It is easy to show that if H is the possible
hull of s and a set J , then H = PH({s,H∪J}). Hence,
we can ignore points on (u . . . x). The only change we
make to H is to split edge cd at x. As this does not
actually change the boundary of H, and x (the new
location of u) lies on this boundary, both invariants are
satisfied.

Since the invariants hold for each iteration of the al-
gorithm, we can claim:

Theorem 9 The above algorithm generates the possible
hull of a point and a simple polygonal chain.

We now examine the running time of the algorithm.
To simplify the analysis, we assume that s is not
collinear with any two vertices of P . Step 4 takes con-
stant time, since the points of P immediately following
u lie in the interior of H iff the vertex of H following u
is to the right (or, if the hull has cw orientation, to the
left) of uv.

In step 6, we must determine which edge of H con-
tains the point x where P emerges from H’s interior.
To do this efficiently, we start by characterizing each
boundary edge of H as being either a polygonal edge
(lying on an edge of P) or a radial edge (lying on a ray
from s through a vertex of P). By assumption, no edge
can be both.

Lemma 10 At the start of any iteration in which an
interior step occurs, the following conditions hold: (i)
exactly one of the edges of H incident with u is a radial
edge; and (ii) if this radial edge is not incident with s,
then x (the point where P emerges from H’s interior)
must lie on this edge as well; otherwise, x must lie on
an edge incident with s.

Proof. At the start of an interior step, the edges of H
incident with u cannot both be polygonal edges, other-
wise (since an interior step is about to occur) this would
imply that u is incident to three edges of P , which is
impossible. Suppose instead that that they are both ra-
dial edges. Note that each radial edge of H is induced
by a distinct vertex of P (unless a radial edge has just
been split in step 6(d); but each such step is immedi-
ately followed by an expansion step that removes one of
these two edges). Hence, s and two distinct vertices of
P must be collinear, contradicting our general position
assumption.

To prove (ii), we first note that since P is simple, x
must lie in the interior of cd, a radial edge of H. Let
ab be the radial edge of H incident with u. Assume by
way of contradiction that ab and cd are distinct edges,
and that at least one of them is not incident with s.
This edge must then be adjacent to (distinct) polygonal
edges y1 and y2 (see, for example, edge ab in Figure 8).
Now observe that (u . . . x) partitions H into two pieces,
and since ab 6= cd, y1 and y2 must lie on opposite sides
of (u . . . x). We now have a contradiction, since the
interiors of paths (p1 . . . u) and (u . . . x) must intersect,
which implies that P is nonsimple. �

Lemma 10 implies that in order to find x while moving
along edges of P during an interior step, we need to
check for intersections of P with at most two edges of
H: the single radial edge incident with the point of entry
u, and (if that edge is also incident with s) the other
edge incident with s.

23rd Canadian Conference on Computational Geometry, 2011

482

CCCG 2011, Toronto ON, August 10–12, 2011

d

b(= u)x
c

a
y1

y2

H

Figure 8: Lemma 10.

Let us determine the total number of vertices pro-
cessed by the algorithm. These include the vertices of
P , plus any vertices that ever appear in H. Consider
the start of a particular iteration, where H is the cur-
rent hull, u is the current position on P , and v is the
vertex of P following u. We will show that at most three
vertices are introduced to H by the addition of triangle
T = 4suv.

Each new vertex (other than v) is a point where the
boundaries of H and T cross, and hence must lie on
either uv or vs (since su ⊂ H). Suppose for the sake of
contradiction that two new vertices, p and q, lie in the
interior of uv. We can assume that uv first enters H at
p, then exits H at q. Since uv ⊂ P , and P is simple, p
and q must lie on radial edges of H. These radial edges

must lie on rays −→sa and
−→
sb respectively, where a and

b are vertices of P preceding u (Figure 9). The path
(a . . . b . . . u) (or (b . . . a . . . u)) in P cannot cross rays
−→pa or

−→
qb (otherwise p or q would lie in H’s interior),

nor can it cross pq (since P is simple). We now have
a contradiction, since this implies that (a . . . b) is not
connected to (u . . . v) within P . Hence, at most one
new vertex lies in the interior of uv; and since s is in
the kernel of H, at most one of the new vertices lies in
the interior of vs.

s

u
v

ab

T

P
pq H

Figure 9: p and q cannot both be new vertices of H.

Theorem 11 The above algorithm generates the pos-
sible hull of a point and a simple polygonal chain of n
vertices in O(n) time.

Proof. We store the vertices of H and P in doubly-
linked lists, so that inserting or removing a vertex, or
accessing a vertex’s neighbor, can be done in constant
time. Every step of the algorithm can be done in con-
stant time, except for the expansion and interior steps,
which can be done in time proportional to the number

of vertices that are: (i) visited on the chain; (ii) inserted
into the hull; or (iii) removed from the hull. Since a ver-
tex can be removed from the hull only once, the total
running time of the algorithm is bounded by the num-
ber of vertices processed by the algorithm (which, as
we have shown, is O(n)) and the number of iterations
(which is also O(n), since each advances u to a distinct
vertex of H or P). �

4 Possible Hull of Polygons

In this section, we provide an overview of an algorithm
to construct the possible hull of a pair of uncertain poly-
gons A and B (a more detailed presentation, which in-
cludes a correctness proof, can be found in [7]). It em-
ploys the algorithm of the previous section as a subrou-
tine to achieve an optimal running time.

Our algorithm starts with a polygon H equal to
CH(A ∪B), then modifies H’s boundary until H is
equal to PH({A,B}). If a boundary edge of CH(A ∪B)
is a polygonal segment or a bridge segment, then by
Lemmas 2 and 3, and the fact that PH({A,B}) ⊆
CH(A ∪B), it lies on the boundary of PH({A,B}) as
well. Otherwise, its vertices must be nonadjacent ver-
tices from the same polygon (e.g., ai and aj). As we
manipulate H, both ai and aj will remain vertices of
H, but the path (ai . . . aj) on H’s boundary will change.
We will refer to this path as a pocket of H, and to seg-
ment aiaj as the pocket’s lid.

Our algorithm has these steps:

1. Initialize H to CH(A ∪B).

2. For each pocket lid aiaj of H, perform the following
hull contraction steps:

(a) Using the algorithm of the previous section,
construct J , the possible hull of (ai . . . aj) (on
the boundary of A) and any point s from B.

(b) Replace aiaj with path (ai . . . aj) on the
boundary of J .

3. Repeat the hull contraction steps with the roles of
A and B reversed.

4. Perform the following hull expansion steps:

(a) Set u to h1, any vertex of CH(A ∪B).

(b) Determine ray Tu as follows. If u is a vertex
of A, then set Tu to the ray from u that is
left-tangent to B; otherwise, set Tu to the ray
from u that is left-tangent to A.

(c) If the vertex v of H following (i.e., in ccw di-
rection) u is not left of Tu, then go to (f).

(d) Let x be the point where the boundary of H
next crosses Tu.

CCCG 2011, Toronto ON, August 10–12, 2011

483

23d Canadian Conference on Computational Geometry, 2011

(e) Replace (u . . . x) with ux.

(f) Advance u to the next convex vertex of H. If
u 6= h1, go to (b).

5. Repeat the hull expansion steps, substituting cw
for ccw, and right for left.

The hull contraction steps use the algorithm of the
previous section to replace each pocket lid with a por-
tion of the boundary of a possible hull associated with
the pocket (Figure 10). This contracts H by ‘taking
bites’ out of the convex hull of the two polygons. Corol-
lary 6 implies that after this modification, each pocket
lies within PH. The hull expansion steps traverse the
boundary of H, find tangent rays that potentially con-
tain bridge segments of PH, and modify H to incorpo-
rate these segments. This has the effect of expanding
H, by adding back some portions that were removed in
the hull contraction steps. It can be shown that after
the hull expansion steps have been performed for both
ccw and cw directions, H = PH({A,B}).

A

ai

aj

s

J

B

H

Figure 10: Hull contraction step: pocket lid aiaj re-
placed by (ai . . . aj) of J .

Step 1 can be performed in O(n) time, where n is the
number of vertices of A and B: first by constructing
the convex hulls of both A and B (in O(n) time, e.g.,
by using Melkman’s algorithm [4]); then by using the
rotating calipers method [8] to construct CH(A ∪B).

In the hull contraction steps, for each pocket lid aiaj ,
we construct the corresponding subset of the boundary
from A, then calculate the possible hull of this bound-
ary and an arbitrary point of B. Since each edge of A
appears in only one of these subsets, and the possible
hulls can be constructed in time linear in the size of
the subset (Theorem 11), we can perform these steps in
O(n) time.

Step 2(b) plays a crucial role in the algorithm. It
ensures that throughout the hull expansion steps, each
pocket (ai . . . aj) is a sequence of points that have mono-
tonically increasing polar angles with respect to a point
s ∈ B (the pocket would not necessarily have this prop-
erty if, for example, it was instead initialized to path
(ai . . . aj) on the boundary of A). The monotonicity
property implies that the tangent rays Tu in step 4(b)
can be found by using the rotating calipers method [8],

which (it can be shown) implies that the running time
of each hull expansion step is O(n). Hence:

Theorem 12 The possible hull of a pair of polygons
with n total vertices can be constructed in O(n) time.

The running time of our algorithm is clearly opti-
mal, since it matches the input size. We can adapt the
algorithm to the case where there are more than two
polygons:

Theorem 13 The possible hull of k polygons with a to-
tal of n vertices can be constructed in O(n log k) time,
and this running time is optimal in the worst case.

Proof. Lemma 4 implies that we can apply our O(n)
algorithm for pairs of polygons recursively, in a divide-
and-conquer manner, to construct the possible hull of
k polygons. In doing so, we increase the running time
by a factor that is logarithmic in the height of a binary
tree of k elements. It is worst-case optimal, since if the
input consists of n/3 small triangles distributed along a
circle, the problem reduces to constructing the convex
hull of O(n) points (each of which lies on the hull). �

Acknowledgment

The authors would like to thank David Kirkpatrick for
his helpful discussions and valuable insights.

References

[1] A. Edalat and A. Lieutier. Foundation of a computable
solid modelling. Theor. Comput. Sci., 284(2):319–345,
2002.

[2] A. Edalat, A. Lieutier, and E. Kashefi. The convex hull
in a new model of computation. In CCCG, pages 93–96,
2001.

[3] M. Löffler and M. J. van Kreveld. Largest and small-
est convex hulls for imprecise points. Algorithmica,
56(2):235–269, 2010.

[4] A. A. Melkman. On-line construction of the convex hull
of a simple polyline. Inf. Process. Lett., 25(1):11–12,
April 1987.

[5] T. Nagai, Y. Seigo, and N. Tokura. Convex hull prob-
lem with imprecise input. In Revised Papers from the
Japanese Conference on Discrete and Computational Ge-
ometry, pages 207–219, London, UK, 2000. Springer-
Verlag.

[6] T. Nagai and N. Tokura. Tight error bounds of geometric
problems on convex objects with imprecise coordinates.
In JCDCG ’00: Revised Papers from the Japanese Con-
ference on Discrete and Computational Geometry, pages
252–263, London, UK, 2001. Springer-Verlag.

[7] J. Sember. Guarantees Concerning Geometric Objects
with Uncertain Imputs. PhD thesis, University of British
Columbia, Forthcoming 2011.

[8] M. I. Shamos. Computational geometry. PhD thesis,
Yale University, 1978.

23rd Canadian Conference on Computational Geometry, 2011

484

CCCG 2011, Toronto ON, August 10–12, 2011

A Slow Algorithm for Computing the Gabriel Graph with Double Precision

David L. Millman Vishal Verma ∗

Abstract

When designing algorithms, time and space usage are
commonly considered. In 1999, Liotta, Preparata and
Tamassia proposed that we could also analyze the preci-
sion of an algorithm. We present our first steps towards
the goal of efficiently computing the Gabriel graph of
a finite set of sites, while restricting ourselves to only
double precision.

1 Introduction

Computers use finite precision arithmetic to test ge-
ometric relationships between objects. Sometimes, a
computer cannot provide a sufficient number of arith-
metic bits to guarantee that the tests are correct. It is
natural then to analyze the number of bits required to
correctly run an algorithm. One such model of analysis
was proposed by Liotta, Preparata and Tamassia [4].
They define the degree (or arithmetic complexity) of an
algorithm in terms of the arithmetic degree of its predi-
cates. One can then attempt to minimize the degree of
an algorithm, just like time and memory. This type of
analysis is known as degree-driven algorithm design, and
it tells us the amount of arithmetic precision required
to run the algorithm safely. In Section 2, we define de-
gree and arithmetic precision more formally. Arithmetic
precision is of special interest when running geometric
algorithms, that assume general position, on practical
datasets that are frequently close to being degenerate.
To avoid these issues of instability we have been working
on degree driven algorithms for constructing geometric
structures. In this paper we describe our first step to-
wards constructing the Gabriel graph robustly.

Given a finite set of sites S, an edge (si, sj) with
si, sj ∈ S is in the Gabriel graph of S if the edge main-
tains the Gabriel property, that is, the closed disk with
diameter sisj contains no points of S besides si and
sj . It is know that the Gabriel graph [2] is a subgraph
of the Delaunay triangulation. Matula and Sokal [6]
showed how to compute the Gabriel graph directly from
the Delaunay triangulation in time proportionate to the
number of sites in S.

Computing the Delaunay triangulation requires four
times the precision of the input coordinates, and Mat-
ula and Sokal’s Gabriel graph algorithm uses six-fold

∗Department of Computer Science, University of North Car-
olina at Chapel Hill. [dave,verma]@cs.unc.edu

precision. Liotta [3] showed how to implement Mat-
ula and Sokal’s algorithm using only two-fold precision,
however, it still requires four-fold precision for comput-
ing the Delaunay triangulation. A natural question that
follows is, can we compute the Gabriel graph with only
two-fold precision?

The answer is yes! In Section 4 we show that we
can compute the Gabriel graph with two-fold precision
(albeit rather slowly).

2 Definitions and Notation

We begin by recalling how one can analyze arithmetic
complexity. Assume that the coordinates of our input
can be scaled to b-bit integers. Thus, we can think of the
sites of S as lying on the U ×U grid, notated as U. The
primitives of a geometric algorithm are called predicates,
which are tests of the signs of multivariate polynomials
with variables from the input coordinates. We say that
the degree of a predicate is the degree of the polynomials
to which it corresponds (for a degree d predicate we
sometimes say it uses d-fold precision). Furthermore, we
define the degree of an algorithm by the highest degree
predicate it evaluates.

Consider, for example, testing if point q is closer to
point p1 or p2 with p1, p2, q ∈ U. We can write this pred-
icate as sign(‖q − p1‖2 − ‖p− p2‖2). Which expands to
a degree 2 polynomial, thus, this predicate is degree 2,
(i.e., it uses two-fold precision). Another example (used
in Section 4) tests if the straight line path from p1 to p2
to q, with p1, p2, q ∈ U, forms a counterclockwise orien-
tation. This Orientation(p1, p2, q) predicate, tests the
sign of the determinant of the homogeneous coordinates
of p1, p2 and q, and is also degree 2.

Next, recall the point/line duality [1] that maps a
point p = (px, py) to a line p∗ := (y = pxx − py) and a
line l := y = mx + b to a point l∗ := (m,−b). The set
S∗ is the set of lines, dual to the set of sites of S. We
notate the arrangement of the lines in S∗ is A(S∗) and
the Gabriel graph of S as G(S).

3 Arrangements of Dual Lines

It is know that for a set of line segments, defined by
their endpoints, computing an arrangement requires
four times the input precision and computing its trape-
zoidation requires five times the input precision [5]. In

CCCG 2011, Toronto ON, August 10–12, 2011

485

23rd Canadian Conference on Computational Geometry, 2011

this section, we show that for a set of lines, defined
as duals of points, computing an arrangement and its
trapezoidation can be solved with double precision.

We begin by observing that for non-parallel lines p∗

and q∗, the the x-coordinate of the point `∗ = p∗ ∩ q∗ is
the slope of line ` =←→pq , which is (py − qy)/(px − qx).

Observation 1 The x-coordinate of the intersection of
two dual lines is represented by a rational polynomial of
degree 1 over degree 1.

For three dual lines, p∗, q∗, and r∗, where p∗ and q∗

intersect r∗, by Observation 1 and clearing fractions,
we compare the x-ordering of the intersection points
with degree 2. We call this the OrderOnALine(p∗, q∗, r∗)
predicate.

By using the OrderOnALine predicate in an incremen-
tal construction of an arrangement (such as [1, Chapter
8.3]) we achieve a degree 2 construction. Furthermore,
we can use the OrderOnALine predicate to add the ver-
ticals into the arrangement and get its trapezoidation.

Lemma 1 For n dual lines S∗, we can compute the
arrangement of S∗ and its trapezoidation in O(n2) time
and degree 2.

4 Gabriel Graphs

Next, we describe how to construct the Gabriel graph in
O(n2) using degree 2, and begin by defining the primi-
tives of our construction. Let D(p, q) be the closed disk
with pq as the diameter. We say that a site s kills the
edge (p, q) if s lies in D(p, q). Let m be the midpoint of
pq. The degree 2 predicate IsKiller(p, q, s) compares
the squared distance between m and s and m and p to
determine if s kills edge (p, q).

Given the arrangement A(S∗) and a site si ∈ S we
would like to compute the circular orderings of the sites
in S \ {si} around si. Consider the line s∗i , each ver-
tex vj ∈ A(S∗) that lies on s∗i corresponds to a line
though si and some other site sj ∈ S. As mentioned
in Section 3, the slope of ←→sisj is the x-coordinate of vj ,
thus, by walking along s∗i in A(S∗) we find a set of lines,
though si ordered by slope, which gives the circular or-
dering of the sites of S \ {si} around si.

Constructing a circular ordering for a site is a purely
topological operation on the arrangement A(S∗) and
uses degree 0. For each site s, computing the circu-
lar ordering takes time proportional to the number of
vertices that lie on s∗, which is O(n).

Lemma 2 Given A(S∗), for site s ∈ S, we can com-
pute the circular ordering of the sites in S\{s} around s
in O(n) time and degree 0.

Once we have computed a circular ordering of S \{s}
around each s ∈ S, in O(n) time we can compute the

s

si

sk

sj

uk

Figure 1: sj lies in the part of Dl(s, si) that is to the
left of ~ssk. This part of Dl(s, si) is a subset of Dl(s, uk),
which itself is a subset of Dl(s, sk).

Gabriel edges incident at s. The key idea behind this
step is captured in Lemma 3.

We number the circularly ordered sites in S \{s} in a
counterclockwise manner starting with any s0 ∈ S \ {s}
i.e. ~ssi+1 is the first ray counterclockwise from ~ssi at
s. Let Dl(s, si) denote the closed semicircular disk that
has ssi as the diameter and lies to the left of ~ssi. We
say sj kills the edge (s, si) from the left if and only if sj
lies in Dl(s, si). Then,

Lemma 3 If sj lies in Dl(s, si) and ∀k ∈ {i, i +
1, . . . , j−1}, sk /∈ Dl(s, si), then sj also lies in Dl(s, sk),
∀k ∈ {i, i+ 1, . . . , j − 1}

Intuitively, the above lemma says that if sj is the first
site (in a counterclockwise sense) that kills (s, si) from
the left, then sj kills all (s, sk), i ≤ k ≤ j − 1, from the
left. Figure 1 gives a brief idea of the lemma and the
proof.

Proof. Since i ≤ k ≤ j − 1 and sk /∈ Dl(s, si), the
segment ssk intersects the circular part of the bound-
ary of Dl(s, si) at some point uk. For every point
p ∈ Dl(s, uk),∠spsk ≥ ∠spuk > π/2. Thus p also lies
in Dl(s, sk). Hence Dl(s, uk) ⊂ Dl(s, sk).

Let H be the closed half plane that lies on left of the
line ~suk. For every point p ∈ Dl(s, si) ∩ H,∠spuk ≥
∠spsi > π/2. Thus (Dl(s, si) ∩H) ⊂ Dl(s, uk). Using
this with the subset relation from the previous para-
graph we have (Dl(s, si) ∩H) ⊂ Dl(s, sk). Since sj lies
in (Dl(s, si) ∩H) it also lies in Dl(s, sk). �

Let L be the circular linked list of sites of S\{s} circu-
larly ordered around s. Algorithm 1 efficiently identifies
sites s′ ∈ L such that the edge (s, s′) is killed from the
left by some site in L. Such vertices are marked dead by
the algorithm. A similar algorithm is used to identify
the sites s′′ such that the edge (s, s′′) is killed from the
right. The edges that are killed neither from left nor
right belong to the Gabriel graph.

23rd Canadian Conference on Computational Geometry, 2011

486

CCCG 2011, Toronto ON, August 10–12, 2011

We now give a brief overview of Algorithm 1. Given
a site u ∈ L, we define left victims(u) as a subset of
S \ {s} such that for each site v ∈ left victims(u), u
is the first (when walking left along the list L) site to
kill the edge (s, v) from left. Lemma 3 says that the set
left victims(u) is contained in a continuous sublist of
L that starts on the right of u and only contains sites w
such that (s, w) is killed from left by u. This observation
is used in the inner while loop of Algorithm 1 to find a
sublist Lu such that: (a) each site in Lu has a killer in
(u ∪ Lu); and (b) the union of the left victims of the
sites in (u∪Lu) is a subset of Lu. Due to (a), we know
that the sites in Lu can be killed from left and hence
they are marked dead. Due to (b), for any remaining
site v ∈ L\Lu, if the edge (s, v) is killed from left then v
belongs to the set of left victims of some site in L\Lu.
Thus, to find the remaining left victims, we process
the smaller list L \ Lu.

Algorithm 1: KillFromLeft(S, s, L)

Make a copy Lleft of L;
Initialize the unseen values of each site in L to true;
Initialize the dead values of each site in L to false;
u = any site in Lleft;
while u→unseen do

u→unseen = false;
killer = u;
current = u→ right;
while killer6=current do

if killer ∈ Dl(s, current) then
current→dead = true ;
current = current→ right;

else
killer = killer → right;

end

end
Lu = the sublist of Lleft, that is to the right of
u and left of current;
Delete Lu from Lleft;
u = u→left;

end

Testing if killer ∈ Dl(s, current) uses degree 2 pred-
icates isKiller and Orientation, thus, the above al-
gorithm runs in O(|L|) time and is degree 2.

Lemma 4 Given the circular ordering of S \ {s}
around s, in O(n) time and degree 2, we can find the
Gabriel edges incident at s.

For completeness, we describe the three steps for con-
structing the Gabriel graph of a set of n sites S with de-
gree 2. First, compute A(S∗), which by Lemma 1 takes
O(n2) time and degree 2. Second, for each site si ∈ S
compute the circular ordering of the sites of S \ {si},

which in total, by Lemma 2, takes O(n2) and degree 0.
Third, for each site si ∈ S, use the circular orderings
to compute the set of Gabriel edges in which si is a
member, which in total, by Lemma 4, takes O(n2) and
degree 2.

Corollary 5 We can compute the Gabriel graph in
O(n2) time using degree 2.

5 Conclusion and Open Problems

Even though an O(n2) construction is too slow for prac-
tical applications, Corollary 5 tells us that we can at
least compute the Gabriel graph with degree 2 and do
better than brute force. In contrast, we simply can-
not compute the Delaunay triangulation with degree 2.
Two questions follow.

Firstly, can we compute the Gabriel graph in sub-
quadratic time with degree 2? It may be of interest to
note that the grid size does not appear in the running
time of the algorithm. Thus, the algorithm still termi-
nates if we let the step size of the grid shrink to zero.

Secondly, since we cannot compute the Delaunay tri-
angulation with degree 2, can we compute a triangu-
lation that is in some sense close to Delaunay? With
degree 2 we can compute the convex hull and Gabriel
graph, but which edges should we add to complete the
triangulation?

References

[1] M. de Berg, O. Cheong, M. van Kreveld, and M. Over-
mars. Computational Geometry: Algorithms and Ap-
plications. Springer-Verlag New York, Inc., 3rd edition,
2008.

[2] K. R. Gabriel and R. R. Sokal. A new statistical ap-
proach to geographic variation analysis. Systematic Zo-
ology, 18(3):pp. 259–278, 1969.

[3] G. Liotta. Low degree algorithms for computing and
checking gabriel graphs. Technical report, Providence,
RI, USA, 1996.

[4] G. Liotta, F. P. Preparata, and R. Tamassia. Robust
proximity queries: An illustration of degree-driven algo-
rithm design. SIAM J. Comput., 28(3):864–889, 1999.

[5] A. Mantler and J. Snoeyink. Intersecting red and blue
line segments in optimal time and precision. In Discrete
and Computational Geometry, number 2098 in LNCS,
pages 244–251. Springer Verlag, 2001.

[6] D. W. Matula and R. R. Sokal. Properties of Gabriel
Graphs Relevant to Geographic Variation Research and
the Clustering of Points in the Plane. Geographical
Analysis, 12(3):205–222, 1980.

CCCG 2011, Toronto ON, August 10–12, 2011

487

23rd Canadian Conference on Computational Geometry, 2011

488

CCCG 2011, Toronto ON, August 10–12, 2011

An Experimental Analysis of Floating-Point Versus Exact Arithmetic∗

Martin Held† Willi Mann†

Abstract

In this paper we investigate how sophisticated floating-
point codes that are in real-world use – VRONI for com-
puting Voronoi diagrams, FIST for computing triangu-
lations, and BONE for computing straight skeletons –
can benefit from the use of the Core library (for exact
geometric computing) or the MPFR library (for multi-
precision arithmetic). We also discuss which changes
to the codes were necessary in order to get them to run
with these libraries. Furthermore, we compare our codes
to codes provided by the CGAL project. By means
of GMP-based (brute-force) verifiers we check the nu-
merical validity of the outputs generated by all codes.
As expected, the output precision of VRONI increases
when MPFR is used, at a cost of an average slow-down
by a multiplicative factor of 70. On the other hand,
FIST demonstrates that a careful engineering can en-
able a code that uses floating-point arithmetic to run
flawlessly, provided that the input coordinates are in-
terpreted as genuine floating-point numbers. To our
surprise, we could not get VRONI and BONE to work
with CORE. It is similarly surprising that their CGAL
counterparts did not fare well at all: we recorded drasti-
cally increased CPU-time consumptions combined with
decreased accuracy of the numerical output.

1 Introduction

Robustness problems that occur for geometric codes
when executed on a floating-point (fp) arithmetic are
notorious. Typically, robustness problems are caused
by numerical quantities being approximated, up to some
quantitative error. While most errors tend to be benign,
some errors may cause a program to end up in a state
with no graceful exit, i.e., it crashes.

Various alternatives to standard floating-point com-
putations have been advocated in recent years in an
attempt to such robustness problems, such as the use
of multi-precision arithmetic or exact geometric com-
puting (EGC). The Core library, CORE [1], is an im-
plementation of state-of-the-art EGC algorithms and
techniques. It is written in C++, and was designed
to be used easily as an alternative arithmetic back-
end to existing C/C++ programs. CORE is a general-

∗Work supported by Austrian FWF Grant L367-N15.
†Univ. Salzburg, FB Computerwissenschaften, 5020 Salzburg,

Austria; {held,wmann}@cosy.sbg.ac.at

purpose tool that allows the correct evaluation of the
sign of real predicates and, thus, is a way to ensure that
the combinatorial part of an algorithm is computed ex-
actly. The CGAL project [5] makes use of this EGC
approach. Shewchuk [12] offers a small collection of ge-
ometric predicates that also support an exact evalua-
tion based on standard fp-arithmetic. Another option is
given by the MPFR library [3]: it is a “multi-precision
floating-point library with correct rounding”, and can
be considered as an intermediate step between IEEE 754
double-precision fp-arithmetic [10] and CORE.

Just how easy is it really to interface an existing ge-
ometric code with MPFR or CORE? And what do we
gain or lose by resorting to MPFR, CORE or CGAL?
In this paper we carry out an experimental case study
that attempts to provide an answer to this question be-
yond personal beliefs or wide-spread myths. We con-
sider three problems of imminent practical interest – the
computation of triangulations, Voronoi diagrams and
straight skeletons of polygons – and take three codes
that compute these structures on a fp-arithmetic: the
C codes FIST [6] and VRONI [7, 8], and the C++ code
BONE [9]. All three codes were engineered to be reli-
able, and FIST and VRONI have been used extensively
in industry and academia for more than a decade.

In Sec. 2 we discuss the modifications of our codes
required to adapt them to a use with MPFR 3.0.1 or
CORE 2.1, and report on problems encountered. (Due
to lack of space we omit details on our results for BONE;
they are similar to those for VRONI.) Section 3 docu-
ments the results of our run-time and verification tests.

2 Preparations

2.1 Modifications Required for CORE

CORE 2.1 data types do not work with C functions like
printf() and scanf(), which we wanted to preserve
in order to allow FIST to be compiled as a standard
C program. For scanf() the problem can be worked
around by implementing a custom version of scanf()
that interprets the format specifiers for floating-point
data types as specifiers for the CORE Expr type. Sup-
porting printf() required more work because the ar-
guments of a printf() command need to be converted
to pointers. (Variable-argument functions cannot take
C++ objects as arguments.)

Memory management also needed to be changed: The

CCCG 2011, Toronto ON, August 10–12, 2011

489

23d Canadian Conference on Computational Geometry, 2011

C functions malloc() and free() do not call construc-
tors and destructors of C++ objects. We replaced them
by the C++ operators new and delete.

And, of course, all precision thresholds used in com-
parisons of a numerical value with zero were set to zero.
We were once again reminded of the fact that an ε-based
comparison of some variable x with zero should be en-
coded as “|x| ≤ ε” rather than as “|x| < ε”. (Otherwise,
setting ε := 0 does not work.)

We also learned quickly that algorithmically equiva-
lent code fragments may result in substantially different
expression trees and, thus, runtimes for a CORE-based
execution. For instance, in order to compute an (ap-
proximate) normal vector of a 3D facet whose vertices
might be not perfectly co-planar it is advisable to first
test whether the facet is truly planar. If yes then any
three vertices that are not collinear allow to compute
the correct normal vector. Otherwise, no correct nor-
mal vector exists and an approximate normal obtained
by averaging normals defined by triples of vertices of the
facet should be computed by using standard floating-
point arithmetic, rather than by resorting to CORE and
blowing up the size of the expression trees by making
the normal dependent on all vertices of the facet.

2.2 Difficulties with CORE

Our work helped to reveal two major problems in
CORE 2.0.8. The first problem concerns the parsing of
the input: Some values in the interval (−0.1, 0.1) were
not parsed correctly. The CORE developers fixed the
problem for positive numbers, and we extended the fix
to negative numbers; it has become part of CORE 2.1.

Another problem is caused by the conversion from
real to integer types. The CORE type for real numbers,
Expr, supports a method called intValue(). The doc-
umentation shipped with CORE describes this method
(and a few others) by the sentence “The semantics of
these operations are clear.” So we felt it safe to as-
sume that intValue() behaves like the (int) conver-
sion known from C. Unfortunately, it turned out the
CORE conversion sometimes rounds up and sometimes
rounds down. (It bases its rounding decision on a fi-
nite approximation of binary digits.) As a work-around
we resorted to using the floor() function which works
reliably on Expr numbers.

So far, we have been unable to execute CORE-based
versions of VRONI or BONE on even trivial inputs. The
apparent problem is that both codes cause large expres-
sion trees, where several minutes of CPU time do not
suffice for CORE to evaluate the sign of one expression
tree. (We created test cases and sent them to the de-
velopers of CORE, but no fix has been released yet.)

2.3 Adding MPFR Support

MPFR was not shipped with an integrated C++ wrap-
per, and the existing wrappers did not work with MPFR
3.0.1 when we tried them. (This has changed in the
meantime.) So we wrote our own wrapper that sup-
ports precisely the operations needed in our applica-
tions, without adding any extra magic that might hurt
the run-time performance.

As MPFR allows to set the precision at run-time, we
have to adjust the precision thresholds used in the com-
parisons of fp-numbers. After some tests we ended up
using the following formula1:

εprec := εfp/2
100·
(√

prec/53−1
)
,

where εfp is the standard threshold used for the fp-

computations and prec is the precision (number of bits)
requested. (The standard IEEE 754 precision assigns
53 bits of precision to the mantissa; see [10].)

We note that setting the default precision of MPFR in
main() with the mpfr_set_default_prec library call
does only affect variables created after this library call.
In particular, the precision of global variables is not set
adequately by default — and missing the correct setting
of even just a few global variables turned out to down-
grade the precision of the output quite significantly. So
we modified our wrapper to ensure that the target vari-
able in assignments has the default MPFR precision set.

2.4 Using Shewchuk’s Predicates in FIST

Since correct sidedness tests are important for FIST we
inserted a compile-time option that allows us to replace
FIST’s standard determinant evaluation by Shewchuk’s
2D orientation predicate [12]. It was easy to integrate
his code into FIST but one caveat remains: Shewchuk
explicitly warns that his predicates will not work cor-
rectly if extended-precision registers are used. We cir-
cumvented this problem by running our tests on an x86-
64 hardware; see the discussion in Sec. 3.2.

3 Tests and Experimental Results

3.1 Speeding up the CORE Library

The default constructor in CORE initializes an object
that represents the constant zero. A closer inspec-
tion revealed that it always creates a new node repre-
senting zero. However, FIST very often uses variables
in a way that causes their default constructor to be
called: The programming language C (prior to the 1999
standard of C) forces variables to be declared prior to
the body of the function, which often happens with-
out an assignment in FIST. The default constructor is

1Thanks go to Stefan Huber for coming up with this formula.

23rd Canadian Conference on Computational Geometry, 2011

490

CCCG 2011, Toronto ON, August 10–12, 2011

also called frequently when arrays containing Expr ob-
jects are enlarged. A simple modification of this feature
of CORE 2.0.8 resulted in an increase in speed of the
CORE-based version of FIST by about 31%. (Our patch
has been integrated into CORE 2.1.)

3.2 Influence of Compiler Options

In general, it is easier to debug non-optimized builds
than optimized builds because compilers instructed to
optimize may reorder instructions on machine-code level
to gain performance. This often leads to a non-
monotonic control flow with respect to the C sources.
However, a key aspect of optimized builds is the at-
tempt to keep variables inside registers across multiple
statements in the source code.

On the x86 architecture, the floating-point registers
are 80 bit wide, with a mantissa of 64 bit [11]. How-
ever, floating-point variables of type double as defined
by IEEE 754-1985 [10] only have a mantissa of 53 bit.
So, whenever a floating-point value is moved from a
floating-point register to main memory, a loss of pre-
cision occurs. Or, in other words, the precision of nu-
merical data computed depends on which variables and
which intermediate results were kept in the registers.
As a result, the output may change drastically once op-
timization is turned on.

Tests with FIST on our test data – see below – re-
vealed that the outputs of the optimized build (using
gcc -O) and the debug build (using gcc -O0) differ for
about 15% of the inputs. We simply took the trian-
gles (in the order computed by FIST) as the output.
Hence, different outputs may nevertheless describe the
same triangulation. Still, this means that at least one
comparison in FIST returned different results on 15% of
our inputs, depending on the compiler options.

There are multiple ways around this problem:
• Force the use of SSE instructions. This is not sup-

ported on all x86 CPUs. Many compilers including
gcc use this as default on x86-64.
• Link the executable with a flag that limits the pre-

cision of the FPU. (E.g., -mpc64 for gcc).
• Use a compiler flag that forces the write-back of all

calculated values from the registers to main mem-
ory. (E.g., -ffloat-store for gcc.)

3.3 Test Results for Triangulations of Polygons

3.3.1 Comparison of Different Arithmetic Backends

The following tests were conducted on the first author’s
set of polygonal areas which currently consists of 21 175
polygons with and without holes. The tests were run on
an x86-64 hardware, an Intel Core i5 CPU 760 clocked at
2.80GHz. The test machine has 8 GiB of main memory,
but virtual memory was limited to 6 GiB by the ulimit
command. All codes were compiled with gcc 4.4.3.

We ran FIST with six different arithmetic back-ends:

• ordinary IEEE 754 double-precision fp-arithmetic
(fistFp),

• Shewchuk’s predicates (fistShew),

• CORE (fistCore),

• three precisions of MPFR: 53 bits (fistMp53), 212
bits (fistMp212), and 1000 bits (fistMp1000).

Figure 1 shows the run-time plots of fistFp, fistMp212,
and fistCore. (The plots for the other three variants
have been omitted due to lack of space.) The use of
Shewchuk’s exact predicates (fistShew) does not change
the runtime behavior and results in a negligible speed
penalty compared to fistFp: fistFp averages 0.155·n log n
microseconds, while fistShew averages 0.157 ·n log n mi-
croseconds. All MPFR-based versions are about 24
times slower than fistFp on average, with fistMp212 aver-
aging 3.786·n log n microseconds, while fistCore is about
50 times slower. Increasing the precision requested for
the MPFR-based versions causes no significant speed
penalty. It is noteworthy, though, that the runtime of
all MPFR-based versions varies much more significantly
than for fistFp, fistShew, and fistCore.

In a second test we examined that numbers of data
sets that were triangulated differently by the six variants
of FIST. As it could be expected, there is no difference
between fistFp and fistMp53. It is also not surprising
that the use of exact predicates will cause some differ-
ences, despite the fact that considerable efforts were put
into making FIST reliable. The difference between fistFp
(fistMp53, resp.) and fistShew is small, though: Only
0.34 percent of the inputs were triangulated differently
by fistShew. Contrary to our initial assumption, using
MPFR with larger precisions in conjunction with FIST
does not form an intermediate step between fistFp and
fistCore: fistCore triangulates 10.38% of the inputs dif-
ferently, while the outputs of fistMp212 and fistMp1000
deviate for 10.55% respectively 10.44% of the inputs.

3.3.2 Verification of Triangulations Computed

Recall that different outputs need not indicate different
or even incorrect triangulations. Since the number of
differences was too large to be analyzed by hand, we
wrote a code for verifying triangulations. A polygonal
area is considered to be triangulated correctly only if the
segments of the triangles neither intersect each other nor
intersect the segments of the polygonal area. Note that
we also consider triangulation edges that coincide (par-
tially) with edges of the polygon or that pass through
vertices of the polygon – termed “overlay” problems –
as errors. Additionally, we check whether any segment
of the triangulation passes outside of the polygon.

We use the Bentley-Ottmann algorithm [4] to find in-
tersections. As arithmetic back-end, we use exact arith-
metic based on the mpq_t data type provided by the
GMP package (GMP 5.0.1, [2]). In an attempt to cut
down the verification efforts, and lacking better means

CCCG 2011, Toronto ON, August 10–12, 2011

491

23d Canadian Conference on Computational Geometry, 2011

10−8

10−7

10−6

10−5

10−4

103 104 105 106

0.08 to 0.20 · n log n µs

103 104 105 106

1.5 to 8 · n log n µs

103 104 105 106

4 to 10 · n log n µs

Figure 1: Run-time plots for fistFp, fistMp212, and fistCore. The y-axis corresponds to the run-time divided by
n log n, where n is the number of vertices shown on the x-axis.

for establishing reference triangulations, we simply as-
sume that all CORE-based outputs correspond to cor-
rect triangulations. Under this assumption it suffices to
check all outputs that differ from outputs of fistCore.

In our first attempt to check the triangulations our
GMP-based verifier took the input coordinates as exact
values. (That is, 0.1 was regarded as 1/10.) We were
shocked to learn that the verifier reported about 4.92%
of the triangulations to be faulty — uniformly for all
variants of FIST which are not based on CORE. A more
detailed analysis revealed that only fistFp, fistShew, and
fistMp53 suffered from genuine intersection problems in
their outputs, whereas the outputs of fistMp212 and
fistMp1000 contained only overlay problems.

Still, nearly 5% faulty triangulations seemed too bad
to be true. We implemented a viewer that does not suf-
fer from floating-point errors and examined a few faulty
triangulations: The errors reported by our verifier were
only visible in the viewer when we used a zoom factor
of at least 1015, which is approximately the reciprocal
value of the precision of double precision fp-numbers.

So we switched to using the double-precision fp-
approximations of the input coordinates as the true
input numbers for our verifier, and again tested the
triangulations reported to be faulty for fistFp: This
test revealed no faulty triangulation at all. We con-
clude that the errors found with the first version of
the verifier were only caused by input errors, i.e., by
the small differences between real numbers and their
fp-approximations. Since all real-world applications of
FIST that we are aware of are based entirely on fp-
numbers, triangulations computed by fistFp can right-
fully be assumed to be correct from the point of view of
these applications.

3.4 Test Results for Voronoi Diagrams of Segments

In the sequel, we report on tests of four variants of
VRONI – VRONI based on fp-arithmetic (vroniFp), and
VRONI based on MPFR with precisions 53, 212, 1000
(vroniMp53, vroniMp212, vroniMp1000) – and compare
them to the Voronoi code shipped with CGAL 3.8.

We tested three variants of CGAL’s Voronoi
code. The first variant is fully based on double-
precision fp-arithmetic (cgvdFp), the second variant
uses CGAL::Quotient<CGAL::MP_Float> as predi-
cate kernel (cgvdQu)and the third uses CORE::Expr

as predicate kernel (cgvdEx). All variants use
Segment_Delaunay_graph_filtered_traits_2 tem-
plate parameter to the underlying segment Delaunay
graph class.

To ensure that CGAL and VRONI work on precisely
the same input, we scale the input data to fit into the
unit square as it is done per default in VRONI. For the
same reason we add four dummy points outside of the
bounding-box of the input explicitly to the input data
for CGAL, at the positions specified by VRONI. (These
points guarantee that each Voronoi cell of the actual
input is bounded.) In order to ensure that the perfor-
mance of CGAL is not influenced by file I/O we parse
an input file and store the data in an intermediate data
structure. Then we call the insert() method on the
segment Delaunay graph, and construct the Voronoi di-
agram object based on the segment Delaunay graph.
Only the insertions and the construction of the segment
Delaunay graph are timed in our tests.

Our test bed consists of 18 787 input files with poly-
gons, polygon areas, and polygonal chains. In order to
ensure that all tests could be carried out within an ac-
ceptable time period we considered only inputs with at
most 100 000 segments and limited the cpu-time con-
sumption to 30 minutes per input. All tests were con-
ducted on an Intel i7 CPU X 980 clocked at 3.33GHz.
The test machine was equipped with 24 GiB of main
memory.

The run-time performances of the variants tested are
shown in Fig. 2. As expected, vroniFp is by far the
fasted variant, averaging about 0.6 · n log n microsec-
onds for inputs with 2 000 or more segments, while the
MPFR-based variants all are 50–70 times slower. How-
ever, the variation of the run-time for different inputs of
the same size is much smaller for the different variants
of VRONI than for CGAL: Once the input size is large
enough to make the timing reliable for VRONI there are

23rd Canadian Conference on Computational Geometry, 2011

492

CCCG 2011, Toronto ON, August 10–12, 2011

10−7

10−6

10−5

10−4

10−3

10−2

102 103 104 105

0.5 to 1.6 · n log n µs

102 103 104 105

25 to 80 · n log n µs

102 103 104 105

9 to 170 · n log n µs

Figure 2: Run-time plots for vroniFp, vroniMp212, and cgvdEx. The y-axis corresponds to the run-time divided by
n log n, where n is the number of vertices shown on the x-axis.

few data points outside of a small and dense band. On
the contrary, the run-times of all CGAL variants vary by
at least a multiplicative factor of 20. On average, CGAL
performs slightly better than the MPFR-based variants
of VRONI, but due to the big variance, there are several
data sets that cause CGAL to perform worse than MPFR-
based variants of VRONI. Interestingly, switching CGAL
entirely to fp-arithmetic speeds up the code by only a
factor of 1.5 on average. In any case, vroniFp completely
outperforms CGAL on all data sets, being roughly 50–80
times faster than the CGAL variants. For about 0.36%
of the inputs the CGAL variants did not finish within
the limits imposed on runtime and memory.

The multiple outliers in the CGAL plots made us won-
der whether there exist inputs for which the run-time
complexity is worse than O(n log n). And, indeed, spe-
cific tests showed that smooth polygonal approxima-
tions of elliptical arcs or some free-form curves may
cause all CGAL variants tested to consume Ω(n2) time,
with and without exact kernel, with and without filtered
traits. (Unfiltered traits cause CGAL’s built-in consis-
tency checker to declare the solution as invalid quite
frequently, which we also confirmed by our tests.)

Since the CGAL code was not designed to be run
with conventional fp-arithmetic it is not surprising that
cgvdFp fails frequently with fp-exceptions. (It crashed
on 937 inputs.) It is more surprising, though, that the
smallest input on which cgvdFp crashed also results in
cgvdQu and cgvdEx computing Voronoi nodes which are
numerically clearly wrong.

This observation made us wonder whether we had
stumbled upon some isolated bug in CGAL, and we
started to investigate the numerical accuracy of the
Voronoi diagrams computed. We use an output format
that stores the coordinates of the input sites and the
coordinates of the Voronoi nodes calculated along with
a reference to the defining sites. (We do not unscale
the coordinates as this would introduce an unnecessary
source of error.) We use a decimal precision of 60 digits
in the output format. For each node, our verifier

• calculates differences in the distance to the defining
sites of the node as the squared minimum distance
divided by the squared maximum distance;

• checks whether any site s is closer to the node than
its closest defining site, and reports the squared
distance to s divided by the squared minimum dis-
tance.

In order to avoid introducing new errors in the verifier,
all distance computations are based on GMP’s mpq_t

data type. Since brute-force all-pairs distance computa-
tions are used, we could afford to run our verifier only on
comparatively small inputs with up to 2 000 segments.

Due to the use of fp-numbers in the output files of
CGAL and VRONI we cannot expect any variant to have
no error – but we can hope for small errors. The larger
the error, the more such a ratio differs from one. For
each variant all ratios different from one are sorted in
increasing order and the square roots of the sorted ra-
tios are subtracted from one. (These computations are
based on standard fp-arithmetic.) In order to avoid
plotting millions of points, we compute the averages of
groups of 100 consecutive error values (in the sorted
order) and plot the resulting errors.

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

20000 40000 60000 80000

cgvdEx

vroniFp

vroniMp212

Figure 3: Error values that correspond to inconsistent
distances to the defining sites of a node.

Figures 3+4 depict these sorted sequences of error
values for vroniMp212 (lowest, red curve), vroniFp (mid-
dle, green curve), and cgvdQu (top, blue curve). Fig. 3
shows the errors that correspond to inconsistent dis-
tances to the defining sites of a node, and Fig. 4 shows
the errors that represent violations of clearance disks by
other sites.

CCCG 2011, Toronto ON, August 10–12, 2011

493

23d Canadian Conference on Computational Geometry, 2011

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

2000 4000 6000 8000 10000

cgvdEx

vroniFp

vroniMp212

Figure 4: Error values that represent violations of clear-
ance disks by other sites.

It is evident and not surprising that VRONI runs into
numerical errors, and that using MPFR clearly helps
VRONI to improve the accuracy of its output. But
it is surprising to learn that all VRONI variants pro-
duce outputs which, on average, seem to be numerically
much more accurate than any of the CGAL variants:
vroniFp shows significantly fewer and smaller errors than
cgvdQu. The numerical errors of cgvdEx are even more
severe than those of cgvdQu, and cgvdFp is completely
unreliable, given the large number of crashes observed.

Hence, if the numerical accuracy provided by the
standard floating-point arithmetic is deemed insuffi-
cient in a real-world Voronoi application then it seems
advisable to use VRONI in conjunction with MPFR,
given the current state-of-the-art of Voronoi implemen-
tations. However, we note that the exact CGAL vari-
ants might determine correct Voronoi topologies even
though the Voronoi nodes are less accurate than what
can be achieved on a standard fp-arithmetic. (We had
no means to assess and check this quality criterion.)

3.5 Test Results for Straight Skeletons

Due to lack of space we summarize our results for the
computation of straight skeletons as follows: the MPFR-
based versions of BONE are about 10–20 times slower
than boneFp, with boneFp averaging about 30 · n log n
microseconds on our test platform. CGAL’s straight-
skeleton code exhibits both a quadratic run-time as well
as a quadratic memory consumption and, thus, is only
feasible for very small inputs.

4 Conclusion

In this paper we discussed the problems that arose when
we attempted to interface FIST, VRONI and BONE with
the MPFR library or the CORE library. While MPFR
was fairly easy to integrate into our C/C++ codes, the
integration of CORE required significantly more efforts
and non-trivial changes to the codes. Furthermore, the

CORE-based version of FIST suffered from a substantial
performance hit. Our tests suggest that the MPFR li-
brary should be considered if the numerical precision of
a geometric code such as VRONI is of concern: It does
indeed succeed in boosting the precision without caus-
ing the increase in runtime to become completely un-
bearable. As discussed, the numerical precision of the
output of a geometric code may depend substantially
on the compiler settings.

To our surprise, FIST run on a standard floating-point
arithmetic performed flawlessy: all triangulations com-
puted by FIST were correct. Also to our surprise, the
CGAL alternatives to VRONI and BONE hardly are an
alternative in practice; we observed a tremendously in-
creased runtime (compared to VRONI and BONE) and
a decreased numerical precision of the output.

Of course, our tests constitute case studies for only
three specific applications with a small number of codes.
Hence, generalizations of our findings need not be legit-
imate without probing the grounds. In particular, the
mere fact that CGAL performed poorly in our test ap-
plications cannot be construed as an indication for a
general weakness of CGAL for other applications.

References

[1] CORE. http://cs.nyu.edu/exact/core_pages/.

[2] GMP. http://gmplib.org/.

[3] MPFR. http://www.mpfr.org/.

[4] J. Bentley and T. Ottmann. Algorithms for Reporting
and Counting Geometric Intersections. IEEE Trans.
Comput., C-28:643–647, 1979.

[5] CGAL. http://www.cgal.org/.

[6] M. Held. FIST: Fast Industrial-Strength Triangulation
of Polygons. Algorithmica, 30(4):563–596, Aug 2001.

[7] M. Held. VRONI: An Engineering Approach to the Re-
liable and Efficient Computation of Voronoi Diagrams
of Points and Line Segments. Comput. Geom. Theory
and Appl., 18(2):95–123, Mar 2001.

[8] M. Held and S. Huber. Topology-Oriented Incremen-
tal Computation of Voronoi Diagrams of Circular Arcs
and Straight-Line Segments. Comput. Aided Design,
41(5):327–338, May 2009.

[9] S. Huber and M. Held. Theoretical and Practical
Results on Straight Skeletons of Planar Straight-Line
Graphs. In Proc. 27th Annu. ACM Sympos. Comput.
Geom., pages 171–178.

[10] IEEE. IEEE 754-1985, Standard for Binary Floating-
Point Arithmetic, 1985.

[11] Intel Corporation. Intel 64 and IA-32 Architectures
Software Developer’s Manual, Vol. 1, April 2011. http:
//www.intel.com/products/processor/manuals/.

[12] J. Shewchuk. Adaptive Precision Floating-Point Arith-
metic and Fast Robust Geometric Predicates. Discrete
Comput. Geom., 18(3):305–363, Oct 1997.

23rd Canadian Conference on Computational Geometry, 2011

494

CCCG 2011, Toronto ON, August 10–12, 2011

On Inducing n-gons

Marjan Abedin∗ Ali Mohades∗ Marzieh Eskandari†

Abstract

In this paper, we establish a lower bound on the number
of inducing simple n-gons in grid-like arrangements of
lines. We also show that the complexity associated with
counting the number of inducing n-gons in an arrange-
ment of collinear segments is #P-complete.

1 Introduction

Arrangement of lines in the plane is among the most
studied structures in combinatorial and computational
geometry. Consider an arrangement of n lines. An in-
ducing n-gon is a simple polygon with n sides such that
extension of each side induces a line of the arrangement,
and extensions of all sides induce the whole arrange-
ment. It means that each line in the arrangement should
exactly contain one side of the inducing n-gon.

An interesting question is to find out whether an ar-
rangement includes a simple n-gon inducing the whole
arrangement [3], and a more appealing question is to
find an upper or lower bound on the number of these n-
gons that an arrangement can tolerate [2]. The first
question has been responded affirmatively for simple
arrangements [1, 5] while the second one still remains
open. In addition to the above problems, the complexity
of counting inducing n-gons in arrangements is another
appealing issue to those interested in complexity theory.

In this paper, we establish a lower bound on the num-
ber of inducing n-gons in a grid-like arrangement of lines
as defined formally in Section 3. This class of arrange-
ments is interesting because despite the well-shaped ap-
pearance of the arrangements it seems to be hard to
count all the inducing n-gons.

Inducing n-gons are discussed in arrangements of lines
and pseudo-lines [3]. In this work, the complexity of
counting these n-gons in arrangements of collinear seg-
ments is studied.

This paper is organized as follows. In Section 2, we
present a method to count a subset of inducing n-gons in
a special class of arrangements. The results of Section 3
are utilized to present a lower bound on the number
of inducing n-gons in grid-like arrangements of lines.

∗Laboratory of Algorithms and Computational Geometry, De-
partment of Mathematics and Computer Science, Amirkabir Uni-
versity of Technology, {m.abedin,mohades}@aut.ac.ir
†Department of Mathematics, Alzahra University,

eskandari@alzahra.ac.ir

In Section 4, it is shown that the complexity of count-
ing the number of inducing n-gons in arrangements of
collinear segments is #P-complete.

2 Arrangements of n lines with at least factorial
number of inducing n-gons

This section is concentrated on a specific class of ar-
rangements of n lines, where n = 3m and m is an inte-
ger. We present a method to show that an arrangement
in this class contains at least factorial number of induc-
ing n-gons.

2.1 Initialization

Consider an arrangement of 3m lines arranged in three
sets of m parallel lines. Call the sets R, L and B, and
consider the set B to be horizontal. The lines of each set
are parallel to one side of an empty hypothetical triangle
with horizontal base. Label the lines of each set in an
ascending order, from the inner to the outer line. The
intersection point between two lines is denoted by the
names of those lines, xbi,rj for the intersection of the
lines bi and rj .

Intersections of any triple of lines, each one from dif-
ferent set, forms a triangle. We shall regard the area
inside the biggest triangle as arrangement-core, and de-
note the triangles formed by the intersection of b1, ri
and li as Ti. Call all the segments on lis and ris of Tis
mountain range-LR. Similarly, all the segments on bis
and lis of Tis and likewise all the segments on bis and
ris of Tis are designated. We only explain the method
for the mountain range-LR because of the symmetrical
appearance of the arrangement.

In each mountain range, there are m mountains and
m−1 narrow corridors, which play a fundamental role in
the following section. Let Mi denote the ith mountain,
and label the mountains and corridors from the inner
to the outer one in an ascending order. Half of each
corridor is on the right and the other half is on the left
side of the arrangement; see Fig. 1(a). There is a specific
edge in all the n-gons constructed by the method, call
it ceiling-edge. Depending upon the parity of m, the
ceiling-edge is defined differently that is described in
the following section.

CCCG 2011, Toronto ON, August 10–12, 2011

495

23rd Canadian Conference on Computational Geometry, 2011

Figure 1: (a) The second corridor is filled with gray and
M4 is bolded. (b) An inducing 12-gon.

2.2 The method

All the inducing n-gons constructed by the method, con-
tain one of the three mountain ranges. Through contri-
bution of the segments on the mountain range-LR, there
are 2m lines induced. Therefore, we extend the selected
mountain range and close each corridor with a segment
on a line of B to induce all the lines and obtain an
inducing n-gon.

Assume m is even. The ceiling-edge for even m is a
segment of a line of B, e.g. bz, with two endpoints xbz,r1
and xbz,rm or two endpoints xbz,l1 and xbz,lm . Because
of the symmetry, let us consider the ceiling-edge with
two endpoints xbz,r1 and xbz,rm on the right side, on bz
(z ≥ dm2 e). Lemma 1 explains why it is necessary that
the ceiling-edge lies on a line of B with an index greater
than dm2 e.

Having fixed the ceiling-edge, extend the right seg-
ments of M1 and Mm to reach it. As the ceiling-edge
is placed on the right, extend m

2 − 1 of the right half-
corridors, and close each one of them with a segment
on a so far unused line of B above bz. Furthermore on
the other side, extend m

2 of the left half-corridors and
close each one with a segment on a remaining unused
line of B. As presented in Fig. 1(b), the ceiling-edge
is on b3 and the extended corridors are closed on b2,
b1, b4 respectively. In summary, the even half-corridors
are closed on the right, and the odd half-corridors are
closed on the left alternatively starting from the first
left half-corridor.

In conclusion, select m−z odd corridors from the left
to be extended bellow bz then there are (m−z)! possible
choices for them to be closed on the left. Similarly, for
the remaining z−1 half-corridors on both left and right,
there are (z−1)! different configurations to be extended
up to above bz and to be closed. This method uses
each line exactly once and all the inducing n-gons are
different.

There are
(m

2
m−z

)
(m−z)!(z−1)! number of inducing n-

gons by fixing the ceiling-edge on bz (z ≥ dm2 e). There-

fore, our method constructs
∑m

m
2

(m
2

m−z
)
(m− z)!(z − 1)!

number of different inducing n-gons by taking all
the possible places for the ceiling-edge into account,
z ≥ dm2 e. Disregarding the algebraic simplification, the

result equals (m2)!(m2 − 1)![
(
m
m
2

)
− 1].

The discussed points for even m are also true for odd
m with some changes:

• The ceiling-edge is a segment on bz, z ≥ dm2 e, with
two endpoints xbz,l1 and xbz,rm or two endpoints
xbz,r1 and xbz,lm . Because of the symmetry, con-
sider the ceiling-edge with two endpoints xbz,l1 and
xbz,rm on the right side of the arrangement. Then
it is necessary to extend the left segment of M1 and
the right segment of Mm to reach the ceiling-edge,
and the right half-corridors should be extended and
closed above the ceiling-edge to avoid crossing it.

• Since m is odd, extend and close m−1
2 of the even

corridors on the left, and do the same for m−1
2 of

the odd corridors on the right alternatively starting
from the first right corridor. According to the posi-
tion of the ceiling-edge, whether it is on the left or
on the right, some of the corridors should be closed
above the line containing the ceiling-edge, and the
remaining ones ought to be closed below it.

The lower bound presented for even m is also true here.

Lemma 1 The ceiling-edge has to lie on bz, z ≥ dm2 e.

Proof. By contradiction, while closing some corridors
on the left or right, there would be an intersection
among the ceiling-edge and the extended corridors.
Therefore, there are more than one side of an induc-
ing polygon on the ceiling-edge or other lines, and of
course the result is not an inducing n-gon. It is also
possible to have some self-intersections. �

2.3 Generalization of the arrangements

The presented lower bound in the previous section is
preserved for generalized arrangements of n lines, where
n = km and k and m are both integers. Lines in the ar-
rangements are divided into k sets of parallel lines, each
set of size m. In addition, each pair of sets are intersect-
ing, and the lines of each set are parallel to one side of
an empty hypothetical k-gon. The arrangement-core for
a generalized arrangement is the limited space with the
exterior line of each set. To take advantage of the ben-
efits attributed to the method discussed in Section 2.2,
each set of lines should only intersect its adjacent sets
inside the arrangement-core, and the intersections with
other sets lie outside of this area.

It is important to note that the method in the pre-
vious section presents a lower bound on the number of
inducing n-gons inside the arrangement-core, which in-
dicates that the method ignores the intersections be-
yond this region. This is an observation which is used
to establish a lower bound on the number of inducing
n-gons in the following section.

23rd Canadian Conference on Computational Geometry, 2011

496

CCCG 2011, Toronto ON, August 10–12, 2011

3 Inducing n-gons in grid-like arrangements

A grid-like arrangement is an arrangement with two sets
of parallel lines. If the numbers of lines in two sets are
not equal, then there is no inducing n-gon. Otherwise
the numbers of horizontal and vertical sides of inducing
n-gons are not equal, and this cannot happen. Thus,
consider a grid of size n with two sets of parallel lines
each one of size m, where m is an integer. Without loss
of generality, consider the lines of one set parallel to the
x-axis and those of the other set parallel to the y-axis.

An obvious lower bound on the number of inducing
n-gons in the grid is (m − 1)!. This amount is ob-
tained by considering the biggest bounded segment on
the bottommost line as a fixed edge, closing each ver-
tical corridor with a segment on a horizontal line and
finally joining them with vertical segments on the verti-
cal lines. The inducing n-gons obtained by this method,
form monotone orthogonal n-gons in the direction of the
x-axis. The former results in Section 2.2 are utilized to
improve this bound.

Consider an arrangement of 2kz lines, the same as
the arrangements described in Section 2.3, where k is a
divisor of m and z is an integer. The arrangement con-
tains 2k sets of parallel lines each one of size z. The 2k
sets are arranged such that the arrangement-core forms
a 2k-gon, in which each set intersects only its adjacent
sets. So it can be concluded that the segments of non-
adjacent sets, inside the arrangement-core, are parallel
because they do not intersect each other. It is a trans-
formation of the grid to an arrangement of segments
bounded with the arrangement-core. In other words,
the whole m lines in one set of the grid are divided into k
sets in such a way that each set contains m

k lines. These
k sets are arranged parallel to the non-consecutive sides
of a hypothetical 2k-gon.

Although a grid contains extra intersections in com-
parison with the arrangement of segments inside the
arrangement-core, simply ignore those additional inter-
sections; see Fig. 2(a). In other words, it is a lower
bound on the number of inducing n-gons where the
n-gons do not bend on the extra intersections; see
Fig. 2(b).

Based on the above discussion, the presented lower
bound in Section 2.2 is also true for grids. As
there is no overlap between inducing n-gons obtained
by the two methods, the lower bound is equal to
(m−1)!+

∑
k∈K(m2k)!(m2k −1)![

(m
k
m
2k

)
−1], where K is the

set of all divisors of m which are greater than two. Note
that for a fixed k, the ceiling-edge contains exactly k−1
segments. Therefore, different k do not lead to identi-
cal n-gons while there is at least one difference between
their ceiling-edges. This bound can become more pre-
cise by taking inducing n-gons in other directions into
account although we ignore them.

Figure 2: (a) Arrangement of segments inside the
arrangement-core and the related grid, extra intersec-
tions are removed. (b) The related inducing n-gons.

4 Complexity of counting inducing n-gons in an ar-
rangement of collinear segments

An arrangement of collinear segments, ACS, is a col-
lection of line segments in the plane. The arrangement
includes some maximal subsets of collinear segments,
i.e. a maximal subset family. A single segment can
also be a family if there is no other segment collinear
with it. Note that an arrangement of lines is a special
case for this arrangement, as there are n families in an
arrangement of n lines.

An inducing n-gon in ACS is a polygon with n sides
for which there is a bijective relation between its sides
and the families. It means that each family of ACS
should contain exactly one side of the inducing n-gon.
Obviously, if there are less than n intersections between
the families of ACS, there is no inducing n-gon.

The class #P contains all counting problems associ-
ated with the polynomial-balanced and polynomial-time
decidable relations [4]. As our problem satisfies these
two properties, it is in #P. We demonstrate that count-
ing the number of inducing n-gons in an arrangement
of collinear segments is #P-complete. Let us reduce the
#P-complete problem #RPM to #n-IP, where #RPM
is the number of perfect matchings in a regular bipartite
graph, and #n-IP is the number of inducing n-gons in
an ACS.

Theorem 2 Complexity of counting #RPM in a k-
regular bipartite graph is #P-complete, for any fixed
k > 2 [6] .

Given a k-regular bipartite graph G = (U, V,E) such
that |U | = |V | = m. The goal is to construct an ar-
rangement of collinear segments such that the induc-
ing n-gons in ACS somehow correspond to the perfect
matchings in G. Consider some guide-lines which form
a (m + 1) times (m + 1) grid-like arrangement A, and
also suppose m vertical guide-segments such that each
segment is limited to the second bottommost guide-line
and a point above the topmost horizontal guide-line.
Each guide-segment is placed inside a vertical corridor
of A and divides it into two vertical corridors, a small

CCCG 2011, Toronto ON, August 10–12, 2011

497

23rd Canadian Conference on Computational Geometry, 2011

corridor and a big corridor. For each node in U and
V consider a big corridor and a horizontal guide-line of
A respectively. See Fig. 3(a) and consider the following
segments:

• Main-segments: Bounded horizontal segments with
big corridors.

• Small-segments: Bounded horizontal segments
with small corridors.

• Helping-segments: The segments on both guide-
segments and vertical guide-lines bounded between
the second bottommost horizontal guide-line and
the topmost small segment.

• Final-segments: The biggest segment on the bot-
tommost guide-line and the connecting segments
of its endpoints to the left and right most helping-
segments.

The reduction is as follows. For each edge in G
which connects ui to vj , add a main-segment inside the
big corridor associated with ui and lies on the guide-
line attributed to vj , 1 ≤ i, j ≤ m. Add m small-
segments inside of each small corridor. Put one of the
small-segments above the topmost horizontal guide-line,
and each horizontal corridor of A should contain ex-
actly one small-segment except the bottommost corri-
dor. The small-segments in each horizontal corridor ofA
should be collinear, to form horizontal families. Add the
helping-segments and the final-segments; see Fig. 3(b)
as overall arrangement. We claim that #n-IP is equal
to m! #RPM, where n = 4m + 2. It can be shown by
the following lemma.

Lemma 3 All the inducing n-gons in the designed ACS
are monotone in the direction of the x-axis.

Proof. By contradiction, there are more than one
side of the polygon on at least one of the helping-
segments. �

In each inducing n-gon there are exactly m main-
segments. There is no pair of main-segments selected in
a big corridor as an inducing n-gon in the constructed
ACS is monotone, Lemma 3. This point indicates that
there is no pair of vertices in V matched with a vertex
in U ; see Fig. 3(c).

To obtain an inducing n-gon, the main-segments are
joining via small-segments, helping-segments and final-
segments. For a fixed set of selected main-segments in
an inducing n-gon, related to a perfect matching of G,
there are m! possible ways to choose small-segments to
obtain m! different inducing n-gons.

The reduction is now complete and obviously is in
P . It is to mean that if someone can obtain the #n-IP
efficiently, he could easily find the #RPM which is a
#P-complete.

Figure 3: (a) On the left, a 3-regular bipartite graph.
On the right, dash lines/segments are as guidance
and the related main-segments and small-segments to
the graph are bolded. (b) The main-segments, small-
segments, helping-segments and final-segments are blue,
violet, orange and green respectively. (c) On the left, a
perfect matching. On the right, the designed arrange-
ment of segments and a related inducing n-gon to the
perfect matching is bolded.

5 Conclusion

We establish a lower bound on the number of induc-
ing n-gons in grid-like arrangements. It is interesting to
find the exact number of inducing n-gons in this class
of arrangements. We also demonstrate that the com-
plexity of counting the number of inducing n-gons in an
arrangement of collinear segments is complete for the
class #P. We conjecture that the complexity of count-
ing inducing n-gons in arrangements of lines is also #P-
complete.

6 Acknowledgement

The authors would like to appreciate Fatemeh Zare,
Farnaz Sheikhi, Mansoor Davoodi, Zahra Liaghat and
Amin Gheibi for their patience and helps throughout
writing this paper.

References

[1] E. Ackerman, R. Pinchasi, L. Scharf and M. Scherfen-
berg. Every simple arrangement of n lines contains an
inducing simple n-gon. The American Mathematical
Monthly, 118(2): 164-167, 2009.

[2] E. Ackerman, R. Pinchasi, L. Scharf and M. Scher-
fenberg. On Inducing Polygons and Related Prob-
lems. Computational Geometry: Theory and Applica-
tions (CGTA), 5757: 47-58, 2009.

23rd Canadian Conference on Computational Geometry, 2011

498

CCCG 2011, Toronto ON, August 10–12, 2011

[3] P. Bose. Properties of arrangement graphs. The Journal
of Computational Geometry and Applications, 13(6):
447-462, 2003.

[4] C. H. Papadimitriou. Computational Complexity. Uni-
versity of California, Addition-Welsey Publishing Com-
pany, 1994.

[5] L. Scharf and M. Scherfenberg. Inducing n-gon of an
arrangement of lines. In 25th European Workshop on
Computational Geometry, Bruxells, Belgium, 129-132,
2009.

[6] S. P. Vadhan. The Complexity of Counting in sparse,
Regular, and Planar Graphs. SIAM Journal on Com-
puting (SICOMP), 31(2): 398-427, 2001.

CCCG 2011, Toronto ON, August 10–12, 2011

499

23rd Canadian Conference on Computational Geometry, 2011

500

CCCG 2011, Toronto ON, August 10–12, 2011

Weak Matching Points with Triangles

Fatemeh Panahi∗ Ali Mohades∗ Mansoor Davoodi∗ Marziyeh Eskandari†

Abstract

In this paper, we study the weak point matching prob-
lem for a given set of n points and a class of equilateral
triangles. The problem is to find the maximum car-
dinality matching of the points using equilateral trian-
gles such that each triangle contains exactly two points
and each point lies at most in one triangle. Under the
non-degeneracy assumption, we present an O(n3/2) time
algorithm using the TD-Delaunay graph and a graph
matching algorithm. Also, we show that the lower
bound for the number of matched points is b2n/3c which
is optimal in the worst case.

1 Introduction

The point matching problem is a challenging problem
in computational geometry and graph theory and has
many applications in geometric shape matchings and
computational biology [3]. The problem of point match-
ing with planar geometric objects, recently studied in
[1], is a special variant of point matching problems.
Given a set P of points in the plane and a class C of
2D geometric objects, the problem is to find a set of
C-type objects, called C-matching of P , in which each
object contains exactly two points of P and each point
lies in at most one object. The problem is a general-
ization of geometric graph matching where the objects
are segments. Alternatively, what we refer to as objects
can be circles, squares or rectangles as well.

Assume that the number of points is even. A C-
matching is called perfect if all points in P are covered,
and it is strong if the matched geometric C-objects are
non-overlapping. In addition, the matching is called
weak if we do not know whether it is strong [4]. Álbrego
et al. studied properties of C-matching problem for two
classes of circles and isothetic squares in perfect and
strong matching [1]. Assuming the class of objects to
be circles, they proved some bounds for the cardinal-
ity of matching in strong and/or perfect matching. The
weak perfect matching problem for line segments was
studied by Rendl and Woeginger [12]. They proposed

∗Laboratory of Algorithms and Computational
Geometry, Department of Mathematics and Com-
puter Science, Amirkabir University of Technology,
{fatemehpanahi,Mohades,mdmonfared}@aut.ac.ir ,
†Department of Mathematics, Alzahra University, Tehran,

Iran. eskandari@alzahra.ac.ir ,

an O(n log n) time algorithm for orthogonal segments,
where n is the number of points in P . They proved
that the problem is NP-complete if the segments are
not allowed to cross. Aloupis et al. investigated match-
ing problems for non-crossing objects [3]. They showed
that the problem is NP-complete for lines and line seg-
ments in general, but polynomial-time when segments
form a convex polygon. Also, a bichromatic version of
the problem and a non-intersecting constraint have been
studied for strong matching when the objects are seg-
ments by Dumitrescu and Steiger [8] and Kaneko and
Kano [9], respectively.
Álbrego et al. studied the matching problem for cir-

cles and squares [1], [2]. Under the non-degeneracy as-
sumption, they showed that there always exists a weak
perfect matching for the class of axis-aligned square ob-
jects, and proposed a 2dn/5e bound for the cardinal-
ity of matching for the strong one. They presented a
2d(n − 1)/8e bound for circles, as well. The classes
of rectangles and squares have been studied by Bereg
et al. [4]. Without the general position assumption,
they proposed an O(n log n) optimal time algorithm
for squares in the weak matching realization and an
O(n2 log n) time algorithm for the strong one. Also,
they showed that a weak rectangle matching of max-
imum cardinality can be computed in O(βn1.5) time,
where β is the minimum of the number of different x-
coordinates and the number of different y-coordinates
in P . In addition, they proved that there exists an opti-
mal worst case b2n/3c cardinality of matching for axis-
aligned rectangles in the strong matching and proved
that the problem of determining whether a given set of
points has a perfect strong matching is NP-hard for the
class of squares.

In this paper, we study the problem of weak point
matching using equilateral triangles with a horizontal
base which lies below its non-adjacent vertex. We de-
note this problem of Weak Triangle Matching by WTM.
The approach that we present is also applicable for ho-
mothets of any fixed triangle, by applying a shear trans-
formation. To solve the problem, we use a shrinkabil-
ity property [2] and reduce WTM to a graph matching
problem. When two points of P named p and q are
matched in a solution to a matching problem, a C-type
object contains exactly p and q. Thus, the object can be
shrunk such that p and q lie on its boundary. This prop-
erty is called “shrinkability” of geometry object match-
ing. Having this property, we reduce the problem of

CCCG 2011, Toronto ON, August 10–12, 2011

501

23rd Canadian Conference on Computational Geometry, 2011

matching with geometric objects to a graph matching
problem. The corresponding graph for the WTM prob-
lem is similar to a Θk-graph which has been used in the
geometric spanner context [11]. Indeed, the graph is a
special form of a 2-spanner, Θ6-graph, introduced by
Bonichon et al. [6] and called half -Θ6-graph [7]. They
proved that the half -Θ6-graph is the same as triangular-
distance Delaunay graph and can be computed in opti-
mal O(n log n) time for a set of n points in the plane.

In the next section, we propose an O(n3/2) time al-
gorithm for finding the maximum-cardinality matching
for the WTM problem. Later in section 3, we will show
that the number of matching points with our proposed
algorithm will at least be b2n/3c points for every given
point set, which is optimal in the worst case.

2 Weak Point Matching With Equilateral Triangles

The problem of matching with geometric objects has
been studied for classes of segments, circles, squares and
rectangles. It would be interesting to study the same for
convex polygons as well. In this paper, we study equi-
lateral triangles. For the class of arbitrary triangles,
the problem will be trivial, because each segment can
be assumed to be a triangle with a height sufficiently
small. We consider the x-axis aligned equilateral tri-
angles. They are equilateral triangles, one of the edges
of which is parallel to the x-axis. We assume that the
triangle is located above this edge.

For both strong and weak versions of the problem,
there are counterexamples that show a perfect triangle
matching does not always exist. But we show in this
section that there is an O(n3/2) time algorithm which
can compute a weak triangle matching of maximum car-
dinality for a set of n points.

For a given set of points P = {p1, p2, . . . , pn}, the
problem of weak triangle matching called WTM is to
find a set of x-axis aligned triangles such that each tri-
angle includes exactly two points of P . Fig. 1 shows
two solutions of the WTM problem for a set of eight
points.

Figure 1: An example of the WTM problem and two
distinct solutions for it (dashed triangles and solid tri-
angles).

Figure 2: The three directions d1, d2 and d3 and the
cones in the covering of a point.

Throughout this paper, we consider three axes d1,
d2 and d3 which have angles of π/6, 5π/6, and 9π/6
with x-axis, respectively. We assume that the points of
the set P are in general position, which as we define
it, means that there are no two points with the same
coordinates in the directions d1, d2 or d3. Also, we
denote the orthogonal projection of a point p onto di by
di(p), for i=1, 2 and 3. For a point p, we partition the
plane into six regular cones with the apex p. see Fig.
2. The three odd cones with their bisectors being d1, d2
and d3 will be denoted A1, A2 and A3 respectively; the
remaining three will be called B1, B2 and B3. We say
that the point q is in the covering of p in the direction
di, if it lies in Ai, for i=1, 2 and 3.

Let T be an axis-aligned equilateral triangle including
p and q. We can shrink T to find a smaller such triangle
so that p and q lie on its boundary. In addition, for the
smallest covering x-axis aligned equilateral triangle at
least p or q lies on one of its vertices. We denote such
a triangle by T (p, q). Without loss of generality, we
assume that each triangle which contributes to WTM
has a point on one of its vertices and the other point
is on its boundary. Also, for two points p and q in P ,
we say that T (p, q) is a candidate triangle for the weak
triangle matching problem if it contains no other points
of P . Letting p be a vertex of a candidate triangle,
the other point should be in the covering of p. With
regard to the general position assumption, we have the
following observation.

Observation 1 Any point p in P can be a vertex of at
most three candidate triangles.

To solve the WTM problem, we define a geometric
graph and reduce the problem to a graph matching
problem. To this end, we construct the geometric graph
G(P) for a point set P . Vertices of G(P) are exactly the
point set P , and there is an edge between two vertices p
and q if and only if T (p, q) is a candidate triangle. Fig.
3 displays a point set and its corresponding geometric
graph.

To compute the geometric graph, G(P), we can use
the algorithm of Θk-graphs for k=6 [11]. This type

23rd Canadian Conference on Computational Geometry, 2011

502

CCCG 2011, Toronto ON, August 10–12, 2011

Figure 3: The geometric graph in the WTM problem
for a set of points.

of graphs are the linear approximation of complete Eu-
clidean graphs. Chew showed that the Delaunay tri-
angulation using triangle distance function (called TD-
Delaunay graph) is a 2-spanner graph [7]. To construct
the TD-Delaunay graph it is sufficient to replace the
empty equilateral triangle with the circle in the empty
circle test in constructing the standard Euclidean De-
launay triangulation. Also, it is proved that the size of
the TD-Delaunay graph is linear and can be computed
using the sweep line approach in O(n log n) time for a
set of n points. The final result in this context was pre-
sented by Bonichon et al. [6]. They introduced a spe-
cific subgraph of Θ6-graph, called the half -Θ6-graph,
and proved that it is equal to the TD-Delaunay graph.
Based on the mentioned concepts, we can conclude the
following result.

Proposition 1 For a given set P of n points in the
plane, the geometric graph G(P) is a connected graph
with O(n) edges and can be computed in O(n log n) time.

Since an edge in G(P) corresponds with a candidate
triangle in P , solving the problem in P is equal to
finding the maximum graph matching in G(P). The
maximum graph matching for a graph G = (V,E)
can be solved using Micali and Vazirani’s algorithm in
O(|V |

√
|E|) time [10]. Taking into account the linear

size of G(P), we conclude this section with the following
theorem:

Theorem 2 For a set of n points in the plane, the
maximum cardinality weak point matching with x-axis
aligned equilateral triangles can be solved in O(n3/2)
time and O(n) space.

3 Lower Bound for the number of matched points
for the WTM

In the previous section, we showed that there is an algo-
rithm that finds a maximum cardinality matching for a
given point set. In this section, we show that the weak
triangle matching for the points in general position al-
ways covers at least b2n/3c points. If the points are not
in general position, the worst case is the one in which
each point has the same coordinate as another point, in
direction d1, d2 or d3 as illustrated in Fig. 4.

Figure 4: An example for a set of points which are not
in general position.

In this case, only the extreme points can be matched.
Without the general position assumption, the lower
bound for the number of the points which can be
matched in an arbitrary point set, P , with the cardi-
nality of n is O(

√
n). If we assume that the points

are in general position, the problem of finding the lower
bound for the number of matched points with WTM be-
comes interesting. The following lemmas present some
properties of the corresponding graph to find a lower
bound.

Lemma 3 For each two vertices p and q in G(P), there
are vertices r1, r2, . . . , rk (k ≥ 0) inside T (p, q) such
that, the path pr1r2 . . . rkq is between p and q and each
ri, (1 ≤ i ≤ k) lies in T (u, v) where u and v are the
adjacent vertices of ri on the path pr1r2 . . . rkq.

Proof. If T (p, q) is a candidate triangle, there is an
edge between p and q. So, the lemma holds for k=0.
Otherwise, there is a vertex inside T (p, q), e.g. r1, which
T (p, r1) is a candidate triangle and there is an edge be-
tween p and r1. For the vertices q and r1, if T (r1, q) is a
candidate triangle, there is an edge between them. So,
the lemma holds for k=1. Otherwise, similarly there is a
vertex inside T (r1, q), e.g. r2, which T (r1, r2) is a can-
didate triangle and there is a path between r2 and q.
Consequently, the path pr1r2 . . . rkq lies inside T (p, q)
and each ri, (1 ≤ i ≤ k) lies in T (u, v), where u and v
are the adjacent vertices of ri on the path. �

Lemma 4 For an arbitrary point, q, consider the six
mentioned cones, Ai and Bi, for i=1, 2, 3. If there are
two points, p1 and p2, such that q lies inside T (p1, p2),
then one of them, e.g. p1, cannot be in the covering of q
and the other point, p2, cannot be in the cone containing
p1 and its two adjacent cones.

Proof. If both two vertices, p1 and p2, are in the cov-
ering of q, then q cannot be inside T (p1, p2), because
there exists a line that separates q and T (p1, p2). For
example, if p1 lies in A1 and p2 lies in A2, T (p1, p2) com-
pletely lies above the horizontal line that passes through
q. So, suppose that p1 is not in the covering of q and
lies in one of Bi cones, e.g. B1. If q lies inside T (p1, p2),

CCCG 2011, Toronto ON, August 10–12, 2011

503

23rd Canadian Conference on Computational Geometry, 2011

then d3(p2)> d3(q) which implies that p2 cannot be in
B1 or in its adjacent cones, A1 and A2. �

Let C(q) be the number of connected components
which are created by removing a vertex q from G(P).
We will have the following lemmas.

Lemma 5 For any vertex q in the corresponding graph
of the point set P , G(P), C(q) ≤ 3.

Proof. Consider the point q and its six mentioned
cones. For contradiction, assume that there are at least
four components after removing q, so there is a vertex in
each component, e.g. p1, p2, p3 and p4, which connect
to q by an edge. See Fig. 5. According to lemma 4,
for two points pi and pj , for 1 ≤ i, j ≤ 4, if q is inside
T (pi, pj), there is at least one of the cones, A1, A2 or A3

between pi and pj , otherwise, there is a path between
them which does not pass through q. In this case, there
are four vertices lying in 6 regions. So, there are at
least two vertices which are in the same or two adjacent
cones. This means that by removing q, there is a path
between at least two vertices of pi which does not con-
tain q. It implies that these two vertices which are p1
and p4 in Fig. 5, cannot be in two disjoint components,
after removing q, which would be a contradiction. �

Figure 5: The vertices adjacent to q cannot be in more
than three components.

Lemma 6 Suppose that the vertices p1, p2, . . . , pi−1
have been removed from G(P), and G′(P) be the re-
sulted graph. If by removing a vertex, e.g. pi from
G′(P), more than two connected components are added,
then there would be two vertices r and s connected to
pi, such that T (r, s) contains some vertex like q where
q ∈ {p1, p2, . . . , pi−1} and C(q) < 3 but T (r, s) does not
contain pi.

Proof. According to lemma 5, C(pi) ≤ 3. So, each two
vertices adjacent to pi which are in two disjoint compo-
nents by removing pi from G(P), the vertex pi is inside
the triangle of them. So, it is expected that removing
pi from G′(P) adds two connected components. Unless,

there are two vertices adjacent pi like r and s such that
T (r, s) does not contain pi, furthermore, by removing pi
from G(P), the vertices r and s are in the same com-
ponent, while by removing p1, p2, . . . , pi−1, pi, vertices
r and s are in two disjoint components. See Fig. 6.
It means that in G′(P) there is no edge between r and
s. According to lemma 3, there is a path with length
of more than one between r and s, and the vertices on
the path are inside T (r, s). This path is disjoint from
spir, because r and s are in two disjoint connected com-
ponents. There should be a vertex on the path like q,
which has been deleted before. According to lemma 3,
q is inside T (u, v) where u and v are adjacent vertices
of q on the path between r and s. The path between
u and v passing through pi, implies that the number of
created components by removing q from G(P) cannot
be three. So, C(q) < 3. �

Figure 6: The adjacent vertices of pi in lemma 6.

Suppose that we want to remove the vertices of a set
from the corresponding graph, one-by-one. Note that,
the sequence created by the number of added connected
components by removing each vertex, varies with the or-
der of removing vertices. For example, in Fig. 3, there
are two possible orders for removing the two points, p1
and p2. For these two removing orders, p1, p2 and p2, p1,
the sequences of the number of the added connected
components are 1, 1 and 0, 2, respectively. It is clear
that the total number of created connected components
is independent of the removing order. The lemmas 5 and
6 show that by removing each vertex, at most two con-
nected components are added, unless there is a vertex
which has been removed before and the number of con-
nected components created by removing it from G(P)
is less than three. We are going to show that there
is a vertex removing order, which guarantees at most
two connected components are added by removing each
vertex. The following lemma concludes this discussion.

Lemma 7 By removing the vertices of the set S =
{p1, p2, . . . , pk} from G(P), at most 2k + 1 connected
components are created.

Proof. As we discussed before this lemma, different
orders of removing vertices of S generate different se-
quences of the number of added components. However,

23rd Canadian Conference on Computational Geometry, 2011

504

CCCG 2011, Toronto ON, August 10–12, 2011

the total number of created components is the same.
To prove the lemma, we show that there is an order for
removing the vertices of S such that at most two con-
nected components are added by removing each vertex.
If such an order exits, the number of connected compo-
nents by removing k vertices, will be at most 2k + 1.
Let Pr(pi) be the priority of removing pi. For any pi
and pj in S, if Pr(pi) > Pr(pj), we remove pi before
pj . For each two vertices of G(P), pi, pj , if pi has two
adjacent vertices like r and s such that T (r, s) contains
pi, but not pj , let Pr(pi) > Pr(pj). See Fig. 7. Lemma
6 shows that if we follow this priority, in each step, at
most two connected components will be added. A prob-
lem occurs when there is some vertex like pt such that
Pr(pt) > Pr(pi) and Pr(pj) > Pr(pt). It means that
there is a sequence of vertices which have the cycle of
priority. For solving this problem, consider all vertices
of S which lie on such priority cycles. First, we remove
the vertices which lie on more than one priority cycles.
For example in Fig. 7, these vertices are pt and pt′ . Af-
ter removing such vertices, we arbitrarily remove one of
the vertices on each of the priority cycles which have no
common vertex with any other priority cycles. As these
vertices are on a cycle of the graph, by removing them
no connected components are added. After removing
one of the vertices of the priority cycles, the priority of
the other vertices on the priority circles, will become
explicit. The other vertices of S will have the arbitrary
priority. Since there is an order for removing the ver-
tices of S such that at most two connected components
are added by removing each vertex, the number of con-
nected components created by removing k vertices is at
most 2k + 1. �

Figure 7: The priority of removing pi and pj where
Pr(pi) < Pr(pj) and the priority cycles.

A basic condition for graphs that have a perfect
matching was found by Tutte in 1947. Berge in 1958
observed that it implies a min-max formula for the max-
imum cardinality α(G) of a matching in a graph G,
the Tutte–Berge formula. A connected component of
a graph is called odd if it has an odd number of ver-
tices. Let Co(G) denote the number of odd components
of G. Then, based on Tutte–Berge formula [5], for each

graph G = (V,E),

α(G) = min
S⊂G

(|V (G)|+ |S| − Co(G− S))

Tutte–Berge formula and lemma 7 lead to find a lower
bound for the number of matched points in WTM.

Theorem 8 Maximum cardinality of weak triangle
matching for any set of n points in the plane in gen-
eral position matches at least b2n/3c points.

Proof. Let |S| = kS and G be the corresponding graph
of P . According to lemma 7, Co(G− S) ≤ C(G− S) ≤
2kS + 1. Based on the Tutte–Berge formula

α(G) = min
S⊂G

(|V (G)|+ |S| − Co(G− S)) ≥
min
S⊂G

(n+ kS − 2kS − 1) = min
S⊂G

(n− kS − 1)

We consider two following cases:

• |S| < n/3

M1 = min
S⊂G

(n−kS −1) > n−n/3−1 > 2n/3−1⇒
M1 ≥ 2n/3

• |S| ≥ n/3
Co(G− S) ≤ 2kS + 1⇒ ∀S, ∃FS ≥ 0,

Co(G− S) = 2kS + 1− FS ,
|S|+ Co(G− S) ≤ n⇒ kS + 2kS + 1− FS ≤ n⇒
3kS + 1− FS ≤ n⇒ FS ≥ 3kS + 1− n,
M2 = min

S⊂G
(|V (G)|+ |S| − Co(G− S)) =

min
S⊂G

(n+ kS − (2kS + 1− FS)) =

min
S⊂G

(n− kS − 1 + FS) ≥

min
S⊂G

(n− kS − 1 + 3kS + 1− n) =

min
S⊂G

(2kS) ≥ 2n/3

Therefore,

α(G) = min(M1,M2) ≥ 2n/3 ≥ b2n/3c
�

Fig. 8 depicts a point set P and its corresponding
geometric graph which has n = 3k vertices. As illus-
trated in the figure, the triangles T (ri, si), T (ri, rj) and
T (si, sj), for 1 ≤ i, j ≤ k, are not candidate trian-
gles. Therefore, the candidate triangles are T (ri,mi)
and T (si,mi), for 1 ≤ i ≤ k, and also, T (ri,mi−1),
T (si,mi−1) and T (mi,mi−1), for 2 ≤ i ≤ k. Each edge
has an end point at the central vertices, m1,m2, . . . ,mk.
Clearly, only one of the edges incident to mi can be in
a matching. It shows that the ratio of the points that
can be covered by a maximum cardinality weak triangle
matching is 2/3, so, the proposed lower bound is tight.

CCCG 2011, Toronto ON, August 10–12, 2011

505

23rd Canadian Conference on Computational Geometry, 2011

Figure 8: Set of n points which at most b2n/3c can be
matched.

4 Conclusion

The problem of matching points with classes of objects
such as circles, squares and rectangles has been recently
studied in computational geometry and graph theory.
In this paper, we studied the weak point matching for
the class of equilateral triangles as an open problem of
previous studies. We showed that the maximum cardi-
nality of this kind of matching can be computed using a
convex distance function based on equilateral triangles.
In addition, we discussed the lower bound of the size
of weak triangle matching. We proved that for every
point set, at least 2/3 of the points can be matched and
we showed that this lower bound is tight. These results
are also true for homothets of any fixed triangle. How-
ever, the time optimality of the algorithm remains as
an open problem. Another future work is to study the
strong version of the problem.

5 Acknowledgments

This research was started at the third Winter School on
Computational Geometry organized by the members of
the Laboratory of Algorithms and Computational Ge-
ometry of Amirkabir University of Technology. The au-
thors thank the participants and the invited speakers:
Michiel Smid and Helmut Alt for their lively disscusion.

References

[1] B. M. Ábrego, E. M. Arkin, S. Fernández-Merchant, F.
Hurtado, M. Kano, J. S. B. Mitchell, J. Urrutia. Match-
ing points with geometric objects: Combinatorial re-
sults. Proc. 8th Jap. Conf. Discrete Comput. Geometry
, JCDCG04, Springer-Verlag, 2005.

[2] B. M. Ábrego, E. M. Arkin, S. Fernández-Merchant, F.
Hurtado, M. Kano, J. S. B. Mitchell, J. Urrutia. Match-
ing points with squares. Discrete and Computational
Geometry archive, 41(1):77–95, 2009.

[3] G. Aloupis, J. Cardinal, S. Collette, E.D. Demaine,
M.L. Demaine, M. Dulieu, R.F. Monroy, V. Hart, F.
Hurtado, S. Langerman, M. Saumell, C. Seara, and
P. Taslakian. Matching Points with Things. JLNCS
6034/2010, 456–467, 2010.

[4] S. Bereg, N. Mutsanas , E. Wolff. Matching Points
with Rectangles and Squares. Computational Geome-
try, Theory and Applications, 42: 93–108, 2009.

[5] J. A. Bondy and U. S. R. Murty. Graph Theory with
Applications. American Elsevier Publishing, New York,
1976.

[6] N. Bonichon, C. Gavoille, N. Hanusse, D. Ilcinkas. Con-
nections between Theta-Graphs, Delaunay Triangula-
tions, and Orthogonal Surfaces. WG 2010, 266–278,
2010.

[7] L. P. Chew. There are planar graphs almost as good as
the complete graph. Journal of Computer and System
Sciences, 39(2):205–21917, 1989.

[8] A. Dumitrescu, W. Steiger. On a matching problem in
the plane. Discrete Math, 211:183-195, 2000.

[9] A. Kaneko and M. Kano. Discrete geometry on red
and blue points in the planer, a-survey. Discrete and
Computational Geometry, 25:551–570, 2003.

[10] S. Micali, V.V. Vazirani. An O(
p
|V |.|E|) algorithm

for finding maximum matching in general graphs. in:
Proc. 21st IEEE Symp. Found. Comp. Sci.(FOCS80),
17-27, 1980.

[11] G. Narasimhan, M. Smid. Geometric Spanner Net-
works. Cambridge University Press, 2007.

[12] F. Rendl, G. Woeginger. Reconstructing sets of orthog-
onal line segments in the plane. Discrete Math119:167–
174, 1993.

23rd Canadian Conference on Computational Geometry, 2011

506

Index

A
Abedin, Marjan 495
Abel, Zachary 77, 83, 89
Abu-Affash, A. Karim 39
Aichholzer, Oswin 21, 229
Alam, Md. Ashraful 169
Alon, Noga 285
Aloupis, Greg 229, 361
Anari, Nima 367
Arkin, Esther M. 163
Asano, Tetsuo 315

B
Ben-Moshe, Boaz 33, 399
Benbernou, Nadia M. 461
Berardi, Matthew 181
Bhosle, Amit 319
Biedl, Therese 291
Bisadi, Pouya 337
Bokowski, Jürgen 199
Bose, Prosenjit 93, 241
Bremner, David 193
Bygi, Mojtaba Nouri 473

C
Calinescu, Gruia 141
Cardinal, Jean 443
Carmi, Paz 39
Chambers, Erin 59
Chan, Timothy M. 135, 431
Chen, Dan 425
Christ, Tobias 467
Custard, Grant 267

D
Damian, Mirela 361
Das, Ananda Swarup 123, 129, 343
Das, Gautam 375
Davoodi, Mansoor 501
De Carufel, Jean-Lou 93, 147
De Rezende, Pedro J. 309
De, Minati 331, 347, 375

Demaine, Erik D. 77, 83, 89, 153, 229, 235, 461
Demaine, Martin L. 77, 89, 229, 461
Deza, Antoine 193, 267
Dillabaugh, Craig 147
Dimitrov, Nikolay 117
Doerr, Benjamin 315
Douieb, Karim 105
Dujmovic, Vida 229
Durocher, Stephane 303, 355
Díaz-Báñez, José Miguel 15

E
Eastman, Matthew 105
Eisenstat, Sarah 235
Elbassioni, Khaled 437
Elkin, Elazar 399
Elkin, Michael 33
Eskandari, Marzieh 495, 501
Evans, William 479

F
Fabila-Monroy, Ruy 21
Fazli, Mohammadamin 367
Fernandez Anta, Antonio 163
Flatland, Robin 361

G
Gemsa, Andreas 205
Ghali, Sherif 405
Ghodsi, Mohammad 367, 473
Gioan, Emeric 187
Gonzalez, Teofilo 319
Gonzalez-Aguilar, Hernan 21
Grant, Elyot 431
Gu, Chen 217
Guerra Filho, Gutemberg 309
Guibas, Leonidas 217, 279
Gupta, Prosenjit 123, 129

H
Hackl, Thomas 21

23rd Canadian Conference on Computational Geometry, 2011

Heeringa, Brent 181
Held, Martin 261, 489
Heredia, Marco A. 15, 21
Hershberger, John 211
Hoffmann, Michael 467
Horiyama, Takashi 65
Hsu, Chia-Hong 381
Hua, William 193
Huber, Stefan 261
Huemer, Clemens 21
Hurtado, Ferran 229

I
Ito, Hiro 443

J
Jansens, Dana 241
Jiang, Xiaoye 217, 279
Jin, Kai 111
Ju, Tao 59

K
Kalavagattu, Anil Kishore 343
Kao, Mong-Jen 43
Karloff, Howard 141
Katz, Bastian 43
Katz, Matthew 39
Khalilabadi, Pooya Jalaly 367
Kirkpatrick, David 27
Kiyomi, Masashi 393
Korman, Matias 361, 443
Kostitsyna, Irina 27
Kostochka, Alexandr 285
Kothapalli, Kishore 129, 343
Kouhestani, Bahram 455
Krug, Marcus 43
Kurdia, Anastasia 461

L
Lange, Carsten 273
Langerman, Stefan 443
Lee, Der-Tsai 43
Letscher, David 59
Levi, Harel 399
Liao, Chung-Shou 381
Liu, Lu 59
Lubiw, Anna 229
Lund, Benjamin 223

M
Mahdavi, Salma Sadat 455
Maheshwari, Anil 55, 105, 147, 331
Malestein, Justin 181
Mann, Willi 489
Matsui, Hiroaki 77
Matulef, Kevin 111
Mehrabi, Saeed 355
Mehrabian, Abbas 373
Milenkovic, Victor 99
Millman, David L. 485
Mitchell, Joseph S. B. 163
Mohades, Ali 455, 495, 501
Mohamad, Mustafa 49
Mondal, Debajyoti 303, 355
Morin, Pat 425
Mosteiro, Miguel A. 163

N
Nandy, Subhas 331, 347, 375
Nickerson, Bradford 337
Nishat, Rahnuma Islam 303
Nöllenburg, Martin 43, 205

O
O’Rourke, Joseph 71, 153, 461
Okayama, Yosuke 393
Omri, Eran 33
Ozkan, Ozgur 361

P
Panahi, Fatemeh 501
Peláez, Canek 15
Pilaud, Vincent 199
Polishchuk, Valentin 27
Purdy, George 223

R
Rand, Alexander 157
Rappaport, David 49, 361
Rauf, Imran 437
Ray, Saurabh 437
Rivin, Igor 169
Rote, Günter 77, 229
Rowekamp, Brandon 417
Rutter, Ignaz 43, 205

S
Sack, Jörg-Rüdiger 55

508

CCCG 2011, Toronto ON, August 10–12, 2011

Sacks, Elisha 99
Safari, Mohammadali 367
Sarioz, Deniz 297
Saumell, Maria 241
Saveliev, Peter 411
Scheffer, Christian 325
Schewe, Lars 193
Schulz, André 229
Sellarès, J. Antoni 15
Sember, Jeff 479
Shahbaz, Kaveh 55
Shoji, Wataru 65
Siddiqi, Kaleem 249
Skala, Matthew 355
Smid, Michiel 105, 331
Smith, Justin 223
Sol, Kevin 187
Souvaine, Diane L. 229
Speckmann, Bettina 387
Srinathan, Kannan 123, 129, 343
Steiger, William 13
Stephen, Tamon 267
Stolpner, Svetlana 249
Streinu, Ileana 169
Subsol, Gérard 187
Sun, Jian 279
Sun, Timothy 287
Suri, Subhash 211

T

Theran, Louis 181
Toth, Csaba 223, 449
Toussaint, Godfried 49, 449, 461

U

Uehara, Ryuhei 77, 393
Urrutia, Jorge 15, 21, 461

V

Vahrenhold, Jan 325
Valtr, Pavel 21
Van Renssen, André 241, 387
Ventura, Inmaculada 15
Verdonschot, Sander 241
Verma, Vishal 485
Viglietta, Giovanni 461
Vilcu, Costin 71
Vogtenhuber, Birgit 21
Vu, Khuong 255

W
Wagner, Dorothea 43
Weissman, Ayal 399
Welzl, Emo 423
Whitesides, Sue 249, 303
Wilkinson, Bryan T. 135
Winslow, Andrew 229, 449
Wu, Yujun 99
Wuhrer, Stefanie 361

X
Xia, Ge 175
Xie, Feng 267

Y
Yildiz, Hakan 211

Z
Zarrabi-Zadeh, Hamid 55
Zhang, Liang 175
Zheng, Rong 255

509

