CCCG 2011, Toronto ON, August 10-12, 2011

Bottleneck Steiner Tree with Bounded Number of Steiner Vertices

A. Karim Abu-Affash*

Abstract

Given a complete graph G = (V, E), where each vertex
is labeled either terminal or Steiner, a distance function
d : E — R, and a positive integer k, we study the
problem of finding a Steiner tree T spanning all termi-
nals and at most & Steiner vertices, such that the length
of the longest edge is minimized. We first show that this
problem is NP-hard and cannot be approximated within
a factor 2 — ¢, for any € > 0, unless P = NP. Then, we
present a polynomial-time 2-approximation algorithm
for this problem.

1 Introduction

Given an arbitrary weighted graph G = (V, E) with a
distinguished subset R C V of vertices, a Steiner tree
is an acyclic subgraph of G spanning all vertices of R.
The vertices of R are usually referred to as terminals and
the vertices of V' \ R as Steiner vertices. The Steiner
tree (ST) problem is to find a Steiner tree T" such that
the total length of the edges of T is minimized. This
problem has been shown to be NP-complete [4, 10], even
in the Euclidean or rectilinear version [11]. Arora [3]
gave a PTAS for the Euclidean and rectilinear versions
of the ST problem. For arbitrary weighted graphs, many
approximation algorithms have been proposed [6, 7, 12,
15, 17, 18].

The bottleneck Steiner tree (BST) problem is to find a
Steiner tree T such that the bottleneck (i.e., the length
of the longest edge) of T is minimized. Unlike the
ST problem, the BST problem can be solved exactly
in polynomial time [19]. Both the ST and BST prob-
lems have many important applications in VLSI design,

*Department of Computer Science, Ben-Gurion University of
the Negev, Beer-Sheva 84105, Israel, abuaffas@cs.bgu.ac.il.
Partially supported by the Lynn and William Frankel Center for
Computer Sciences, by the Robert H. Arnow Center for Bedouin
Studies and Development, by a fellowship for outstanding doctoral
students from the Planning & Budgeting Committee of the Israel
Council for Higher Education, and by a scholarship for advanced
studies from the Israel Ministry of Science and Technology.

fDepartment of Computer Science, Ben-Gurion University of
the Negev, Beer-Sheva 84105, Israel, carmip@cs.bgu.ac.il. Par-
tially supported by a grant from the German-Israeli Foundation,
the Lynn and William Frankel Center for Computer Sciences

fDepartment of Computer Science, Ben-Gurion University of
the Negev, Beer-Sheva 84105, Israel, matya@cs.bgu.ac.il. Par-
tially supported by grant 1045/10 from the Israel Science Foun-
dation, and by the Israel Ministry of Industry, Trade and Labor
(consortium CORNET).

Paz Carmif

Matthew J. Katz}

transportation and other networks, and computational
biology [8, 9, 13, 14].

The k-Bottleneck Steiner Tree (k-BST) problem is a
restricted version of the BST problem, in which there
is a limit on the number of Steiner vertices that may
be used in the constructed tree. More precisely, given a
graph G = (V, E) and a subset R C V of terminals, a
distance function d : £ — R, and a positive integer k,
one has to find a Steiner tree T with at most k& Steiner
vertices such that the bottleneck of T' is minimized.

A geometric version of the k-BST problem has been
studied in [20]. In this version, we are given a set P
of n terminals in the plane and an integer £ > 0, and
we are asked to place at most k Steiner points, such
that the obtained Steiner tree has bottleneck as small as
possible. Wang and Du [20] showed that the problem is
NP-hard to approximate within a factor of v/2. The best
known approximation ratio is 1.866 [21]. Bae et al. [5]
presented an O(nlogn)-time algorithm for the problem
for k =1 and an O(n?)-time algorithm for k = 2. Li et
al. [16] presented a (v/2 + €)-approximation algorithm
with inapproximability within v/2 for a special case of
the problem where edges between two Steiner points are
not allowed.

Recently, Abu-Affash [1] studied the k-BST problem
with the additional requirement that all terminals in the
computed Steiner tree must be leaves. He presented a
hardness result for the problem, as well as a polynomial-
time approximation algorithm with performance ratio
4. In [2], the authors considered the following related
problem. Given a set P of n points in the plane and
two points s,t € P, locate k Steiner points, so as to
minimize the bottleneck of a bottleneck path between s
and ¢t. They showed how to solve this problem optimally
in time O(nlog?n).

In this paper, we show that the k-BST problem is
NP-hard and that it cannot be approximated to within
a factor of 2 — . We also present a polynomial-time
2-approximation algorithm for the problem.

2 Hardness Result

Given a complete graph G = (V, E) with a distinguished
subset R C V of terminals, a distance function d : & —
R, and a positive integer k, the goal in the k-BST
problem is to find a Steiner tree with at most k& Steiner
vertices and bottleneck as small as possible. In this
section we prove a lower bound on the approximation

23% Canadian Conference on Computational Geometry, 2011

ratio of polynomial-time approximation algorithms for
the problem.

Theorem 1 It is NP-hard to approximate the k-BST
problem within a factor 2 — €, for any € > 0.

Proof. We present a reduction from connected ver-
tex cover in planar graphs, which is known to be NP-
complete [11].

Connected vertex cover in planar graphs: Given
a planar graph G = (V, E) and an integer k, does there
exist a vertex cover V* of G, such that |V*| < k and
the subgraph of G induced by V* is connected?

Given a planar graph G = (V, E) and an integer k,
we construct a complete graph G’ = (V' E’) with an
appropriate distance function and appropriate integer
k', such that G has a connected vertex cover of size at
most k if and only if there exists a Steiner tree T in G’
with at most &’ Steiner vertices and bottleneck at most
(2 —¢), for some ¢ > 0.

Let V = {v1,v2,...,v,} and let E = {e1,€2,...,em}.
For each edge e = (v;,v;) € E, we add a vertex ¢, ;
(e.g., at the middle of e) and connect it to both wv;
and vj. Let R = {t;; : (v;,v;) € E} and let E] =
{(’l)i7ti,j), (ti)j,vj) : (’Ui,’l)j) € E} We set V! =V UR,
where V' is the set of Steiner vertices and R is the set of
terminals; see Figure 1. Let G' = (V', E’) be the com-
plete graph over V’. For each edge e € F’, we assign
length d(e) = 1, if e € Ef, and d(e) = 2, otherwise.
Finally, we set k' = k.

(b)

Figure 1: (a) A planar graph G = (V, E), and (b) the
vertices of G’: circles indicate Steiner vertices and grey
squares indicate terminals.

Now, we prove the correctness of the reduction.
Clearly, if G has a connected vertex cover V* with
|[V*| < k, then, by selecting the Steiner vertices of V'
corresponding to the vertices in V*, we can construct

a Steiner tree T with at most &/ = k Steiner vertices,
such that the length of each edge in T is exactly 1.
Conversely, suppose that there exists a Steiner tree T'
in G’ with at most k’ Steiner vertices and bottleneck at
most 2 —e. Let V* be the subset of vertices of V' that
belong to T. By the construction, any two terminals
are connected in E' by an edge of length 2. Thus, we
deduce that each terminal is connected in T to a Steiner
vertex in V*. Since T is connected and each edge in F
corresponds to one terminal in V’, we conclude that V*
is a connected vertex cover of GG, and its size is at most
kE=FK. O

3 2-Approximation Algorithm

In this section, we design a polynomial-time approxi-
mation algorithm for computing a Steiner tree with at
most k Steiner vertices (k-ST for short), such that its
bottleneck is at most twice the bottleneck of an optimal
(minimum-bottleneck) k-ST.

Let G = (V, E) be the complete graph with n vertices,
let R C V be the set of terminals, and let d : £ —
RT be a distance function. Let eq,eo,...,e,, Where
m = (Z), be the edges of G sorted by length, that is,
d(e1) < d(ez) < --- < d(ep). Clearly, the bottleneck
of an optimal k-ST is the length of an edge in E. For
an edge ¢; € E, let G; = (V, E;) be the graph obtained
from G by deleting all edges of length greater than d(e;),
that is, E; = {e; € E : d(e;) < d(e;)}.

The idea behind our algorithm is to devise a proce-
dure that, for a given edge e; € E, does one of the
following:

(i) It either constructs a k-ST in G with bottleneck at
most 2d(e;), or

(ii) it returns the information that G; does not contain
a k-ST.

Let e; € E. For two terminals p, g € R, let 6;(p, q) be
a path between p and ¢ in G; with minimum number
of Steiner vertices. Let Gr = (R, ERr) be the complete
graph over R. For each edge (p,q) € Fr, we assign a
weight w(p, ¢) equal to the number of Steiner vertices in
0i(p,q). Let T be a minimum spanning tree of Gg un-
der w, and put C(T) = >_ .4 [w(e)/2]. The following
observation follows from Lemma 3 in [20].

Observation 1 For any spanning tree T’ of Gg,
c(T) < c(T.

Lemma 2 If G; contains a k-ST, then C(T) < k.

Proof. Let T* be a k-ST in G;. A Steiner tree is full if
all its terminals are leaves. It is well known that every
Steiner tree can be decomposed into a collection of full
Steiner trees, by splitting each of the non-leaf terminals.

CCCG 2011, Toronto ON, August 10-12, 2011

We begin by decomposing T™* into a collection of full
Steiner trees. Next, for each full Steiner tree T} in the
collection, we construct in Gr a spanning tree T} of the
terminals of 77, such that the union of these trees is
a spanning tree 7" of Gg and C(T") < k. Finally, by
Observation 1, we conclude that C(T) < k.

We now describe how to construct TJ’» from T7. Ar-
bitrarily select one of the Steiner vertices as the root of
T}; see Figure 2(a). The construction of T} is done by
an iterative process applied to 7. In each iteration, we
select a deepest terminal p, among the terminals of the
current rooted tree that have not yet been processed.
From p we move up the tree until we reach a Steiner
vertex s that has terminal descendants other than p.
Let g, ¢ # p, be a terminal descendant of s that is clos-
est to s. We connect p to ¢ by an edge of weight equal
to the number of Steiner vertices between p and ¢ in 17,
and remove the Steiner vertices between p and s (not
including s). After processing all terminals but one, we
remove all remaining Steiner vertices.

B terminals

O Steiners

(b)

Figure 2: (a) The rooted tree 77, and (b) the construc-
tion of T7.

In the example in Figure 2(b), we first select terminal
a, which is the deepest one, connect it to terminal b by
an edge of weight 3, and remove the vertices s; and ss.
Next, we select terminal ¢, connect it to terminal d by an
edge of weight 1, and do not remove any Steiner vertex.
Next, we select terminal d, connect it to terminal i by
an edge of weight 2, and remove the vertex ss. In the

last iteration, we select terminal b, connect it to terminal
h by an edge of weight 3 and remove the vertex s,. We
can now remove all of the remaining Steiner vertices.
Clearly, the union 7" of the trees T is a spanning
tree of Gg. We show below that C'(T') < k. Notice
that in each iteration during the construction of TJ(, if
the weight of the added edge e is w(e), then we re-
move at least |w(e)/2| Steiner vertices from T}. This
implies that C(T}) = ZeeT; lw(e)/2] < kj, where k;
is the number of Steiner vertices in T3, and, therefore,
C(T’):ZJ—C(T;)Sk. O

We now present our 2-approximation algorithm. We
consider the edges of E, one by one, by non-decreasing
length. For each edge e; € F, we construct a minimum
spanning tree T of Ggr = (R, ER), using the weight
function w induced by G;, and check whether C(T') < k.
If so, we construct a k-ST in G with bottleneck at most
2d(e;), otherwise, we proceed to the next edge €;11.

Algorithm 1 BST(G = (V,E), R, k)
1: Let e1,eq,...,e, be the edges of F sorted by non-
decreasing length

2: Gr = (R, ER) < the complete graph over R

3: C(T) — 00

4: 10

5: while C(T) > k do

6: 141+ 1

7: construct the graph G;

8: for each edge (p,q) € Fr do

9: w(p,q) < the number of Steiner vertices in
i(p, q)

10: construct a minimum spanning tree T of G un-

der w

1 O(T) X ep Lw(e)/2]
12: Construct-k-ST(T, G;)

The construction of a k-ST (line 12 in the algorithm
above) is done as follows. For each edge e = (p,q) € T,
we select at most |w(e)/2| Steiner vertices from the
path d;(p,q), to obtain a path connecting between p
and ¢ with at most this number of Steiner vertices and
bottleneck at most 2d(e;); see Figure 3. Clearly, the
obtained Steiner tree contains at most k Steiner vertices
and its bottleneck is at most 2d(e;).

Lemma 3 The algorithm above constructs a k-ST in G
with bottleneck at most twice the bottleneck of an optimal

k-ST.

Proof. Let e; be the first edge satisfying the condition
C(T) < k. Then, by Lemma 2, the bottleneck of any k-
ST in G is at least d(e;), and, therefore, the constructed
k-ST has a bottleneck at most twice the bottleneck of
an optimal k-ST. O

23% Canadian Conference on Computational Geometry, 2011

Figure 3: The constructed k-ST consists of the squares,
solid circles and dotted edges.

The following theorem summarizes the main result of
this section.

Theorem 4 There exists a polynomial-time 2-
approzimation algorithm for the k-BST problem.

References

[1] A K. Abu-Affash. On the Euclidean bottleneck
full Steiner tree problem. In Proceedings of the
27th ACM Symposium on Computational Geome-
try (SoCG ’11), pages 433-439, 2011.

[2] A.K. Abu-Affash, P. Carmi, M.J. Katz, and M. Se-
gal. The Euclidean bottleneck Steiner path prob-
lem. In Proceedings of the 27th ACM Symposium
on Computational Geometry (SoCG ’11), pages
440-447, 2011.

[3] S. Arora. Polynomial time approximation schemes
for Euclidean TSP and other geometric problems.
Journal of the ACM, 45:735-782, 1998.

[4] S. Arora, C. Lund, R. Motwani, M. Sudan, and
M. Szegedy. Proof verification and hardness of ap-
proximation problems. In Proceedings of the 33rd

Annual Symposium on Foundations of Computer
Science (FOCS '92), pages 14-23, 1992.

[6] S.W. Bae, C. Lee, and S. Choi. On exact solutions
to the Euclidean bottleneck Steiner tree problem.
Information Processing Letters, 110:672-678, 2010.

[6] P. Berman and V. Ramaiyer. Improved approx-
imation for the Steiner tree problem. Journal of
Algorithms, 17:381-408, 1994.

[7] A. Borchers and D.Z. Du. The k-Steiner ratio in
graphs. SIAM Journal on Computing, 26:857-869,
1997.

[8] X. Cheng and D.Z. Du. Steiner Tree in Industry.
Kluwer Academic Publishers, Dordrecht, Nether-
lands, 2001.

[9]

[10]

[11]

[12]

D.Z. Du, J.M. Smith, and J.H. Rubinstein. Ad-
vances in Steiner Tree. Kluwer Academic Publish-
ers, Dordrecht, Netherlands, 2000.

M.R. Garey, R.L. Graham, and D.S. Johnson. The
complexity of computing Steiner minimal trees.
SIAM Journal of Applied Mathematics, 32(4):835—
859, 1977.

M.R. Garey and D.S. Johnson. The rectilinear
Steiner tree problem is NP-complete. SIAM Jour-
nal of Applied Mathematics, 32(4):826-834, 1977.

S. Hougardy and H.J. Promel. A 1.598 approxima-
tion algorithm for the Steiner problem in graphs. In
Proceedings of the 10th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA ’00), pages
448-453, 1999.

F.K. Hwang, D.S. Richards, and P. Winter. The
Steiner Tree Problem. Annals of Discrete Mathe-
matics, Amsterdam, 1992.

A.B. Kahng and G. Robins. On Optimal Intercon-
nection for VLSI. Kluwer Academic Publishers,
Dordrecht, Netherlands, 1995.

M. Karpinski and A. Zelikovsky. New approxi-
mation algorithms for the Steiner tree problem.
Journal of Combinatorial Optimization, 1(1):47—
65, 1997.

Z.-M. Li, D.-M. Zhu, and S.-H. Ma. Approximation
algorithm for bottleneck Steiner tree problem in the
Euclidean plane. Journal of Computer Science and

Technology, 19(6):791-794, 2004.

H.J. Promel and A. Steger. A new approximation
algorithm for the Steiner tree problem with perfor-
mance ratio 5/3. Journal of Algorithms, 36(1):89—
101, 2000.

G. Robbins and A. Zelikovsky. Tighter bounds for
graph Steiner tree approximation. SIAM Journal
on Discrete Mathematics, 19(1):122-134, 2005.

M. Sarrafzadeh and C.K. Wong. Bottleneck Steiner
trees in the plane. IEEE Transactions on Comput-
ers, 41(3):370-374, 1992.

L. Wang and D.-Z. Du. Approximations for a bot-
tleneck Steiner tree problem. Algorithmica, 32:554—
561, 2002.

L. Wang and Z.-M. Li. Approximation algorithm
for a bottleneck k-Steiner tree problem in the
Euclidean plane. Information Processing Letters,
81:151-156, 2002.

