
CCCG 2011, Toronto ON, August 10–12, 2011

Point Location in Well-Shaped Meshes Using Jump-and-Walk∗

Jean-Lou De Carufel† Craig Dillabaugh‡ Anil Maheshwari§

Abstract

We present results on executing point location queries
in well-shaped meshes in R2 and R3 using the Jump-
and-Walk paradigm. If the jump step is performed on a
nearest-neighbour search structure built on the vertices
of the mesh, we demonstrate that the walk step can be
performed in guaranteed constant time. Constant time
for the walk step holds even if the jump step starts with
an approximate nearest neighbour.

1 Introduction

Point location is a topic that has been extensively stud-
ied since the origin of computational geometry. In R2,
the point location problem, typically referred to as pla-
nar point location, can be defined as follows. Preprocess
a planar subdivision, specified as the union of n trian-
gles, so that given a query point q, the triangle con-
taining q can be reported efficiently. There are several
well known results showing that a data structure with
O(n) space can report such queries in O(log n) time.
In R3, we have a subdivision of the three dimensional
space into tetrahedra, and again given a query point q
we wish to return the tetrahedron containing q. From
a theoretical standpoint, the problem of general spatial
point location in R3 is still open [1].

In this paper, we consider a more specialized problem.
We wish to answer point location queries in two and
three dimensions for well-shaped triangular and tetrahe-
dral meshes. A well-shaped mesh, denoted byM, is one
in which all its simplices have bounded aspect ratio (see
Definition 1). This assumption is valid for mesh gener-
ation algorithms that enforce the well-shaped property
on their output meshes [6]. Our motivation came from
an external memory setting, where we have examined
data structures for representations that permit efficient
path traversals in meshes that typically do not fit in the
main memory [3].

Let P be the set of vertices definingM. In this paper
we show that, given a query point q, and its (exact or

∗Research supported by funding from NSERC.
†Computational Geometry Lab, School of Computer Science,

Carleton University
‡School of Computer Science, Carleton University,

cdillaba@cg.scs.carleton.ca
§School of Computer Science, Carleton University,

anil@scs.carleton.ca

approximate) nearest neighbor p ∈ P , the number of
triangles (or tetrahedra) intersected by the line segment
pq is bounded by a constant. On the basis of this result,
we develop a point location method following the Jump-
and-Walk paradigm, which typically works as follows
(Devroye et al. [2], Mücke et al. [8]):
Jump Step: Select a set of possible start (jump) points
and store them in a data structure that can efficiently
answer proximity queries. Given a query point q, locate
a nearest neighbor of q (say p) and then Jump to p.
Walk Step: Walk through the sequence of simplices,
starting at p, in a straight line, towards q, until the
simplex containing q is located.

While jump-and-walk gives expected search times in
most instances, and is often slightly less efficient theo-
retically than other techniques, it has the advantage of
being simple and is often very efficient in practice.

1.1 Our Results

We present results for the “Walk”-step in the Jump-and-
Walk strategy in R2 and R3 for well shaped triangular
and tetrahedral meshes. In particular, we show that

1. Given a well-shaped mesh M in R2 or R3, jump-
and-walk search can be performed in the time re-
quired to perform an exact nearest neighbour search
on the vertices of M plus constant time for the
walk-step to find the triangle/tetrahedron contain-
ing the query point.

2. Given a well-shaped mesh M in R2 or R3, jump-
and-walk search can be performed in the time re-
quired to perform an approximate nearest neigh-
bour (see Definition 2) search on the vertices of
M, plus constant time for the walk-step to find the
triangle/tetrahedron containing the query point.

While we present results in both R2 and R3, we feel
that our most interesting contribution is the constant
time walk-step in R3 using approximate nearest neigh-
bour for the jump-step. In R3, there are no efficient
structures for answering exact nearest neighbor queries;
in spite of that we are able to show that the walk-step
can be performed in constant time using only the knowl-
edge of an approximate nearest neighbor. The major
advantage of our approach, in addition to being theo-
retically optimal, as it matches the query time for this
setting as presented in [10], is that it is also practi-
cal. The practicality of approximate nearest neighbor

23d Canadian Conference on Computational Geometry, 2011

searching has already been demonstrated, see ANN Li-
brary [7], and the implementation of the walk-step is
fairly trivial and straightforward.

2 Background

In this paper we consider point location in triangular
and tetrahedral meshes in two and three dimensions
respectively. We use M to denote a mesh in either
R2 or R3, and if we want to be specific we use M2 to
denote a triangular mesh in R2, and M3 to denote a
tetrahedral mesh in R3. We assume that the triangles
and tetrahedra, which are collectively referred as
simplices, are well-shaped, a term which will be defined
shortly. If all simplices of a mesh M are well-shaped,
then M is said to be a well-shaped mesh. Triangles in
M2 are considered adjacent if and only if they share
an edge. Similarly, tetrahedra in M3 are considered
adjacent if and only if they share a face.

Well-Shaped Meshes: We begin by stating the well-
shaped property (refer to [6]).

Definition 1 We say that a mesh M2 (M3) is well-
shaped if for any triangle (tetrahedron) t ∈ M2 (t ∈
M3), the ratio formed by the radius r(t) of the incircle
(insphere) of t and the radius R(t) of the circumcir-
cle (circumpshere) of t is bounded by a constant ρ, i.e.
R(t)
r(t) < ρ.

In this paper, all meshes and simplicies (triangles and
tetrahedra) are assumed to be well-shaped. We make
the following observations related to Definition 1.

Observation 1 Let t be a triangle (tetrahedron).

1. Let v be any vertex of t. Denote by ev (fv) the
opposite edge (face) of v in t. Let

mdist(v, t) = min
x∈ev
|xv| (mdist(v, t) = min

x∈fv
|xv|),

where the minimum is taken over all points x on ev
(fv). Therefore, mdist(v, t) is an upper-bound on
the diameter of the incircle (insphere of) t. For-
mally, 2r(t) ≤ mdist(v, t).

2. Let e be the longest edge of t. The diameter of the
circumcircle (circumsphere) of t is at least as long
as e. Formally, 2R(t) ≥ |e|.

Observation 2 There is a lower bound of α for each
of the angles in any triangle of M2. There is a lower
bound of Ω for each of the solid angles in any tetrahedron
of M3. In particular, we have α ≤ π

3 and cos(α) =
1+
√
ρ(ρ−2)

ρ for the two dimensional case. For the three

dimensional case, Ω ≤ 3 arccos
(

1
3

)
− π and sin

(
Ω
2

)
=

3
√

3
8ρ2 (see [5]).

Jump-and-Walk for Point Location: In [8], point
location queries using the jump-and-walk are addressed
for Delaunay triangulations of a random set of points in
R2 and R3. Devroye et al. [2] showed that the expected
search times for the jump-and-walk in Delaunay tri-
angulations range from Ω(

√
n) to Ω(log n), depending

on the distribution and the specific data structure
employed for the jump step.

Nearest Neighbour Queries: The nearest neigh-
bour query works as follows. Given a point set P and a
query point q, return the point p ∈ P nearest to q, i.e.
for all v ∈ P , |pq| ≤ |vq|. A closely related query is the
approximate nearest neighbour (ANN) query defined as
follows.

Definition 2 Let P be a set of points in Rd, q be a
query point and p ∈ P be an exact nearest neighbour
of q. Given an ε ≥ 0, we say that a point p̂ ∈ P is
an (1 + ε)-approximate nearest neighbour of q if |p̂q| ≤
(1 + ε)|pq|.

3 Planar Point Location in M2

Let P be the set of vertices of a well-shaped mesh M2

and q be a query point lying in a triangle ofM2. Let p
be a nearest neighbour of q. Consider the set of triangles
encountered in a straight-line walk from p to q in M2.

Lemma 1 The walk-step along pq visits at most
⌊
π
α

⌋
triangles.

Proof. Without loss of generality, suppose |pq| = 1.
Let C(q, |pq|) be the circle with centre q and radius |pq|.
Since p is a nearest neighbour of q, there is no vertex
of M2 in the interior of C(q, |pq|). Denote by ` the line
through pq and let p′ 6= p be the intersection of ` with
C(q, |pq|) (see Fig. 1). Since C(q, |pq|) is a unit circle,

the arc
_

pp′ has length π. Any triangle intersecting pq
intersects ` in the interior of C(q, |pq|). All such trian-
gles have one vertex to the left of ` and two vertices to
the right of ` or vice-versa. (If a vertex is on `, consider
it to be on the right.) We separate the triangles inter-
secting ` into two sets, L and R containing the triangles
with exactly one vertex to the left, and right, of `, re-
spectively. Consider an arbitrary triangle t ∈ L and let
the vertices of t be a, b and c. The edge ab (respectively
ac) intersects C(q, |pq|) at b′ and b′′ (respectively at c′

and c′′) (see Fig. 1). Let θ = ∠bac. Since ab and ac
are two secants which intersect C(q, |pq|), we know that

θ = 1
2 (

_

b′c′ −
_

c′′b′′), from which we conclude
_

b′c′ ≥ 2θ.

Hence
_

b′c′ ≥ 2θ ≥ 2α by Observation 2. Therefore, we
can conclude that the set L contains at most

⌊
π
2α

⌋
trian-

gles. The same bound holds for triangles in R. Thus the
number of triangles intersecting pq is at most

⌊
π
α

⌋
. �

CCCG 2011, Toronto ON, August 10–12, 2011

`

a

p

q

b

c

b′

c′

b′′

c′′

p′

θ

Figure 1: A triangle with fixed minimum angle covers
an arc bounded by a minimum fixed length on C.

Next consider the scenario where p̂ ∈ P is an ap-
proximate nearest neighbor of the query point q. Note
that C(q, |p̂q|) may contain vertices of M2. Therefore,
the proof of Lemma 1 does not apply for the walk-step
along p̂q. Next, we prove that for an ANN search struc-
ture (see Definition 2), we can find an ε such that the
number of triangles encountered in a straight line walk
from p̂ to q, is bounded by a constant. We begin with
the following lemma.

Lemma 2 Let t be a well-shaped triangle and C be a
circle of radius r(C) such that none of the vertices of t
are in the interior of C. If (i) at least two edges of t
intersect C or if (ii) t contains the centre of C, then t
has at least one edge of length at least 2r(C) sinα.

Proof. Let t = 4abc. From Observation 2, we know
that α ≤ ∠bac.
(i) Suppose that all the edges of t are strictly smaller

than 2r(C) sinα for a contradiction. Let C′ be the
biggest circle that can be constructed such that
none of the vertices of t are in the interior of C
and at least two edges of t intersect C′. Thus, C′ is
strictly smaller than the circumcircle of the equilat-
eral triangle of side length 2r(C) sinα. Therefore,
by elementary geometry,

r(C′) <
2
√

3r(C)
3

sinα

≤ 2
√

3r(C)
3

sin
(π

3

)
by Observation 2,

= r(C),

which is a contradiction.

(ii) Suppose that less than two edges of t intersect C
and t contains the centre of C. If t contains C,
then all the edges of t are longer than 2r(C) ≥
2r(C) sinα. Suppose exactly one edge of t intersects
C. Let ab be this edge. We form a new triangle t′

by translating ac and bc inward until one of ac or
ab intersects C. Now t′ satisfies the hypothesis of
Case (i).

�

Observation 3 Let ti = 4abc be a well-shaped trian-
gle.

a b

c a′b′

B(a)
B(b)

B(c)

ti

ti+1

C(q, |pq|)

tac tbc

Figure 2: Neighbourhood of the triangle ti from which
the path pq leaves C.

1. Let ti+1 be the well-shaped triangle adjacent to ti
at edge ab. The edges of ti+1 have length at least
|ab| sinα.

2. Let a ∈M2 be a vertex and ab be an edge incident
to a. The edges of any triangle incident to a have

length at least |ab| sinb παc α.

Proof.

1. It follows from the well-shaped property.

2. From Observation 3-1, if a triangle t in M2 has
an edge of length L, then no triangle that can
be reached by walking from t through at most d
edge adjacent triangles has an edge shorter than
L sind+1 α. Then the result follows from Observa-
tion 2.

�

Consider the walk from p̂ to q in M2. It intersects
the boundary of C(q, |pq|) at a point x. Let ti be the
first triangle we encounter in the walk from p̂ to q that
contains x.

Observation 4 ti has an edge of length at least
2|pq| sin2 α.

Proof. If ti contains q, then by Lemma 2, ti has an
edge of length at least 2|pq| sinα ≥ 2|pq| sin2 α. If ti
does not contain q, then there is an edge of ti intersect-
ing p̂q in the interior of C(q, |pq|). Let a and b be the two
vertices of this edge. Consider the triangle ti+1 adjacent
to ti across ab. If q ∈ ti+1, then |ab| ≥ 2|pq| sin2 α by
Lemma 2 and Observation 3-1, otherwise ti+1 has two
edges intersecting C(q, |pq|). Again, by Lemma 2 and
Observation 3-1, |ab| ≥ 2|pq| sin2 α. �

Denote the vertices of ti by a, b and c. Let G be the
union of all the triangles incident to a, b, and c (see
Fig. 2).

Lemma 3 Let x ∈ ti be the intersection of p̂q with the
boundary of C(q, |pq|). Let y ∈ G be the intersection of
the line through p̂q with the boundary of G such that x

is between q and y. Then |xy| ≥ 2|pq| sinb παc+4 α.

23d Canadian Conference on Computational Geometry, 2011

a b

c
b′

B(c)

ti

tac
x

y

Figure 3: Illustration of the proof of Lemma 3.

Proof. Denote by tac = 4ab′c (respectively by tbc =
4a′bc) the triangle adjacent to ti at ac (respectively at
bc) (see Fig. 2(a)). Note that tac and tbc are in G.

By Observations 3-2 and 4, the length of all
edges incident to a (respectively to b and to c) is

at least 2|pq| sinb παc+2 α (respectively 2|pq| sinb παc+2 α

and 2|pq| sinb παc+3 α by Observation 3-1). There-
fore G contains a ball B(a) (respectively B(b) and
B(c)) with centre a (respectively b and c) and ra-

dius 2|pq| sinb παc+2 α (respectively 2|pq| sinb παc+2 α and

2|pq| sinb παc+3 α), which does not contain any vertices
of M2 in its interior.

To minimize |xy|, we take x on the boundary of ti. We
will find a lower bound for |xy| by supposing, without
loss of generality, that y ∈ b′c. Since y is supposed to be
on the boundary of G, it cannot be inside B(c). With
x ∈ ac and b ∈ b′c\B(c), the smallest possible value for

|xy| is 2|pq| sinb παc+4 α (see Fig. 3). �

We can now state our main result.

Theorem 4 Let M2 be a well-shaped triangular mesh
in R2. Given p̂, an (1 + ε)-approximate nearest neigh-
bour of a query point q from among the vertices ofM2,
the straight line walk from p̂ to q visits at most 2

⌊
π
α

⌋
triangles.

Proof. Following the notation of Lemma 3, if p̂ ∈ G,
then the straight line walk from p̂ to q visits at most
2
⌊
π
α

⌋
triangles. There are

⌊
π
α

⌋
triangles for the part

of the walk inside C(q, |pq|) (see Lemma 1) and
⌊
π
α

⌋
triangles for the part of the walk inside G. Indeed, in
the worst case, the walk inside G will either cross ab′,
b′c, ca′ or a′b. So this walk will either cross the triangles
incident to a, the triangles incident to b or the triangles
incident to c.

We can ensure that p̂ ∈ G by building an ANN search

structure with ε ≤ 2 sinb παc+4 α on the vertices of M2.
Indeed, in this case

|p̂q| ≤
(

1 + 2 sinb παc+4 α
)
|pq|

= |pq|+ 2|pq| sinb παc+4 α

≤ |pq|+ |xy| by Lemma 3,

= |qx|+ |xy|
= |qy|

because q, x and y are aligned in this order. So p̂ must
be in G. �

4 Spatial Point Location in M3

Searching in a well-shaped three dimensional meshM3

can be performed using essentially the same technique
as outlined for M2 in Section 3. Let P denote the set
of vertices of M3. For a query point q, let p ∈ P be
its nearest neighbour. We will perform the walk-step
starting at p and walk towards q in a straight line, and
we will show that we visit only a constant number of
tetrahedra. Let S(q, |pq|) denote a ball of radius |pq|
centred at q.

Theorem 5 Let M3 be a well-shaped triangular mesh
in R3. Given p, a nearest neighbour of a query point q
from among the vertices of M3, the walk from p to q
visits at most 1

64ρ
3(ρ2 + 4)3 tetrahedra.

Proof. We do not prove Theorem 5 due to lack of space.
Refer to the extended version of the paper. �

Next, we assume that p̂ is an approximate nearest
neighbor of q. First, we establish a geometric lemma.
Consider an arbitrary ball S. We say S is an empty
ball if it contains no vertex ofM3. Note that edges and
faces of M3 may intersect S. Let f be a face in M3

that intersects S. We have the following Lemma.

Lemma 6 Let T = abcd ∈M3 be a tetrahedron and S
be a sphere of radius r(S) such that none of the vertices
of T are in the interior of S. If (i) f = 4abc is tangent
to S or if (ii) f crosses S in a way that f ∩S is a disk,
then 2

ρr(S) is a lower bound on the length of edges ad,
bd and cd.

Proof. (i) Let the tangent point be x. Let H be the
supporting plane of f . Without loss of generality,
assume that H is horizontal, and S is below H.
There are two tetrahedra of M3 that are adjacent
to f . We will focus on the tetrahedron that is be-
low H, and denote it by ti+1. Let d be the fourth
vertex of ti+1. If we place x at the pole of S (we
are free to rotate S) and take the equator of S and
project it onto H, we obtain a cylinder, say C. The
complement of S with respect to C defines the re-
gion in which d can be placed (see Figure 4). If d is
outside this region then |xd| is greater than the ra-
dius of S, and we have a nice lower bound on |xd|.
Let the point d′ be the projection of d onto H.

Now consider some placement of the point d, and
assume that d touches the surface of S (which is
the worst case in this setting). Consider the line
segments xd and dd′ and observe that

CCCG 2011, Toronto ON, August 10–12, 2011

x

d

d′

S

H

Figure 4: Illustration of proof of Lemma 6.

S

x′

x
d′

d

Figure 5: Determining the bound for |xd|.

(a) dd′ is at at least twice the radius of the in-
sphere r(ti+1) of ti+1 by Observation 1-1. For-
mally, |dd′| ≥ 2r(ti+1).

(b) xd lies completely within ti+1. Then |xd| ≤
2R(ti+1) by Observation 1-2.

Without loss of generality we assume that S is cen-
tred at the origin of our coordinate system. Con-
sider the situation on the plane through the par-
allel lines Ox and dd′ (both lines are normal to
H) as depicted in Fig. 5. By the definition of a

well-shaped tetrahedron we know that R(ti+1)
r(ti+1) ≤ ρ,

and by the observations above, we have |xd||dd′| ≤ ρ.

Let x′ 6= x be the intersection of the line through
Ox with S. By elementary geometry, the tri-
angles 4xdx′ and 4dd′x are similar. Therefore,
2r(S)
|xd| = |xx′|

|xd| = |xd|
|dd′| ≤ ρ, so |xd| ≥ 2

ρr(S) (see

Fig. 5).

(ii) If f crosses S, then the intersection of f with S
forms a circle on S (because S is empty). Let x′ be
the center of this circle. If we translate T so that f
is tangent to S at x′ then T satisfies the hypothesis
of Case (i).

�

Observation 5 Let ti = abcd be a well-shaped tetrahe-
dron.

1. Let ti+1 be the well-shaped tetrahedron adjacent to
ti at edge ab. There exists a constant kΩ that de-
pends only on Ω such that the edges of ti+1 have
length at least |ab|kΩ.

2. Let a ∈M3 be a vertex and ab be an edge incident
to a. The edges of any tetrahedron incident to a

have length at least |ab|kb
2π
Ω c

Ω .

Proof. 1. Let v0 = a, v1 = b, v2 = c and v3 = d.
Denote the volume of ti by V and the solid angle
at vertex vi by θi. We have (see [5])

sin

(
θ0

2

)
=

12V√ ∏
1≤i<j≤3

((|v0vi|+ |v0vj |)2 − |vivj |2)
(1)

Let l = |v0v1| and suppose without loss of gener-
ality that the edges of ti+1 have length at least 1

(hence l >
√

3
3). We first explain how to find the

biggest possible value lmax for l such that θ0 ≥ Ω.
The worst case is when the edges v1v2, v2v3 and
v1v3 all have minimum length 1. Therefore, sup-
pose that 4v1v2v3 is an equilateral triangle. We
are looking for the position of v0 that maximizes
l and such that θ0 ≥ Ω. Let ∆ be the line per-
pendicular to 4v1v2v3 that contains the centroid
of 4v1v2v3. To maximize l, we need to take v0 on
∆.

Therefore, the height of ti with respect to 4v1v2v3

is equal to
√
l2 − 1

3 and V =
√

3l2−1
12 . As we move

v0 up, the solid angle θ0 decreases. Therefore, by

(1), we need to find the biggest l >
√

3
3 such that

sin

(
Ω

2

)
=

√
3l2 − 1

(4l2 − 1)
√

4l2 − 1
. (2)

Let lmax be the biggest l >
√

3
3 that satisfies (2).

Since (2) reduces to a cubic equation in l2, lmax

exists, it is unique and it can be computed exactly.
We have kΩ = 1

lmax
.

2. The proof is similar to the one of Observation 3-2.
It uses Observation 5-1 and the fact that the full
solid angle is 4π.

�

Consider the walk from p̂ to q in M3. It intersects
the boundary of S(q, |pq|) at a point x. Let ti be the
first tetrahedron we encounter in the walk from p̂ to q
that contains x.

Observation 6 ti has an edge of length at least 2
ρ |pq|.

Proof. Similar to the proof of Observation 4. �

We can now apply the same approach as we used
in M2 to show that the number of tetrahedron visited
along p̂q is a constant. Denote the vertices of ti by a,
b, c and d. Let G be the union of all the tetrahedra
incident to a, b, c and d.

Lemma 7 Let x ∈ ti be the intersection of p̂q with the
boundary of S(q, |pq|). Let y ∈ G be the intersection of
the line through p̂q with the boundary of G such that x

is between q and y. Then |xy| ≥ 2
ρ |pq|k

b 2π
Ω c+1

Ω sin
(

Ω
2

)
.

23d Canadian Conference on Computational Geometry, 2011

Proof. We follow the proof of Lemma 3. In two di-
mensions, the lower bound on |xy| was computed by
calculating the shortest exit out of a well-shaped tri-
angle t. This shortest exit is perpendicular to an edge
of t and constrained by the radius of the ball B(c). In
three dimensions, we calculate the shortest exit out of a
well-shaped tetrahedron t. This shortest exit is perpen-
dicular to a face of t, it goes through an edge of t and
it is constrained by the radius of a ball in three dimen-

sions. This leads to |xy| ≥ 2
ρ |pq|k

b 2π
Ω c+1

Ω sin
(

Ω
2

)
. �

Theorem 8 LetM3 be a well-shaped tetrahedral mesh
in R3. Given p̂, an (1 + ε)-approximate nearest neigh-
bour of a query point q from among the vertices of
M3, the straight-line walk from p̂ to q visits at most
1
64ρ

3(ρ2 + 4)3 +
⌊

2π
Ω

⌋
tetrahedra.

Proof. This proof is similar to the proof of Theorem 4

with ε ≤ 2
ρk
b 2π

Ω c+1

Ω sin
(

Ω
2

)
. �

5 Discussion

Our interest in this problem as such grew out of our
research into efficient path traversals of large size well-
shaped meshes in external memory settings (see [3]).
However, it was assumed that the starting tetrahedron
on such a path was given as part of the query. Adding
the jump-and-walk point location step, results in effi-
ciently answering a number of queries, without this as-
sumption. Such queries include reporting the intersec-
tion of a box with the mesh (analogous to a window
query in R2) or any other convex shape, and reporting
streamlines.

To this point in the paper we have omitted any dis-
cussion of the data structures employed in the point lo-
cation step. An ideal option in many ways is to employ
a kd-tree, which is simple, can answer nearest neigh-
bour queries in both R2 and R3 (and has I/O-efficient
variants) [9]. Unfortunately, nearest neighbour queries
in kd-trees, while good in the expected case [4], can in
the worst-case require linear time. However, we are not
aware of any work, which analyzes the worst-case query
times for kd-trees with respect to vertices of a well-
shaped mesh. An interesting follow on research topic
to this paper would be to examine if query times for
exact nearest neighbours in kd-trees, for points drawn
from a well-shaped mesh, are in fact optimal.

In essence, what we have shown in this paper is
that jump-and-walk strategy for point location in well-
shaped meshes in R2 and R3, is practical, simple, and
efficient, and requires only the knowledge of an approx-
imate nearest neighbor. It will be worthwhile to ex-
plore other geometric configurations where the jump-
and-walk can lead to efficient ways to perform point
location queries.

Acknowledgements: We thank the referees for their
helpful comments.

References

[1] M. de Berg, M. J. van Kreveld, M. H. Overmars,
and O. Schwarzkopf. Computational Geometry: Al-
gorithms and Applications. Springer.

[2] L. Devroye, C. Lemaire, and J.-M. Moreau. Ex-
pected time analysis for Delaunay point location.
Computational Geometry: Theory and Applica-
tions, 29(2):61–89, 2004.

[3] C. Dillabaugh. I/O efficient path traversal in well-
shaped tetrahedral meshes. In CCCG, pages 121–
124, 2010.

[4] J. H. Friedman, J. L. Bentley, and R. A. Finkel.
An algorithm for finding best matches in logarith-
mic expected time. ACM Trans. Math. Softw.,
3(3):209–226, 1977.

[5] A. Liu and B. Joe. Relationship between tetrahe-
dron shape measures. BIT Numerical Mathematics,
34:268–287, 1994.

[6] G. L. Miller, S.-H. Teng, W. Thurston, and S. A.
Vavasis. Geometric separators for finite-element
meshes. SIAM J. Sci. Comput, 19(2):364–386,
1998.

[7] D. Mount and S. Ayra. ANN: A library for approx-
imate nearest neighbor searching. http://www.cs.
umd.edu/~mount/ANN/, Jan. 2010.

[8] E. P. Mücke, I. Saias, and B. Zhu. Fast randomized
point location without preprocessing in two- and
three-dimensional Delaunay triangulations. Com-
putational Geometry: Theory and Applications,
12(1-2):63–83, 1999.

[9] J. T. Robinson. The k-d-b-tree: A search struc-
ture for large multidimensional dynamic indexes.
In SIGMOD, pages 10–18, 1981.

[10] S.-H. Teng. Fast nested dissection for finite ele-
ment meshes. SIAM Journal on Matrix Analysis
and Applications, 18(3):552–565, 1997.

