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Optimizing Budget Allocation in Graphs

Boaz Ben-Moshe∗ Michael Elkin† Eran Omri‡

Abstract

In a classical facility location problem we consider a
graph G with fixed weights on the edges of G. The
goal is then to find an optimal positioning for a set of
facilities on the graph with respect to some objective
function. We consider a new model for facility location
problems, where the weights on the graph edges are not
fixed, but rather should be assigned. The goal is to find
the valid assignment for which the resulting weighted
graph optimizes the facility location objective function.
We present algorithms for finding the optimal budget

allocation for the center point problem and for the me-
dian point problem on trees. Our algorithms work in
linear time, both for the case that a candidate vertex is
given as part of the input, and for the case where find-
ing a vertex that optimizes the solution is part of the
problem. We also present an O(log2(n)) approximation
algorithm for the center point problem over general met-
ric spaces.

1 Introduction

A typical facility location problem has the following
structure: the input includes a weighted set D of de-
mand locations, a set F of feasible facility locations, and
a distance function d that measures the cost of travel
between a pair of locations. For each F � ⊆ F , the qual-
ity of F � is determined by some underlying objective
function (obj). The goal is to find a subset of facili-
ties F � ⊆ F , such that obj(F �) is optimized (maximized
or minimized). One important class of facility location
problems is the center point, in which the goal is to find
one facility in F , that minimizes the maximum distance
between a demand point and the facility. Henceforth,
we refer to this distance as graph radius. In another
important class of problems, graph median, the goal is
to find the facility in F that minimizes the average dis-
tance (i.e., the sum of the distances) between a demand
point and the facility. In this paper we consider a new
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model for facility location on graphs, for which both
problems are addressed.

1.1 The New Model

This paper suggests a new model for budget allocation
problems on weighted graphs. The new model addresses
optimization problems of allocating a fixed budget onto
the graph edges where the goal is to find a subgraph that
optimizes some objective function (e.g., minimizing the
graph radius). Problems such as center point and me-
dian point on trees and graphs have been studied exten-
sively [4, 6, 8, 9]. Yet, in most cases the input for such
problems consists of a given (fixed) graph. Motivated by
well-known budget optimization problems [1, 3, 5, 10]
raised in the context of communication networks, we
consider the graph to be a communication graph, where
the weight of each edge (link) corresponds to the delay
time of transferring a (fixed length) message over the
link. We suggest a Quality of Service model for which
the weight of each edge in the graph depends on the
budget assigned to it. In other words, paying more for
a communication link decreases its delay time.

More formally, we consider the following model: Let
G =< V,E > be an undirected graph induced by some
length function �(e) for each e ∈ E. Let B be a positive
budget value. Allocating a budget B(e) to edge e ∈ E

with length �(e) implies that the resulting weight of e

is �(e)
B(e) . Given this weight function and a special node

(root) r ∈ V , the rooted budget radius problem can be
defined as follows: Divide B among the edges of E in
a way that the radius of (G,ω) with respect to r is
minimized, where the weight function ω(e) is given by
�(e)
B(e) , for B(e) > 0, such that

�
e∈E B(e) = B. In the

unrooted budget radius problem the goal is to divide the
budget B among the edges of E in a way that the radius
of (G,ω) with respect to some vertex r is minimized,

where ω(e) = �(e)
B(e) , B(e) > 0, and

�
e∈E B(e) = B.

Analogously, one can ask to minimize the diameter

of (G,ω), defined as the maximum distance between a
pair of vertices in (G,ω).

We also define the median radius of the graph
(G,ω) with respect to a designated vertex r, de-
noted MR((G,ω), r), as the average distance 1

n ·�
v∈V DIST(G,ω)(r, v) between r and other vertices of

the graph (DIST(G,ω)(r, v) represents the distance be-
tween vertices r and v in the graph (G,ω)). The vertex
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r with the smallest median radius, i.e., MR((G,ω), r) =
minv∈V MR((G,ω), v) is called the median of (G,ω).
The budget median radius of (G, �) with respect to a des-
ignated vertex r and budget B, denoted BMR(G, r), is
the minimum median radius of (G,ω = �

B ) with respect
to r, taken over all possible budget allocations B(·). The
budget median radius of (G, �) with respect to budget B
is the minimal budget median radius of (G, �) with re-
spect to some vertex v and budget B. Finally, the vertex
r that realizes the budget median radius, i.e., such that
BMR((G, �), r) = minv∈V BMR((G, �), v) is called the
budget median of the graph (G, �).

1.2 Motivation

We were motivated by communication optimization
problems in which for a fixed ’budget’ one needs to
design the ’best’ network layout. The quality of ser-
vice (QoS) of a link between two nodes depends on two
main factors: i) The distance between the nodes. ii)
The infra-structure of the link (between the two nodes).
While the location of the nodes is often fixed and cannot
be changed, the infra-structure type and service can be
upgraded - it is a price-dependent service.

Quality of service is related to different parameters
like, bandwidth, delay time, jitter, packet error rate and
many others. Given a network graph, the desired objec-
tive is to have the best QoS for a given (fixed) budget.
In this paper we focus on minimizing the maximum and
the average delay time using a fixed budget.

1.3 Related Work

The problems of Center Point, Median Point on graphs
(networks) have been studied extensively, see [4, 8] for
a detailed surveys on facility location. There are vari-
ous optimization problems dealing with finding the best
graph; A typical graph or network improvement prob-
lem considers a graph which needs to be improved by
adding the smallest number of edges in order to satisfy
some constraint (e.g., maximal radius), see [1, 2, 5, 10].
Spanner graph problems [7] consider what can be seen
as the inverse case of network improvement problems.
In a typical spanner problem we would like to keep the
smallest subset of edges from the original graph while
maintaining some constraint. See [7] for a detailed sur-
vey on spanners. Observe that both network improve-

ment and spanner graph problems can be modeled as a
discrete version of our suggested new model.

1.4 Our Results

In this paper we present linear time algorithms for
rooted and unrooted budget radius and budget median
problems on trees. We also devise an O(log2(n)) ap-
proximation algorithm for the budget radius problem

on general metric spaces.

1.5 Definitions

Let G =< V,E > be a graph with some length �(e) for
each edge e ∈ E. We next introduce some definitions
and notations to define the setting of the budget radius

problem on graphs. We consider both the case where a
candidate center node to the graph is given and an op-
timal budget allocation is sought, and the more general
case where finding the center node yielding an optimal
solution is part of the problem (as well as seeking an
optimal budget allocation given such a center node).
To simplify our notation we omit G from the notation
whenever it is clear from the context.

Let E = {e1, . . . , e|E|}. A valid budget allocation

B(·) to E is a non-negative real function, such that�
e∈E B(e) = 1 (here and in the rest of the paper we

assume that the total budget B equals 1; this is with-
out loss of generality since an optimal solution with
budget of 1 is easily scaled to any budget B). We

denote bi
def
= B(ei), and for every E� ⊆ E we denote

B(E�) =
�

ei∈E� bi. Given a valid budget allocation B
to E, the weight of an edge e ∈ E, denoted ωB(e), is
a function of �(e) and B(e). Throughout this paper we

consider the case where ωB(e)
def
= �(e)

B(e) .

The weighted distance between two vertices u, v ∈ V ,
denoted δB(u, v), is the minimum weight of a sim-

ple path between u and v. Namely, δB(u, v)
def
=

min({
�

e∈P ωB(e) : P is a simple path from u to v}).
Table 1 includes the notations used in this paper.

Notation Explanation
G =< V,E > a general undirected graph

(induced by some metric space)
�(e) the (a priori) length of an edge e ∈ E.
B(e) the budget fraction allocated to e ∈ E.

B={b1, ...b|E|} an alternative notation for the function B.
ω(e) = �(e)

B(e) the (budget implied) weight of e ∈ E.

G(B) the budget-graph implied by an allocation B
δB(u, v) the distance between two vertices in G(B).

Table 1: Notations that are used throughout the paper
to present the new budget graph model.

Given a valid budget allocation B to E and a vertex
r ∈ V , the weighted radius of G with respect to r is
defined as wrB(r) = wrB(G, r)

def
= maxv∈V (δB(r, v)).

Given a graph G =< V,E > (induced by some
metric) and a node r ∈ V , we define the following:
An optimal allocation for (G, r): a valid allocation
for which the weighted radius from r is minimized.
There may be several optimal allocations. We denote
an arbitrary optimal allocation by B∗

r = B∗
r (G) and

refer to it as the optimal allocation for (G, r).
The budget radius of G with center r: denoted
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BR(r) = BR(G, r), is the weighted radius of G with
center r with the optimal allocation for G and r, i.e.,
BR(r) = wrB∗

r
(G, r).

The budget radius of G: BR = BR(G)
def
=

minv∈V BR(G, v).
An optimal allocation for G: a pair (B∗, r∗),
where B∗ is a valid allocation to E and r∗ ∈ V is the
vertex with the smallest corresponding radius, i.e.,
wrB∗(r∗) = BR.

We demonstrate the above definitions using the fol-
lowing toy-example in Figure 1.5.
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Figure 1: A simple example of a budget graph problem
on a tree with a given center (a). Assume that each edge
e has length �(e) = 1, and let x denote the fraction of
the budget assigned to each of the edges (b, c) and (b, d).
Observe that in order to have a valid budget allocation,
it must hold that 0 < x <

1
2 . The optimal solution

minimizes the following function: f(x) = 1
1−2·x + 1

x .

Note that in cases where x equals 1
3 or 1

4 the radius is 6,
while the optimal allocation of x is approximately 0.293,
and the radius is approximately 5.828.

Due to space limitations some of the proofs are omit-
ted from this extended abstract and will appear in the
full version of the paper.

2 The Budget Radius Problem for Trees

Given a connected graph G =< V,E > with a length
function on E, one may consider any subgraph G� of G,
induced by some subset E� ⊆ E and look for an optimal
budget allocation for G� (i.e., BR(G�)). In particular,
the class of trees is an important set of such subgraphs.

Lemma 1 An optimal budget allocation (with respect

to the budget radius problem) (B∗, r∗) for G, has the

property that G(B∗) =< V,EB∗ >, where EB∗ = {ei ∈
E : b∗i > 0} is a tree spanning G.

Proof. Clearly, all vertices are connected to r∗ in
G(B∗). Assume towards a contradiction that G(B∗)
contains a cycle. Let TD be the tree of shortest paths
obtained by invoking the Dijkstra algorithm on G(B∗)
and r∗. Hence, there is a an edge ei ∈ EB∗ (i.e., b∗i > 0)
such that e does not appear in any shortest path from
r∗ to any vertex in V . Thus, we can obtain a better
budget allocation by (say, equally) dividing the budget

portion allocated to ei among all edges in TD. This is a
contradiction to the optimality of B∗. �
We note that the above is not true for the problem of
the minimum budget diameter of a graph (see figure 2).
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Figure 2: (a) Three points in the plane: x, y, z are the
nodes of a unite equilateral triangle. (b) Tree: optimal
radius (2), non optimal diameter (4). (c) Cycle graph:
non-optimal radius (3), optimal diameter (3).

The above lemma suggests that it is interesting to
consider the Budget Radius problem for the subclass of
trees. In the sequel, we present an algorithm solving this
problem. We first consider the case where a designated
center node r is given as a part of the input, and an
optimal budget allocation B∗ is sought. We use the
standard terminology and refer to r as the root of the
tree (rather than, the center). Thereafter, we consider
the general case in trees, where the problem is to find a
pair (B∗, r∗) minimizing the budget radius of the tree.

2.1 The Budget Radius for a Rooted Tree

We next consider two possible structures for rooted trees
that will later be the basis for our recursive construction
of an optimal valid budget allocation to the edges of a
given tree. First, we consider a tree in which the root
has only a single child.

Lemma 2 Let T be a tree rooted at r, with some length

function � on the edges of T . Assume r has a single child

r� (the root of the subtree T �
), and let R� = BR(T �, r�)

and d1 = �(r, r�). Then, an optimal budget allocation B∗

assigns to the edge e1 = (r, r�) a fraction b∗1 =
√
d1√

R�+
√
d1
.

It follows that BR(T, r) = d1
b∗1

+ R�

1−b∗1
.

Proof. Let E be the set of edges in T and E� = E\ {e1}
be the set of edges of T � (see Figure 2.1-a). Given any
valid budget allocation B to E, let B� be the scaling of

the restriction of B to E�, defined by B�(e�) = B(e�)
1−B(e1)

for every e� ∈ E�. Note that with this scaling, B� is a
valid budget allocation to E�, i.e.,

�
e�∈E� B�(e�) = 1.

Since any path from r to any leaf of T must start with
the edge e1 = (r, r�), it follows that

wrB(r) =
d1

b1
+

wrB�(r�)

1− b1
.
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Hence, for B to be optimal for T with root r, we must
have B� be optimal for T � and r�. In addition, given
R� = BR(T �, r�), the budget radius of T with root
r is obtained by finding b1 that minimizes the func-
tion wrB(r) = d1

b1
+ R�

1−b1
. Therefore, it follows that

BR(T, r) = d1
b1

+ R�

1−b1
for b1 =

√
d1√

R�+
√
d1
. �

We next consider a more general tree structure (Fig-
ure 2.1-b). Let T = (V,E) be a tree, rooted at r, such
that r has k children r1, r2, . . . , rk, where ri is the root of
the subtree Ti = (Vi, Ei). Denote by T �

i = (V �
i , E

�
i) the

subtree of T , rooted at r and containing Ti. Formally,
V �
i = Vi∪{r}, and E�

i = Ei∪{(r, ri)}. Clearly, the edges
sets E�

is are disjoint. Given a valid budget allocation B
to E, for each index i ∈ {1, 2, .., k} denote by li ∈ Vi the
leaf l for which δB(r, l) is the largest within T �

i . Recall
that the weighted radius wrB(r) is determined by the
maximum weighted distance to some li. In other words,
wrB(r) = max1≤i≤k(δB(r, li)). Next, we show that in
any optimal budget allocation B∗ for such T , the frac-
tion of the budget assigned to the edges of each subtree
T �
i is directly correlated to its relative weighted radius.

r
r

r�

T �

T

r1 r2 r3 rk

(a) (b)

d1 e1 = (r, r�)

Figure 3: (a) The case that r has only a single child.
(b) The general case.

Lemma 3 Let T = (V,E) be a tree rooted at r, with

some length function � on the edges of T . Assume that

r has k children r1, r2, . . . , rk where ri is the root of the

subtree Ti = (Vi, Ei), and let B∗
be an optimal budget

allocation to E. For each 1 ≤ i ≤ k, let T �
i and li be as

in the foregoing discussion (i.e., li is maximal in T �
i with

respect to δB∗(r, ·)). It then holds for all 1 ≤ i, j ≤ k

that δB∗(r, li) = δB∗(r, lj).

Proof. Assume that for some 1 ≤ i, j ≤ k, it holds that
δB∗(r, li) > δB∗(r, lj). We show that it is then possible
to present a better budget allocation for T , which, in
turn, leads to a contradiction. Let ρ = δB∗ (r,lj)

δB∗ (r,li)
and

consider an alternative budget allocation in which each
edge e in E�

j were assigned a ρ fraction of its current
budget, i.e. ρ·B∗(e) (while assignment to all other edges
stays the same as before). The length of each path from
r to a leaf in T �

j would be multiplied by 1/ρ. Hence, the
maximum distance from r to any leaf in the T �

j would be
at most δB∗(r, li). This allocation is therefore as good
as B∗ (with respect to the weighted radius) although

the sum of assigned values is not 1, but rather, 1− (1−
ρ) · B∗(E�

j). Turning it into a valid budget allocation
by dividing the remaining (1−ρ)B∗(E�

j) budget equally
among all edges in E, we obtain a better valid budget
allocation to E. That is, we fix a new allocation B� by

setting B�(e) = ρ · B∗(e) +
(1−ρ)B∗(E�

j)

|E| if e ∈ E�
j , and

B�(e) = B∗(e) +
(1−ρ)B∗(E�

j)

|E| otherwise. We note that

B� may not be an optimal allocation, however it is a
contradiction to the optimality of B∗. �

The following corollary describes how any optimal
valid budget allocation must divide the budget among
the disjoint sets of edges of the subtrees T �

i .

Corollary 4 Let T be a tree as above. Then in any

optimal budget allocation B∗
to E it holds that B∗(E�

i) =
BR(T �

i ,r)�k
j=1 BR(T �

j ,r)
. Thus, an optimal solution in this case is

given by BR(T, r) =
�k

j=1 BR(T
�
j , r).

Theorem 5 Given a tree T rooted at r, it is possible to

find an optimal valid budget allocation for T and r, in

linear time in the size of T .

Proof. T is a rooted tree, thus an inductive construc-
tion is only natural. First, assume T is a single node
r. In this case, no budget is needed and BR(T, r) = 0.
Assume T is rooted at r, such that r has k children
r1, r2, . . . , rk. Denote by Ti the subtree of T rooted at
ri, and containing all vertices (and edges) of the sub-
tree rooted at ri (and only these vertices). Denote by
T �
i = (V �

i , E
�
i) the subtree of T rooted at r, induced by

adding the edge (r, ri) to Ti. Formally, V �
i = Vi ∪ {r},

and E�
i = Ei ∪ {(r, ri)}. Thus, each T �

i is a rooted tree
where the root (r) has a single child, and no T �

i , T
�
j for

i �= j share any vertex other than r and E�
i, E

�
j are dis-

joint for all i �= j.
By Corollary 4, if we know BR(T �

i , r) for all 1 ≤ i ≤ k,
we can derive an optimal valid budget allocation for
T, r. In order to obtain a BR(T �

i , r), it suffices to have
an optimal solution for the subtree of ri, which, by the
induction hypothesis can be done (using Lemma 2).

Note, that we evaluate the optimal solution for every
subtree of every vertex in T exactly once and thus the
procedure requires in linear time. �

The following lemma proves helpful in the sequel, but
is interesting in its own right. It captures some of the
tricky nature of the budget radius problem, as it shows
the connection between two seemingly unrelated quanti-
ties. The first is the weight of a minimum spanning tree
(MST) of a given graph and the second is the optimal
solution for the budget radius problem for that graph.

Lemma 6 Given a tree T = (V,E) rooted at r, with

some length function � on E, the budget radius of T

is at least the sum of lengths of the edges of T , i.e.,

BR(T, r) ≥
�

e∈E �(e).
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Proof. We prove the above lemma by induction. If
T has no edges, then both values are 0. If r has
only one child r� (the root of the subtree T �), then
by Lemma 2, since any optimal allocation B∗ must as-
sign B∗((r, r�)) > 0, we have BR(T, r) > �((r, r�)) +
BR(T �, r�), which, by the induction hypothesis is at
least

�
e∈E �(e). Otherwise, assume r has k children

(r1 . . . rk) and denote Ti the subtree induced by r and
the vertices of the subtree of ri. By Corollary 4
BR(T, r) =

�k
i=1 BR(Ti, r). Hence, by the induction

hypothesis, the lemma follows. �

2.2 The Budget Radius for Unrooted Trees

In this section we consider the budget radius problem
for unrooted trees, i.e., where the root of the tree is
not given as part of the input. Clearly, one can invoke
the algorithm from Theorem 5 with every vertex v as
a candidate center vertex r, and select the vertex v for
which BR(T, v) is minimal as the ultimate center. How-
ever, this naive algorithm requires O(n2) time. We next
show how to construct a linear time algorithm for this
problem (indeed, for a tree T , our algorithm computes
BR(T, v) for every v in T ). Intuitively, this protocol
uses the fact that given BR(T, r) and the partial com-
putations made by algorithm of Theorem 5, applied to
the T and r, it possible to compute in constant time
BR(T, v) for every neighbor v of r. This intuition is
formalized in Lemma 7.

Lemma 7 Let T = (V,E) be a tree rooted at r, with

some length function � on E. Let v ∈ V be a neighbor

(a child) of r. Denote by Tv = (Vv, Ev) the subtree of

v, and denote by T �
v the subtree of v augmented by the

edge e = (r, v) (i.e., T �
v = (Vv ∪ r, Ev ∪ e)). It is possible

to compute, in constant time, BR(T, v) given BR(T, r),
BR(Tv, v), and BR(T �

v, r), see Figure 2.2.

Proof. Denote by T̂ the tree obtained by omitting Tv

from T , formally, T̂ = (V̂ , Ê), where V̂ = V \(Vv\ {v})
and Ê = E\Ev. In addition, denote by T̂ � the tree
obtained by omitting the edge e = (r, v) from T̂ , i.e.,
T̂ � = (V̂ \ {v} , Ê\ {e}).
It can be easily derived from Corollary 4 that

BR(T, v) = BR(Tv, v)+BR(T̂ , v). By Lemma 2, we can
compute BR(T̂ , v) from BR(T̂ �, r) and �(e), in constant
time. Finally, we compute BR(T̂ �, v), using Corollary 4
again, to obtain BR(T̂ �, r) = BR(T, r)− BR(T �

v, r). �

Roughly, our algorithm will traverse the tree twice.
First, we traverse the tree, computing the algorithm of
Theorem 5 for an arbitrary root r (say, r = v1). Recall
that this algorithm traverses the tree in a bottom-up
fashion, i.e., from the leaves to the root, and that an
optimal solution for each vertex is calculated, with re-
spect to the subtree below it. Thereafter, we traverse
the tree in a top-down fashion, while for each vertex

r

v

T

Tv

v

T �
v

δ

Tv

r

(b)(a) (c)

r

v

T̂

Figure 4: (a) The original tree rooted at r. (b) Consid-
ering v as the root of T �

v. (c) The tree T̂ .

r

v

Tv

v

Tv
r

δ

(a) (b)

Figure 5: (a) The original tree rooted at r. (b) Con-
sidering v as the root of the tree. Computation of an
optimal budget allocation for the tree rooted at v can
be done in constant time, given an optimal budget allo-
cation for the tree rooted at r.

v that is a child of v�, we compute an optimal budget
radius for the tree with root v, given an optimal bud-
get radius for the tree with root v� and the information
stored in v from the first traversal.

Theorem 8 Given a tree T = (V,E) with some length

function � on E, it is possible to compute an opti-

mal allocation for T , i.e., a pair (B∗, r∗), such that

wrB∗(r∗) = BR(T ). Furthermore, this can be done in

linear time in the size of T .

3 Budget Radius – The General Case

In this section we consider the general case problem of
optimizing the budget radius for a complete graph over
n vertices, induced by some metric space M = (V, d).
We present an O(log2(n)) approximation algorithm for
this problem. We start by showing that a naive Min-
imum Spanning Tree (MST) heuristic may lead to an
O(n0.5) approximation factor. Assume we have n points
on a square uniform grid. Its MST may have a path
like shape, with Ω(n) radius. Hence its budget radius is
Ω(n2). On the other hand, each of the n points may be
connected to the center with a path of length O(n0.5).
Hence, the budget radius of this metric is O(n1.5).

3.1 The Special Case of a Line

We first consider a setup in which M is defined by some
n points all residing on the interval [0, 1], where for any
two points p1, p2 within this interval, d(p1, p2) is the
Euclidean distance between p1 and p2. Let G = (V,E)
be the complete graph induced by M . We present a
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(a) (b) (c)

Figure 6: Using an MST-like heuristic may lead to an
O(n0.5) approximation ratio with respect to the center

point problem (minimum radius). (a) A grid based set
of points. (b) A path-like MST. (c) A solution with
radius O(n0.5).

valid budget allocation B to E with budget radius at
most log2 n and such that the graph induced by {e :
B(e) > 0} is a tree spanning V .

Lemma 9 Let G = (V,E) be the complete graph de-

scribed above, then BR(G) ≤ log2 n.

3.2 General Complete (Metric) Graphs

We next define an approximation algorithm A, such
that given a complete graph G = (V,E), induced by
some metric space M = (V, d), approximates the Bud-
get Radius problem for G by a factor of O(log2 n). As-
sume that a minimum spanning tree for G has a total
weight LB, we proceed as follows:

1. Find an Hamiltonian path (HP) visiting all nodes
with weight no more than 2 · LB.

2. Let G� be the result of unfolding HP to a straight
line, i.e., G� is defined by n points, situated on an
interval, such that, the distance between every two
points is the length of the path between them on
the Hamiltonian path HP (specifically, the length
of the whole interval is exactly the length of HP).

3. Scale the above (HP) interval length to 1.

4. Build a balanced binary search tree (BT) over G�.

5. Apply the algorithm of Theorem 5 to BT. Assign
the appropriate budget to all edges in BT and 0 to
all other edges in E.

Theorem 10 Let G = (V,E) be a complete graph in-

duced by some metric space M = (V, d). Then, algo-

rithm A results in a valid budget allocation to the edges

of E that approximates BR(G) by a 2 log2(n) factor.

Proof. First note that finding an Hamiltonian path
(HP) with weight no more than 2·LB is feasible using an
MST for G. More importantly, note that by Lemma 6,

it holds that LB is a lower bound on the optimal so-
lution (i.e., on BR(G)). This is true since an optimal
budget allocation defines a tree (see Lemma 1), which
has a total weight of at least LB (by the minimality of
an MST). Thus, algorithm A yields an optimal budget
allocation for BT, which by Lemma 9 yields a budget
radius of at most 2·LB · log2(n) ≤ 2·BR(G)·log2(n). �

4 Conclusion and Future Work

The paper introduces a new model for optimization
problems on graphs. The suggested budget model was
used to define facility location problems such as center
and median point. For the tree case, optimal algorithms
are presented for both aforementioned problems. For
the general metric center point problem, an O(log2(n))
approximation algorithm is presented. The new model
raises a set of open problems e.g.,: i) Hardness: is
the budget center point problem on general graphs NP-
hard1. ii) Facility location: Find approximation algo-
rithms for the k-center, k-median, and 1-median on gen-
eral graphs. iii) Graph optimization: minimizing the
diameter of the graph.
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