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Improving Accuracy of GNSS Devices in Urban Canyons*

Boaz Ben-Moshe! Elazar Elkint

Abstract

This paper addresses the problem of calculating the ac-
curate position of a GNSS device operating in an urban
canyon, where lines of sight (LOS) with navigation satel-
lites are too few for accurate trilateration calculation.
We introduce a post-processing refinement algorithm,
which makes use of a 8D map of the city buildings as
well as captured signals from all traceable navigation
satellites. This includes weak signals originating from
satellites with no line of sight (NLOS) with the device.
We also address the dual problem - computing a 3D map
of the city buildings when the position of the device is
given. This is achieved by storing LOS/NLOS rays to
all navigation satellites sampled at multiple locations
within a region of interest (ROI). These rays are then
used to compute the 3D shapes of buildings in the ROI

A series of field experiments confirm that both algo-
rithms are applicative. The position refinement algo-
rithm significantly improves the device’s accuracy and
the mapping algorithm allows few users to map a com-
plex urban region simply by walking through it.

1 Introduction

Receivers in Global Navigation Satellite Systems
(GNSS) such as GPS, GLONASS or GALILEO tend to
output inaccurate location estimations while operating
in urban regions, mostly due to the density of tall build-
ings, which often block a receiver’s line of sight (LOS)
to the navigation satellites. Modern GNSS receivers are
sensitive enough to receive the indirect signal reflected
from the buildings. This multi-path effect is the major
factor of poor performance of GNSS in urban canyons.
A GNSS receiver approximates its position by interpo-
lating the signal from each navigation satellite into a
pseudorange, an approximation of the distance between
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the receiver and the navigation satellite, obtained by
multiplying the speed of light by the time needed for
the signal to travel the distance. Using four pseudor-
anges and their associated satellite locations, the GNSS
receiver location can be computed simply by intersect-
ing the four spheres (see [2, 4] for more information re-
garding GNSS principles). Figure 5 presents an actual
positioning error caused by wrong pseudoranges in an
urban region.

In all but rare cases, a rule of thumb, which corre-
lates a strong signal to the existence of LOS is proven
very effective. Therefore, a GNSS device operating in a
non-urban area would simply sort captured signals ac-
cording to their strength, then use four (or more) strong
enough signals to compute its location. Since a receiver
wandering around at the country-side typically has LOS
with more than four satellites for most of its journey, the
decisive majority of location computations in such ar-
eas are typically based on signals originating from LOS
satellites, for which pseudoranges tend to be accurate
(the error range is typically within 2-5 meters).

In urban canyons, however, the situation is funda-
mentally different. It is very common for a GNSS device
operating in an area of this sort (e.g. downtown Man-
hattan) to be surrounded by obstacles such as tall build-
ings, which block LOS with most, and infrequently all,
otherwise available satellites. Since at least four strong-
enough signals, equivalent to four LOS satellites, are
required for accurate positioning, the outcome of a nar-
rowly available sky is inevitably a skewed computation,
up to the point where the device is unable to perform
its task.

Prior attempts to address limited LOS in urban areas,
all of the while succeed to present reasonably-accurate
results where satellites’ signals are scarce and weak,
are mostly based on approaches such as Map Matching
(MM) [7, 10, 17, 18] and Dead Reckoning (DR) [4, 13].
A certain degree of improvement could arguably be ob-
tained by assuming the GNSS receiver is located inside
a car, which drives at some estimated speed on top of a
road with a known path. The fact of the matter, how-
ever, is that most of these methods are evidently not
sufficient in rough urban canyons, where lines of sight
(LOS) can and do deteriorate up to the point where a re-
ceiver only captures multipath indirect reflections (zero
LOS). In such circumstances, the decisive majority of
GNSS devices become incompetent and cannot improve
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accuracy using these methods.

The novelty of the GNSS —re finement method pre-
sented in this paper is based on two core concepts. The
first is that unlike existing methods, which mostly rely
on information external to the line of sight (LOS) prob-
lem, such as vehicle speed and road location, the dis-
cussed improvement is confronting the LOS problem
in a more direct manner, by applying LOS-based al-
gorithms. The second inventive aspect is an effective
leverage of supposedly-useless weak signals originating
from no line of sight (NLOS) satellites. By combining
captured signals’ strength with shading algorithms on
a region of interest’s 8D map, our improved GNSS de-
vice is able to determine with a high degree of assurance
in which parts of the region of interest (ROI) it could
potentially be, and likewise, in which parts of the ROT
it is certain not to be, thus significantly narrowing the
problem’s error range.

The above, however, merely segments a ROI into
”can-be” and ”cannot-be” partial regions. Therefore, to
address the general case, in which intersecting the satel-
lites’ binary LOS maps yields more than one ”can-be”
region, we multiply each binary map with a ”likelihood
weight”. These weights are from a continuous range,
where each derives from the captured signal’s strength
of the respective satellite. We later discuss how sum-
ming weighted LOS maps for all satellites usually con-
verges to a single ”"highest likelihood” location. We also
explain the heuristics we use in case there are still sev-
eral candidate locations subsequent to that summing
procedure.

wean,

Figure 1: The Urban Canyon effect: In red, the GPS
captured path. In blue, the actual path.

1.1 Related Work

Prior studies have shown that longer integration times
and data wipe-off enable High Sensitivity GPS (HS-
GPS) receivers to acquire and track signals at lower sig-
nal strengths [14, 9]. This increases satellite availability
in weak signal environments, but in an urban canyon
comes with a baggage of positioning errors resulting
from signal cross-correlation, multipath and echo-only
signals [14, 8]. Most attempts to improve GNSS de-
vices’ accuracy in urban canyons consider the typical
in-vehicle situation. This narrows the estimation prob-
lem, since vehicles are generally restricted to travel on

roads. Nevertheless, GNSS and other absolute posi-
tioning systems do not inherently locate vehicles onto
roads [12, 15]. The process of coinciding the output
of a sensor such as GPS with a road network map is
called Map Matching (M M) and is often integrated
with Dead Reckoning (DR), which is the process of es-
timating one’s current position based upon a previously
determined position [3, 19].

Unfortunately, the problem’s narrowing achieved by
MM techniques is not sufficient in complex urban
canyons. This is mainly because limited LOS in such
areas frequently causes initial location estimates that
are off by tens of meters. Such deviations are too large
for MM techniques, which often leads to placements
onto wrong distant roads.

In this paper we demonstrate how 3D maps of an
area can be leveraged to acquire more information out
of captured (both LOS and NLOS) GNSS signals. This
additional information can then be used in conjunction
with existing M M techniques, or as an alternative to
such methods. Moreover, the concepts employed to nar-
row the estimation problem also form the basis of our
algorithm for the dual 3D modeling problem (see section
3).

1.2 Paper Structure

Following an introduction and a related work review,
we turn to a detailed discussion of the GNSS refinement
algorithm. We then present a framework algorithm to
the dual (inverse) problem, namely the computing of the
city buildings’ 3D maps by capturing the signal strength
of all navigation satellites. Subsequently, we put the
presented algorithms to the test and discuss results from
field experiments conducted in rough urban canyons.
We conclude with suggested future work.

2 GNSS Refinement Algorithm

2.1 Overview and Definitions

In this section we present the main algorithm for im-
proving the GNSS receiver’s accuracy in urban canyons.
The algorithm transforms the signal strength of each
traceable navigation satellite into a LOS/NLOS value.
This value is not boolean but a continuous value in the
range of [0, 1], representing the LOS clearance.

The algorithm’s detailed description begins with for-
malization of (i) input parameters available from the
GNSS device; (ii) some pre-defined constants (thresh-
olds) and (iii) functions and data structures used
throughout the refinement process (see Table 1). We
then describe the mechanism by which the algorithm de-
termines LOS status with each satellite. Subsequently,
we explain the concepts behind LOS/NLOS partial
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maps and discuss the formation of an aggregated like-
lihood map out of them. We conclude the section with
a high-level pseudo-code, which encapsulates the entire
algorithm.

GNSS Algorithm Definitions
DeviceOutput: The current non-refined location
estimation, position error range, and the set
(S(t)) of all traceable satellite signals.
LastPosition: The last recorded refined loca-
tion, and the corresponding error ratio and con-
fidence level.
SigBench: A signal-strength threshold, which
determines visibility (assume LOS if higher;
NLOS if lower).
MaxSig: A surely visible signal-strength thresh-
old (used for linear transformation to [0,1]
range).
MinorErr: An error estimation threshold (don’t
correct if smaller).
S(t) = S1...Sn: The set of all satellite signals as
captured by the GNSS receiver in time t.
Sy(t) C S(t): The set of visible satellites (subset
of S(t) obtained using SigBench).
Su(t) C S(t): The set of invisible satellites (sub-
set of S(t) obtained using SigBench).
Map: A 2.5D representation of the terrain - in-
cluding both earth surface and buildings on top
of it.
ROI: The region of interest; a minimal polygon
which contains both: (i) all buildings which may
affect the user.(ii) all possible locations in which
the user could potentially be.
LOS(S;, ROI): A binary shading function from
each point of the ROI to a LOS, NLOS w.r.t.
S; location.
SIG(S;, ROI,W;): A refinement of LOS(Si,
ROI) to a continuous range using a signal
strength (W; € [0, 1]) weight.
Approximate: The proposed GNSS refinement
algorithm (i) Creates an aggregated likelihood
map from all SIG(Si, ROI,W;) (ii) Picks most
likely location with respect to the parameters
DeviceOutput and LastPosition.
Aggregated: An aggregation ad-hoc 2D matrix
with ROI’s boundaries.

Device

Constants

Functions

Table 1: Formal definitions of parameters used through-
out the proposed GNSS refinement algorithm.

2.2 Approximating Satellites’ LOS Status

The strength of a signal as captured by GNSS-receiver
depends on several factors ([5]):

e Global parameters: transmission frequency, trans-
mission power - these parameters are mostly fixed.

e Position and time: atmosphere and ionosphere con-
dition, the angle between the satellite and the re-
ceiver.

e LOS and multi-path status: the nature of propa-
gate signal with respect to the possible "radio path”
to the receiver [16, 5, 6].

For a given GNSS (e.g. GPS L1, L2), the global pa-
rameters are fixed. The position and time parameters
can be approximated within a small error range, usu-
ally smaller then 5 dB. The typical LOS signal strength
is at least 10dB stronger than the signal strength of
a reflected signal (NLOS). It is therefore rather sim-
ple to classify captured signals into S,(t)(LOS) and
Su(t)(NLOS) subsets. Moreover, the field experiments
we conducted (see section 4) demonstrate that deter-
mining a signal’s LOS/NLOS status is applicable even
in highly complex urban regions.

2.3 Partial LOS Map

Computing a shading map of a city building map (ROT)
w.r.t. a satellite position can be done by projecting the
buildings on the surface (the satellite position can be
thought as in infinity). Our implementation encapsu-
lates the LOS map of each captured signal S; in S(¢) as
a 2D matrix filled with (0 and 1) binary values, each in-
dicating whether the receiver is likely to have LOS with
the corresponding satellite within a one square meter
spot. The computation of the map’s values is a rela-
tively straightforward shading algorithm, which makes
use of the satellite’s position and the 2.5D Map of the
area.

A fundamental, somewhat tricky, feature of the pro-
posed algorithm concerns the leverage of weak multi-
path signals captured by the receiver to obtain meaning-
ful information. A weak captured signal almost always
indicates the absence of LOS with the respective satel-
lite and is therefore classified (using SigBench) into the
subset of invisible satellites Sy, (t). Knowing the receiver
cannot see the satellite from its current location, we can
conclude it is certainly not positioned in spots where
this satellite can be seen. Derives from this observa-
tion is the applicability of using the complementary LOS
maps (switching 1 and 0 values) of invisible satellites be-
longing to the subset S, (t) as likelihood layers, which
are as informative as likelihood layers generated from
visible satellite signals belonging to the S,(t) subset.
Furthermore, since the discussed algorithm is targeted
at urban canyons scenarios where LOS may deteriorate
even to an empty S, (t) subset (all captured signals are
weak), the complementary LOS maps of invisible satel-
lites belonging to S,(t) become an essential source of
information for the formation of the aggregated likeli-
hood map discussed below.

2.4 Likelihood Weights

Likelihood weightening is a mechanism employed by the
algorithm to improve determinism. In the absence of
weights, which transform a LOS map from a binary
LOS/NLOS representation into a more refined likeli-
hood map, the algorithm could very well narrow the
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problem by segmenting the ROI into "can be” and
”cannot be” regions, but would not be able to resolve
a scenario of multiple ”can be” spots, and pick a single
location to be presented on the GNSS device’s screen.
By introducing signal-strength derived weights, the LOS
maps become differentiated from one another (each map
is multiplied by a weight from a continuous range).
This, in turn, results in (i) a further segmented ag-
gregated likelihood map, which serves the algorithm’s
purpose of picking a single spot ; (ii) improved accu-
racy and reliability, since greater importance is granted
to stronger signals.

2.5 Aggregated Likelihood Map

The likelihood map is implemented as a 2D matrix filled
with real numbers, each representing the likelihood of
the receiver to be located within a location (e.g., within
1 square meter). The matrix is constructed by (a) mul-
tiplying each partial LOS matrix with a weight, which
signifies the signal’s strength of the corresponding satel-
lite and (b) summing all partial weighted matrices. The
outcome of this matrix addition is a single 2D matrix,
where each point represents a likelihood, and the ma-
trix’s highest value(s) is the most likely spot. Since
this likelihood matrix is being constructed by summing
a considerable number (roughly 8 to 18) of partial (al-
ready differentiated by weights) matrices, the max value
of the matrix tends to have a relatively small number of
appearances. In the empirically common case of a sin-
gle unique max value, the algorithm concludes and the
spot represented by that max value is being presented.
Otherwise, if several max values are encountered, the
algorithm’s Approzrimate function is employing heuris-
tic methods (e.g. nearest point to the non-intervened
receiver’s output - DeviceOutput) to choose the point
to be presented.

Figure 2: Construction of a likelihood map from LOS
maps. In this example there are three satellites (S —
S3) and four points (p; — ps), p1 and pys have the same
aggregated shading maps (they both can see Sp, and
S2). Yet py and p3 aggregated shading maps differ from
the aggregated shading map of p; (or p4).

2.6 Algorithm Formalization

Using the definitions at the beginning of this section (see
Table 1), the refinement algorithm’s high-level pseudo-

code would be:

Algorithm 1: High-Level pseudo-code for GNSS re-
finement algorithm
Result: RefinedPosition
if PositionError < Minor Err then
| return DevicePosition;
Let S(t) be the set of all satellite signals as
captured by the GNSS receiver in time .
Let Aggregated be a 2D matrix with ROI’s
boundaries (initialized with 0 values).
for each S; in S(t) do
Use SigBench to determine whether S; € S, or
S; € Sy.
Let W; be S;’s signal strength weight !
if S; € S, then
| Inverse L; 3
| Aggregated < Aggregated + L; *
Let LikelyPoints be the set of max values in
Aggregated.
Refined Position = Nearest point in LikelyPoints
to DevicePosition.
return Refined Position.

L1V, is transformed into [0, 1] range using MazSig constant.
2Compute partial weighted map.

3For an NLOS satellite : = (1 — ) to each z in the matrix.
4Add partial weighted map to aggregated likelihood map.

3 3D Mapping Algorithm

3.1 Overview

In this section we address the problem of constructing a
3D building map using the strength of the signals from
navigation satellites. This task is the dual problem to
the improved accuracy: instead of using the 3D build-
ings’ map to improve the receiver’s position, we use its
position to approximate the buildings’ 3D map.

Most GNSS devices are able to keep detailed log
files, which contain information about captured satel-
lites’ signals along a device’s journey. Thereafter, it is
a straightforward process to track down a device’s path
and the satellites’ position respective to that device at
each point in time during the journey (in sampling rate
of 1-10Hz). This ability to track down signals, when
magnified by a number of GNSS devices covering a sub-
jected urban canyon, is a preliminary enabler of our
novel framework algorithm to the dual problem, which
is the generation of buildings’ 3D models out of captured
satellites signals.

The 3D mapping problem can be defined as follows:
given a GNSS log-file, which contains samples of: time,
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position, accuracy and the signal strength to each trace-
able satellite, convert the log file into two sets of 3D
vectors: (i) Blue vectors: all LOS signals. (ii) Red vec-
tors: all the NLOS signals. The goal is to construct the
surface, which will block all the vectors in the red set
and will not block the vectors from the blue set.

3.2 2.5D Mapping Heuristics

We limit this algorithm to compute a 2.5D map repre-
sentation, a surface of a terrain representation in which
each (X,Y") location has a single Z value associated with
it. For simplicity, we divide the mapping algorithm into
two sequential steps: (i) computing the buildings’ con-
tours. (ii) approximating the height of each contour.

For the algorithm’s first step we traverse time-
consecutive samples of the satellite signals. We then
compute distances between consecutive samples, using a
weighted zor function (assuming LOS'is 1 and NLOS'is
0), a change in satellite status (LOS/NLOS) contributes
to the distance function according to the satellite angle
(high-angle satellites contribute more). If the distance
is above some threshold, we consider this point to be
an edge-point. Edge-points tend to appear in buildings’
corners and next to buildings’ walls (due to the ampli-
fying distance of high-angle satellites). We then filter
out edge-points with potential high position error, and
aggregate all the relatively accurate edge-points. Lastly,
we compute contours which are bounded by the edge-
points. These contours may be general polygons or some
constraint shapes (see Figure 6).

The algorithm’s second step computes the z-value
of each contour. The height value of each contour is
bounded by all the LOS rays going over it. Yet because
the LOS/NLOS data is "noisy” by nature, the actual
z-value is computed as the height for which maximal
weighted-constraints (LOS/NLOS) are satisfied. As in
the first stage, the higher the ray-angle is (LOS/NLOS)
the larger its weight becomes. Noteworthy is that sam-
ples from the same spot taken at different times of the
day are beneficial for the algorithm. This is because
for each triplet (spot, building, satellite) if there’s a
(time dependent) LOS ray from the spot to the satel-
lite, which goes over the building’s contour, then there
exists a time of the day, which minimizes the vertical
distance between that ray and the building’s roof.

During our initial field experiments, the contours of
the builds were slightly larger and shorter than in real-
ity. In order to fix this effect we modified the algorithm
to keep refining the 2.5D map by updating the contours
according to the building approximated height.

4 Experimental Results

We conducted a set of preliminary experiments to eval-
uate the suggested algorithms in practice. In order to

Figure 3: 3D mapping algorithm in action. In red are
the rays which are blocked (NLOS), in blue are the rays
with LOS to the corresponding navigation satellites.

evaluate the improved accuracy algorithm two types of
experiments were conducted (see Figures 3-5): (i) lo-
cating a GPS receiver in a fixed position for few hours
(at each position). (ii) walking along a fixed route. In
both experiments the actual position was compared to
the suggested location of both (a) the GPS device (b)
the refinement algorithm. In order to evaluate the 2.5D
mapping algorithm we have walked through the uni-
versity campus and computed the approximated build-
ing map. The algorithm was implemented in Java and
tested on both Android and Linux. The algorithm was
able to refine the location (in an area of 200*200 meters)
in less than 1 second, which validated its applicability to
run efficiently on mobile devices (equipped with a 1Hz
GPS). The following GPS receivers were used: Fastraz
1Hz, Wintec G-Rays 10Hz and the internal GPS of the
Android devices. All tests were made while walking.
The GPS row data was accessed via the NMEA proto-
col.

Figure 4: Improved position algorithm in action: In
both above examples the GPS suggested a position with
12-18 meters error ratio. The refinement algorithm was
able to fix the position to an error of less than 1 meter.

Figure 5: Improved Position: Left: above view. Right:
3D perspective view. In red, the path computed by a
1Hz fastraz GPS with an average error of 31 meters and
max error of 180 meters; In green, the refined position
with an average error of 4 meters and max error of 11
meters; In yellow, the actual path.
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Figure 6: 2.5D mapping example, Left: the actual
buildings, Middle: the 2.5D map of the buildings us-
ing axis parallel rectangles contours. Right: the 2.5D
map of the buildings with no contour constraints

5 Conclusion and Future Work

We have proposed a new framework for improving a
GNSS-receiver accuracy in urban regions. We have
also presented an algorithm for constructing a 2.5D
building map - using the receiver’s position and the
LOS status to it from each navigation satellite. In
practical implementations, both algorithms could be
running together - improved position accuracy assists
in improving the 2.5D map accuracy, which in turn
further improves positioning accuracy. Such approach
for Simultaneous Localization And Mapping (SLAM)
is proven to be an efficient method in many navigation
and mapping tasks [1, 11]. The experimental results
presented above show that even a basic implementation
of the algorithms helps improving the GNSS accuracy
significantly in urban canyons. Using few walking
clients equipped with standard GPS devices we were
able to construct a 2.5D buildings map of a complex
downtown area; this map was then sufficient as the
input source for the accuracy improvement algorithm.
For future work we intend to use GNSS-pseudoranges
to compute a more accurate map of the buildings.
In particular, we would like to generalize the 2.5D
mapping algorithm into a real 3D mapping method.
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