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Abstract

In the wireless localization problem, given a polygon
P ⊂ R2, we have to place guards and fix their angular
range such that P can be described using these guards.
The guards describe P if for every point pair p ∈ P and
q /∈ P , there is a guard that sees p but does not see
q. We consider the analogous problem in 3D: given a
polyhedron P ⊂ R3, place guards—which now are poly-
hedral cones—that collectively describe P . Generalizing
a known result for 2-dimensional orthogonal polygons,
we show that for any given 3-regular orthogonal polyhe-
dron P ⊂ R3 with n vertices, it suffices to put a natural
vertex guard onto every other vertex. (A natural ver-
tex guard is a guard that is placed at a vertex v of P
and the defining cone coincides with P in a sufficiently
small neighborhood of v.) Furthermore, we show how
to describe P with 3n/8 (general) vertex guards.

1 Introduction

Art gallery problems are a classic topic in discrete and
computational geometry. The wireless localization (or
sculpture garden) problem, introduced by Eppstein et
al. [5], differs from the classical setting in two respects:
First, the guards are more powerful because they can
“see through walls”; and second, their job is harder, be-
cause rather than asking them to collectively see/cover
the entire polygon (which is very easy, not being im-
peded by walls), the guards must collectively describe
the polygon instead.

The motivation for this model stems from communi-
cation in wireless networks. For illustration, suppose
you run a café (modeled as a polygon P ) and you want
to provide wireless Internet access. But you do not want
the whole neighborhood to use your infrastructure. In-
stead, Internet access should be limited to those people
who are located within the café. To achieve this, you
can install a certain number of devices, called guards,
each of which broadcasts a unique (secret) key in an
arbitrary but fixed angular range. The goal is to place
guards and adjust their angles in such a way that ev-
erybody who is inside the café can prove this fact just
by naming the keys received and nobody who is outside
the café can provide such a proof.

∗Institute of Theoretical Computer Science, ETH Zürich,
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It is convenient to model a guard as a subset of the
plane, namely the area where the broadcast from this
guard can be received. This area can be described
as an intersection or union of at most two halfplanes.
The definition directly carries over to the 3-dimensional
case, where a guard is a polyhedral cone, that is, an
unbounded polyhedron with at most one vertex and a
connected 1-skeleton.

We define a guarding of P to be a set of guards with
the property that for each pair of points (p, q), where
p ∈ P and q /∈ P , there is a guard g that distinguishes
p and q, meaning p ∈ g and q /∈ g. It can be shown
that this notion is equivalent to a description of P us-
ing a combination of the operations union and inter-
section over the guards or—in logical terminology—a
monotone Boolean formula over the guards, that is, a
formula using the operators And and Or only, negation
is not allowed. (See [2], Observation 1. If each pair (p, q)
can be distinguished by a guard, we can find a formula
in disjunctive normal form for P : For any point p, let
Gp the intersection of all guards that contain p. Then
P =

⋃
p∈P Gp.)
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Natural locations for guards are points on the bound-
ary of P . A guard that is placed at a vertex of P is
called a vertex guard. A vertex guard on a vertex v is
called natural if its shape is given by the shape of P at
v. More precisely, if the intersection of an ε-ball around
v with g equals the intersection with P . A guard placed
anywhere on an edge e of P and the shape of which is
given by the shape of P at e is called a natural edge
guard (in 2D, edge guards are just the halfplanes de-
fined by an edge, in 3D they are wedges whose only
edge is the line through e). In 3D, there is a third class
of natural guards. We call the closed halfspace defined
by a face f of P a natural face guard on f . Note that
both edge and face guards are cones without apex, so
their exact position is undefined. We can think of them
to be placed anywhere on their only edge (or anywhere
on the bounding plane, respectively).
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Dobkin et al. [4] showed that n natural edge guards
are sufficient for any simple polygon with n edges. Using
both natural vertex guards and natural edge guards,
n − 2 guards are sufficient and can be necessary [2];
using general vertex guards 8n/9 are sufficient [3]. In
the most general setting we do not have any restriction
on the placement and the angles of guards. The best
known upper bound is b 4n−2

5 c and the best lower bound
is d 3n−4

5 e [2]. We believe that the upper bound can be
improved to roughly 3n/4 and the lower bound to 2n/3,
but this is still work in progress. The classical art gallery
problem for orthogonal polygons was considered in [1].

For the 3D case, Dobkin et al. [4] observed that plac-
ing a face guard onto every face of a polyhedron suffices.
To our knowledge, the 3-dimensional wireless localiza-
tion problem has not been studied since then. In this
work we focus on orthogonal polyhedra and prove that
n/2 natural vertex guards suffice to guard a polyhedron
with n vertices. If we allow general vertex guards, we
can improve the bound to 3n/8. We observe that there
are orthogonal polyhedra that cannot be guarded by
fewer than n/4 guards.

2 Notation and Basic Observations

An orthogonal polyhedron P is a polyhedron where all
faces are orthogonal to one of the coordinate axes. Faces
orthogonal to the x-axis (y-axis, z-axis) are called x-
faces (y-faces, z-faces, respectively). Consequently, all
edges of P are parallel to one of the coordinate axes
and are called x-edges, y-edges and z-edges accordingly.
Think of the x-axis as being oriented from left to right,
the y-axis front to back, and the z-axis bottom up.

A polyhedron is a solid and closed subset of the
space. We define its vertex set V (P ), its edge set
E(P ) and its set of faces F (P ) in the usual way. Let
n = n(P ) = |V (P )| be the number of vertices. Fur-
thermore, we restrict our attention to bounded orthog-
onal polyhedra with the additional property that ex-
actly three edges meet at every vertex. In other words,
the graph of P has to be cubic. Eppstein and Mum-
ford [6] use a similar definition and additionally require
the polyhedral surface bounding a polyhedron to have
the topology of a sphere. They call this class of poly-
hedra simple orthogonal polyhedra. We do not use this
notation, as in this work, we do not need any topologi-
cal conditions and allow the polyhedra to form handles
(that is, their genus might be greater than 0) and to
contain cavities (that is, their surface may be discon-
nected). Therefore, we use the term 3-regular instead.
We define the type of a vertex v as follows. Assuming
v to be the origin, the type of v is the set of octants
P locally occupies around v. We call v convex, if only
one octant is inside P . There are eight different possi-
ble types of convex vertices. We call v reflex if all but

convex
reflex
semiconvex
semireflex

Figure 1: Vertex types.

one octant around v are in P . There are eight possible
types of reflex vertices. Furthermore, there are vertex
types where exactly three octants are occupied, so two
of the adjacent edges are convex and one is reflex. We
call such a vertex semiconvex. There are 24 different
semiconvex types. Finally, there are vertex types where
all but three octants are occupied, denoted as semire-
flex. See Genc [7], p. 38, for a classification of possible
vertex types of general orthogonal polyhedra.

By definition guards are unbounded polyhedra with
at most one vertex. In this context we restrict our-
selves to 3-regular orthogonal guards. From now on, a
guard is an unbounded orthogonal cone with at most
one x-edge, at most one y-edge and at most one z-edge.
Consequently, a guard has at most one x-face, at most
one y-face and at most one z-face.

The type of an edge e ∈ E(P ), is given by its direction
(parallel to the x-, y-, or z-axis) and by which quadrants
around e are occupied by P in the plane orthogonal to
e. Either one quadrant is occupied, in which case we
call e a convex edge or three quadrants are occupied, in
which case we call e a reflex edge. For example, we say
an edge e is a convex z-(++) edge if e is vertical and
locally around e, the points in P are the points with
both higher x- and y-coordinate. Or we say e is a reflex
x-(+−) edge if e is parallel to the x-axis and P occupies
all but one quadrant around e, namely it leaves out the
quadrant that lies behind e (higher y-coordinates) and
below e (lower z-coordinates). There are 4 convex and
4 reflex edge types in any of the three directions, so
totally, there are 24 different edge types. For each type,
we fix a direction of the edge: We define the convex
x-(++) edges to be directed in negative x-direction (to
the left). Similarly, we define the reflex x-(++) edges
to be oriented in positive x-direction (to the right). If
we rotate P around the x-axis, an x-(++) edge either
becomes a x-(+−) or a x-(−+) edge. So rotating several
times around all possible axes, each time by π/2, an edge
can change from any type to any other type. We define
the directions of all types in such a way that rotating
by π/2 around any of the three coordinate axes flips the
orientation of an edge.

Observation 1 The edges of P can be oriented accord-
ing to their type such that rotating by π/2 around any
coordinate axis reverses the orientation.
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Figure 2: All possible edge types and their orientations.

See Figure 2 for a possible orientation of all edge
types. There are exactly two ways to orient the convex
types such that the observations holds and, indepen-
dently, exactly two ways to orient the reflex types such
that the observation holds. From now on, we think of
every edge to be oriented as shown in Figure 2.

Observation 2 At a vertex v ∈ V (P ) either all adja-
cent edges are pointing to v or all adjacent edges are
pointing away from v.

First consider just one convex vertex type. After ob-
serving the property for this type, it follows for all other
convex vertex types directly. Repeatedly rotating the
vertex by π/2 around any coordinate axis, we can go
from one convex type to any other convex type. With
each single rotation, the orientation of all three adja-
cent edges flip. So if the edges were pointing towards
the vertex before, they are all pointing away after the
rotation and vice versa, see Figure 3.

With this observation we have reproved that the
graph of a 3-regular orthogonal polyhedron is bipartite,
as observed for simple orthogonal polyhedra by Epp-
stein and Mumford [6]. (Their proof is somewhat easier,
as it is a direct consequence of the fact that the graph is
planar and the numbers of edges of every face is even.)

Corollary 1 The graph of a 3-regular orthogonal poly-
hedron is bipartite.

In 2D, placing a natural vertex guard onto every other
vertex of an orthogonal polygon gives a valid guard-
ing, see [5], Theorem 9, where this is proved for simple

Figure 3: How the orientations of the edges adjacent to
a convex and a semiconvex vertex flip when the poly-
hedron gets rotated by π/2 around a coordinate axis.

polygons. Because guarding a polygon and guarding its
complement are equivalent problems (cf. [2], Observa-
tion 5), the same holds for polygons with holes.

Theorem 2 [5] An orthogonal polygon with n vertices
(possibly containing holes) can be guarded by n/2 guards
placing a natural vertex guard onto every other vertex.

For a face f of a polyhedron, let f denote the plane
that contains f . A set G of guards covers a point r if
there is an ε > 0 such that for any point pair p, q ∈ Bε(r)
with p ∈ P and q /∈ P there is some guard in G that
contains p but does not contain q. We say that a set
G of guards covers a face f ∈ F (P ), if G covers some
point p in the interior of f . (p is in the interior of f if
p ∈ f and p /∈ e for any e ∈ E(P ).) and G covers f
completely, if G covers all points in the interior of f . If
{g} covers f , then g has a face fg with fg = f .

Theorem 3 For any integer k ≥ 2, there are 3-regular
orthogonal polyhedra with 4k vertices that cannot be
guarded by fewer than k guards.

Proof. Take a 2-dimensional orthogonal polygon Q
with 2k pairwise non-collinear edges. Let P be a (right)
prism with base Q. P has 2k + 2 faces, k of which are
x-faces. Consider a guarding G of P . Each face f of P
has to be covered by at least one guard. No two x-faces
are coplanar, so any guard can cover at most one x-face.
Therefore, there are at least k guards in G. �

3 Guarding with n/2 Natural Vertex Guards in 3D

Theorem 4 A 3-regular orthogonal polyhedron P can
be guarded with n(P )/2 natural vertex guards.

Proof. Place a guard onto every vertex where all edges
are pointing inwards. We show that for every in-
side/outside point pair (p, q) there is a guard g that
distinguishes p and q. Denote the axis-parallel cube
spanned by p = (px, py, pz) and q = (qx, qy, qz) by Q.
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Figure 4: The three subcases of Case 1: Vertex v can
have any of the types to the right.

Edge orientations and hence guardings are symmetric
under a rotation by an angle of π around a coordinate
axis. Therefore we may suppose without loss of gen-
erality that either qx ≤ px, qy ≤ py and qz ≤ pz, or
px ≤ qx, py ≤ qy and pz ≤ qz.

First consider the case that qx ≤ px, qy ≤ py and qz ≤
pz. Look at Q ∩ P and pick the point r = (rx, ry, rz) ∈
P ∩ Q which minimizes rx + ry + rz. The point r can
arise in three different ways, as depicted in Figure 4: If
r ∈ V (P ), r is a convex vertex such that P occupies the
(+ + +)-octant. Therefore, there is a guard on it which
distinguishes p and q. If r = e∩f is the intersection of an
edge e ∈ E(P ) and a face f of Q, f must be adjacent to q
and e must be a convex edge orthogonal to it. Therefore,
e is pointing outward of Q to a guard g distinguishing
p and q. If r is on an edge of Q and in the interior of
a face f of P , look at f as a 2D-polygon: Drawing a
horizontal and a vertical line through r divides f into
four quadrants. f has a convex vertex in each quadrant,
in particular in the quadrant opposite to f ∩ Q. No
matter which type v has as a vertex of P , it is going to
distinguish p and q.

In the case where px ≤ qx, py ≤ qy and pz ≤ qz,
we have to use a slightly different argument. Let A
be the face of Q that is adjacent to p and orthogonal
to the z-axis. Consider the 2-dimensional orthogonal
polygon P ′ we get by intersecting P with the plane A
and picking the connected component of the intersection
that contains p. Let r be the point in P ′ ∩ A that
maximizes rx + ry. As in the first case, there are three
sub-cases to consider. If r = A∩e, e ∈ E(P ), we observe
that e is a convex z-edge of type (−−), so it is oriented
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Figure 5: Case 2: Following e we find a guard g, which
has one of several possible types.

downwards. So we can follow e to its end point outside
Q where we find a guard g that distinguishes p and q,
see Figure 5. If r is the intersection of an edge of A with
a face f of P , then r divides f into four quadrants, in
each of which we find a convex vertex of f (thought of
as 2D-polygon). In particular, there is a convex vertex
v of f in the quadrant opposite to the one containing
f ∩ Q and there is a guard on v that distinguishes p
and q. Finally, if r is a vertex of A, which means that
A is completely contained in P , then pick another face
B of Q adjacent to p, and repeat the argument. If all
faces adjacent to p are completely inside P , then look
at the top face C of Q and observe that C ∩ P must
have at least one reflex vertex r. This vertex r lies on a
reflex z-edge of P , which is pointing upward to a guard
outside of Q that distinguishes p and q, see the example
to the right in Figure 5. �

4 Improving the Bound to 3n/8

Let P be an arbitrary 3-regular orthogonal polyhedron
with n vertices. Every vertex is incident to one x-edge,
one y-edge and one z-edge. Thus, there are exactly n/2
edges in each direction. In the guarding described above
we used one guard per z-edge. In order to reduce the
number of guards, we now place a natural edge guard
onto roughly half of the z-edges only, namely onto those
that are pointing downwards.

Such a guarding for sure covers all x– and y-faces,
but we have not done anything about the z-faces yet.
An easy solution would be to place a natural face guard
gf onto every z-face f . This would yield a valid guard-
ing, but the number of z-faces could be as large as n/4
(even after permuting the coordinate axes). So instead,
we replace every natural edge guard ge on a z-edge e
pointing down to a vertex v of f by a vertex guard
gv: gv := ge ∩ gf if f has the interior of P above and
gv := ge ∪ gf if f has the interior of P below. So—
in some sense—we combine the natural edge guards
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Figure 6: An increasing event.

and the natural face guards to vertex guards. (Note
that these new guards are not necessarily natural ver-
tex guards.) However, some z-faces may not be covered
still. We call a z-face f good, if the guards we place
on vertices of f cover f completely, and we call f bad,
otherwise. If a z-face f is bad, then we put a natural
face guard gf onto f . So we have to make sure that
this does not happen too often and that we will not use
more than roughly n/8 face guards in this way. Let G
be the set of vertex guards as described above together
with the face guards on bad z-faces.

Lemma 5 G is a valid guarding of P .

Proof. We use a sweep argument. For simplicity, we
assume that P has no coplanar z-faces. Imagine sweep-
ing a plane E orthogonal to the z-axis upwards and look
at the intersection polygon Q = P ∩ E. Whenever E
is coplanar with a z-face f of P (called the event face),
the intersection polygon Q changes: the new intersec-
tion polygon Q′ is either bigger or smaller, Q′ = Q ∪ f
or Q′ is (the closure of) Q \ f . We call the first case an
increasing event, the second case a decreasing event.

The claim is that using guards encountered so far
only, we are able to guard P as far as we have seen it:
At any moment the set G̃ of guards that lie below the
sweep plane E, together with an imaginary face guard
gE that is the closed halfspace below E, is a guarding of
the part P̃ = P ∩gE of P below E. We prove this claim
by induction on the number of event faces processed.

At the beginning P̃ is empty. At some point, we hit
the first z-face f of P . The vertices of f correspond to z-
edges of P starting at f and going upwards. According
to our rule, there is a guard on every second vertex of
f , which we can think of as a 2-dimensional guarding
for f extending to the region orthogonally above f .

Increasing Event. Let f be an increasing event face,
that is, the interior of P lies above f (Figure 6). We
claim that after E has passed f (but no other event face
yet), we still have a valid guarding for P̃ . Consider a
point pair p ∈ P̃ and q /∈ P̃ . We may suppose without

loss of generality that both p and q lie in the closed
halfspace below f : If one of the points, say, p lies above
f , then consider the orthogonal projection p′ of p onto
f instead. As all guards in G̃ are located in the closed
halfspace below f , none of them distinguishes p and p′.

If p and q are both below f , then by induction there
is a guard that distinguishes them. If both p and q lie
in f , then we are in a 2-dimensional situation and find
a guard that distinguishes them because our guarding
contains a 2-dimensional guarding of Q′. (The vertices
of Q′ correspond to z-edges. There is a guard on every
other z-edge that—intersected with Q′—is a natural 2D
vertex guard of Q′. See Theorem 2.)

If p ∈ f and q lies below, then either there is a face
guard gf that does the job or f is a good face. In the
latter case, the new vertex guards (i.e., those placed
when handling the event face f) collectively cover f . If
p ∈ f , then one of these new guards distinguishes p and
q. Otherwise, a point p′ slightly below p lies within P as
well. By induction there is some old guard (i.e., a guard
placed before handling the event face f) to distinguish
p′ from q. As such a guard cannot distinguish between
p and p′, it also distinguishes p and q. Symmetrically,
if q ∈ f and p is below, consider a point q′ located
slightly below q and note that q′ /∈ P because the event
is increasing. By induction, there is an old guard that
distinguishes p and q′ but cannot distinguish q and q′.
Hence this guard also distinguishes p and q.

Decreasing Event. Consider a point pair p ∈ P̃ and
q /∈ P̃ . As above, we may suppose without loss of
generality that p lies in the closed halfspace below f .
However, if q lies above the event face f—that is, the
orthogonal projection q′ of q onto f lies in f—we can-
not simply replace q by q′, because q′ ∈ P . But we
know that some guard that was placed when handling
the event face f distinguishes q and q′, and every guard
placed when handling f contains the closed halfspace
below f . Therefore, if p lies below f , then this guard
distinguishes p and q. If p ∈ f , then recall that we
have a 2-dimensional guarding for Q′, which must con-
tain a guard that can distinguish p and q′. This guard
classifies q′ as outside and so it does with q. Hence it
distinguishes p and q. We may thus assume that q lies
in the closed halfspace below f as well. It follows induc-
tively that there exists an old guard that distinguishes
p and q. �

Lemma 6 Under a random rotation around the z-axis
by a multiple of π/2 and independently, a reflection with
respect to the plane z = 0 with probability 1/2, a z-face
with 4 or 6 vertices is good with probability at least 1/2.

Proof. Each vertex v of f corresponds to a z-edge ev

of P . ev either starts at v going upwards or it ends
at v. We call v a starting vertex or an ending vertex,
respectively. If v is a starting vertex and ev is pointing
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to v, there is a guard gv on v. Else, if ev is oriented
upwards or v is an ending vertex, there is no guard on
v. Under a reflection in the xy-plane, starting vertices
turn into ending vertices and vice versa, see Figure 7.

Consider f as a 2D-polygon. If it has 6 vertices, ex-
actly 5 are convex and one is reflex. One of the convex
2D-vertex-types appears twice, the other three appear
exactly once and are referred to as unique, therefore. If
f has 4 vertices, they are all unique. So in any case we
have at least three unique (convex) vertices. Moreover,
these vertices appear consecutively along the boundary
of f , which implies that for at least one of them the
incident z-edge is directed towards the vertex.

If there is a guard on some unique vertex of f , then f
is good because this guard covers f completely. (Note
that f may be bad if there is a guard at some non-
unique vertex only, see Figure 7 (B).) If two adjacent
unique vertices of f are starting, then—by the remark
above—at least one of them has a guard. When reflect-
ing P at the plane z = 0, all ending vertices turn into
starting vertices and vice versa. Hence, if two adjacent
unique vertices of f are ending, then at least of them
has a guard after this reflection and so f is good with
probability at least 1/2. It remains to consider the case
that the three unique vertices of f follow the pattern
starting–ending–starting or ending–starting–ending and
neither of the starting vertices, with and without reflec-
tion, has a guard (Figure 7 (C)). When rotating around
the z-axis by π/2 or 3π/2, starting vertices remain start-
ing and ending vertices remain ending. But edge orien-
tations flip and so a starting vertex without guard turns
into a starting vertex with guard. As a result, both the
original face and the reflected variant turn good after
such a rotation. So again with probability at least 1/2,
the face f appears as a good face. �

Theorem 7 Let P be a 3-regular orthogonal polyhe-
dron. Then P can be guarded with 3n(P )/8 guards.

Proof. Guard P as described at the beginning of the
section. Whenever we have to use a face guard gf , we
charge it to the edges of f . The edges of a z-face f are
also edges of P and each x- or y-edge appears exactly
once as an edge of a z-face. So the edges of a z-face f of
degree d ≥ 8 each get charged at most 1/d ≤ 1/8. The
edges of a face f with degree d = 4 or d = 6 get charged
1/d ≤ 1/4 if we have to use a face guard gf . If we pick
a random rotation around the z-axis and independently
decide to reflect P with respect to the plane z = 0 with
probability 1/2, we have shown that f ends up as a
bad face with probability at most 1/2. So the x- or
y-edges gets charged at most 1/4 with probability at
most 1/2 and 0 otherwise. So the expected charge of
an x− or y-edge is at most 1/8. The vertex guards get
charged to their corresponding z-edge. Under a random

v
gv

v′
(A) (B)

(C)

Figure 7: (A) a bad face that turns good after reflection;
(B) a face that is bad even though there is a vertex
v with a guard gv on it: gv does not cover the face
completely; (C) a face that stays bad after reflecting,
but both itself and the reflected version turn good after
rotating around the z-axis by π/2.

rotation, a z-edge gets charged 1 with probability 1/2
and 0 otherwise. Therefore, the expected total charge
is going to be at most 1

8n + 1
2n/2 = 3n/8, so there is a

rotation (possibly combined with a reflection) such that
at most 3n/8 guards are used. �
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