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Approximating a Motorcycle Graph by a Straight Skeleton

Stefan Huber∗ Martin Held†

Abstract

We investigate how a straight skeleton can be used to
approximate a motorcycle graph. We explain how to
construct a planar straight-line graph G such that the
straight skeleton of G reveals the motorcycle graph of
M , for every given finite set M of motorcycles. An
application of our construction is a proof of the P-
completeness of the construction problem of straight
skeletons of planar straight-line graphs and simple poly-
gons with holes.

1 Introduction

1.1 Motivation

The straight skeleton S(G) of an n-vertex planar
straight-line graph G is a skeleton structure similar to
Voronoi diagrams, but consists of straight-line segments
only. It was introduced by Aichholzer et al. [1] for poly-
gons, and was generalized to planar straight-line graphs
by Aichholzer and Aurenhammer [2]. The motorcycle
graph problem was introduced by Eppstein and Erick-
son [5] in an attempt to extract the essential subprob-
lem of constructing straight skeletons. Indeed, the algo-
rithms by Cheng and Vigneron [4] and Huber and Held
[6] use motorcycle graphs as a tool for the construction
of straight skeletons.

In this work we reverse the question and ask how
the motorcycle graph can be computed by employing
straight skeletons: We show that for a given set of mo-
torcycles we can construct a planar straight-line graph
G such that certain parts of S(G) approximate the mo-
torcycle graph up to a given tolerance. Since Epp-
stein and Erickson [5] proved that the motorcycle graph
construction problem is P-complete, we can provide a
proof that constructing the straight skeleton for pla-
nar straight-line graphs and polygons with holes is P-
complete as well. As a consequence, there is no hope to
find an efficient parallel algorithm for straight skeletons,
unless P = NC.

We note that Eppstein and Erickson were the first
to mention the P-completeness of straight skeletons: In
[5] they claim that arguments similar to those used for
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proving the P-completeness of motorcycle graphs would
apply to straight skeletons as well. Further, they sug-
gest that a motorcycle graph can be approximated by
the straight skeleton of a set of sharp isosceles triangles,
with one triangle per motorcycle. No details and no
proof are given, though. In this paper we pick up their
suggestion and prove that the straight skeleton of a set
of meticulously chosen triangles does indeed approxi-
mate the motorcycle graph of the motorcycles given.

1.2 Preliminaries and Definitions

Consider a planar straight-line graph G with n vertices,
none of them being isolated. Vertices of degree one are
called terminals. According to [2], the definition of the
straight skeleton S(G) of G is based on a wavefront-
propagation process: Each edge e of G sends out two
wavefronts, which are parallel to e and have unit speed.
At terminals of G an additional wavefront orthogonal
to the single incident edge is emitted. The wavefront
W(G, t) of G at some time t can be interpreted as a 2-
regular kinetic straight-line graph. Except for the ver-
tices originating from the terminals of G, all vertices
of W(G, t) move along bisectors of straight-line edges
of G, see Fig. 1. During the propagation of W(G, t)
topological changes occur: a wavefront edge may col-
lapse (“edge event”) or a wavefront edge may be split
by a wavefront vertex (“split event”). The straight-line
segments traced out by the vertices of W(G, t) form
S(G). The edges of S(G) are called “arcs” and bound
the “faces” of S(G). Wavefront vertices are called reflex
(resp. convex) if they have a reflex (resp. convex) angle
at the side where the propagate to. The arcs of S(G)
which are traced out by reflex (resp. convex) vertices of
W(G, t) are called reflex (resp. convex) arcs.

Consider a set of moving points in the plane, called

Figure 1: Left: The straight skeleton (dotted) is defined
by propagating wavefronts (gray) of the input G (bold).
Right: The motorcycle graph (red) induced by G.
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Figure 2: The feasible area of a face. Left: only m1 has
e as an arm. Right: m1 and m2 have e as an arm.

“motorcycles”, that drive along straight-line rays ac-
cording to given speed vectors. Each motorcycle leaves
a trace behind it and stops driving — it “crashes” —
when reaching the trace of another motorcycle. The
arrangement of these traces is called motorcycle graph,
cf. [5]. We denote by M(m1, . . . ,mn) the motorcycle
graph of the motorcycles m1, . . . ,mn where each motor-
cycle mk is given by a start point pk and speed vector
vk. We adopt the assumption by Cheng and Vigneron
[4] that no two motorcycles may crash simultaneously.

In [6] we defined a motorcycle graph on a planar
straight-line graph G, by generalizing Cheng and Vi-
gneron’s concept [4]. The idea is that a motorcycle m
is defined for each reflex wavefront vertex v in W(G, 0)
that starts from v and has the same speed vector as v.
We call the wavefront edges incident to v the arms of
m; the arm left (resp. right) of the speed ray of m is
called left (resp. right) arm. Additionally, we assume
that motorcycles crash if they hit an edge of G. We
denote the resulting motorcycle graph by M(G), see
Fig. 1. The following two theorems were proved in [4]
for non-degenerate1 polygons with holes and in [6] for
general planar straight-line graphs G. (The concept of
the feasible area of an edge e ofG is illustrated in Fig. 2.)

Theorem 1 M(G) covers the reflex arcs of S(G).

Theorem 2 Consider a face f(e) of S(G) correspond-
ing to the wavefront edge e. Then f(e) is contained in
a “feasible area” which is bounded by (i) e at time zero,
(ii) by traces of motorcycles m that have e as an arm
and (iii) by rays perpendicular to e starting the end of
those motorcycle traces, if existing, and at the end of e
otherwise.

2 Approximating a motorcycle graph by a straight
skeleton

Let us consider n motorcycles m1, . . . ,mn, where each
motorcycle mi has a start point pi and a speed vector
vi. We assume that no two motorcycles crash simultane-
ously into each other. Can we find an appropriate planar
straight-line graph G such that (a subset of the reflex
arcs of) S(G) and M(m1, . . . ,mn) cover each other up
to some given tolerance?

1A polygon is called non-degenerate if no two of the resulting
motorcycles crash simultaneously into each other.

∆i

pi

si1
αi

pi + λ · vivi

Figure 3: At each point pi we set an isosceles triangle
∆i with an angle of 2αi, such that λ|vi| = 1/sinαi and
the motorcycle trace si bisects the angle of ∆i at pi.

Theorem 1 tells us that the reflex arc of S(G) that
corresponds to a motorcycle mi approximates the trace
of mi up to some gap. One observes that the faster m
moves the better its trace tends to be approximated by
the corresponding reflex arc in S(G). It is easy to see
thatM(m1, . . . ,mn) remains unchanged if we multiply
each speed vector vi by a positive constant λ. In or-
der to obtain reflex arcs of S(G) that overlap with the
traces in M(m1, . . . ,mn) we put at each start point pi
an isosceles triangle ∆i with an angle of 2αi at pi, where

αi := arcsin
1

λ|vi|
, (1)

and λ large enough such that λ|vi| ≥ 1 for all 1 ≤ i ≤ n,
see Fig. 3. The lengths of the arms of ∆i will be specified
later.

By definition of S(G), a reflex wavefront vertex ui is
emanated from each pi and its speed vector equals λ-
times the speed vector of the motorcycle mi. However,
note that further motorcycles are introduced at the ad-
ditional corners of each triangle. We can now rephrase
our initial question: can we always find λ large enough
such that those reflex arcs that are traced out by ui ap-
proximateM(m1, . . . ,mn) up to some given tolerance?

Let us denote by si the trace of mi and by si+Dr the
Minkowski sum of si and the disk with radius r centered
at the origin. The motorcycle traces ofM(m1, . . . ,mn)
are closed sets and two traces si, sj intersect if and only
if mi crashed into mj or vice versa. Hence there is an
µ > 0 such that for all 1 ≤ i < j ≤ n it holds that
mi crashes into mj or vice versa if and only if si + Dµ

intersects sj +Dµ. For example, let µ be a third of the
minimum of the pairwise infimum distances of disjoint
traces si, sj . We further assume that µ is small enough
such that pi +Dµ does not intersect any sj +Dµ for all
1 ≤ i, j ≤ n, except if pi ∈ sj . (This will be needed for
Lemma 4.)

We define the planar straight-line graph G by the set
of triangles ∆i at each start point pi, where the length
of the arms incident to pi are set to µ/2 and the angle
of ∆i at pi is given by Eqn. (1).

Lemma 3 For any 1 ≤ i ≤ n the wavefronts of ∆i stay
within si +Dµ until time µ/4 for λ ≥ 2

|vi| .

Proof. Consider a triangle ∆i at some start point pi.
Note that λ is large enough such that 2αi is at most
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Figure 4: The wavefronts of ∆i are bounded to si +Dµ

until time µ/4. Top: the motorcycle mi did not crash
until that time. Bottom: the motorcycle mi did crash
into another trace (dotted line segment) until that time.

60o. Hence, the other two angles of ∆i are at least
60o and, therefore, the two additional motorcycles at
∆i have a speed of at most 2. Since the start points of
those motorcycles are µ/2 away from pi and they drive
at most a distance of µ/2 in time µ/4, they stay within
pi +Dµ.

According to Thm. 2, we consider the feasible areas of
the edges of ∆i restricted to an orthogonal distance of
at most µ/4 to the edges of ∆i, see Fig. 4. We distinguish
two cases: the motorcycle mi (i) did crash or (ii) did not
crash until time µ/4. However, in both cases the corner
points of these restricted feasible areas are contained
within si +Dµ, the restricted feasible areas are convex
and si+Dµ is convex. Hence, the wavefronts of ∆i until
time µ/4 are contained within si +Dµ. �

We denote by −→si the ray starting at pi in direction vi
and define

L := max
1≤i,j≤n

d(pi,
−→si ∩ −→sj ). (2)

Note that we may only consider indices i, j for which
−→si ∩−→sj is not empty. If no such indices i, j exist then we
set L to zero. Further, let us denote by ϕi,j ∈ [0, π] the
non-oriented angle spanned by vi and vj , with ϕi,j =
ϕj,i. Next we define

Φ := min
1≤i<j≤n

R+ ∩ {ϕi,j , π − ϕi,j}. (3)

If this set it is empty, i.e. if all motorcycles are driving
on parallel tracks, then we set Φ := π/2.

Lemma 4 Let mi denote a motorcycle crashing into
the motorcycle mj. The wavefronts of ∆i do not cause
a split event for uj until time µ/4 for λ ≥ 2

mink |vk| sin Φ .

Proof. We note that λ ≥ 2
|vk| sin Φ holds for any 1 ≤

k ≤ n which means that

sinαk ≤
1

|vk|λ
≤ 1

2
sin Φ ≤ sin

Φ

2
,

since sin is concave on [0, π]. By further noting that sin
is monotone on [0, π/2] we see that

αk ≤
Φ

2
∀ 1 ≤ k ≤ n.

The case where mj also crashes into mi is excluded
since two motorcycles do not crash simultaneously by
assumption. The cases where si and sj are collinear
are either trivial or excluded by assumption. Without
loss of generality, we may assume that si is right of −→sj ,
see Fig. 5. We denote by q the endpoint of the reflex
straight-skeleton arc incident to pi. Let us consider the
left (resp. right) bisector between the left (resp. right)
arm of mi and the right arm of mj , starting from q.

From the proof of Lem. 3 it follows that in order that
uj is involved in a split event with a wavefront from
∆i until time µ/4 it is necessary that one of both bisec-
tors intersects −→sj . (Check Figure 4: The two additional
motorcycles from ∆i stay within pi + Dµ. Hence, we
only have to consider the arms of mi.) Let us consider
the right bisector. Recall that αi, αj ≤ Φ/2 and that
π − ϕi,j ≥ Φ. In the extremal case, where equality is
attained for all three inequalities, the right bisector is
just parallel to sj , but strictly right of −→si . In all other
cases the bisector rotates clockwise at q such that our
assertion is true in general. Analogous arguments hold
for the left bisector. Summarizing, the vertex uj does
not lead to a split event with the wavefronts of ∆i until
time µ/4. �
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Figure 5: The wavefronts of ∆i do not cause a crash
with uj .
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Lemma 5 Let mi denote a motorcycle crashing into
the motorcycle mj. For any ε > 0 and

λ ≥ 1

mink |vk| · sin Φ
·max

{
2,

L

min{µ/4, ε}

}
,

the trace si is covered up to a gap size ε by the reflex
arc traced out by ui.

Proof. We will prove the following: consider an arbi-
trary point q on si whose distance to the endpoint of si
is at least ε. Then we show that q is reached by ui until
time µ/4.

Consider Fig. 6. We first show that until time µ/4 the
vertex ui may only cause a split event with the wave-
fronts of ∆j . By Lem. 3, we know that until time µ/4
only the wavefronts of a triangle ∆k could cause a split
event with ui if sk and si intersect. Hence, mk crashed
against si. However, by Lem. 4 it follows that ui does
not lead to a split event with the wavefronts from ∆k.

W.l.o.g., we may assume that si lies right to −→sj . To
show that ui reaches q until time µ/4 it suffices to prove
that q has a smaller orthogonal distance to the left arm
of mi than to the right arm of mj and that the orthog-
onal distance of q to the left arm of mi is at most µ/4.

The orthogonal distance of q to the left arm of mi is
at most L · sinαi. The orthogonal distance of q to the
right arm of mj is at least the orthogonal distance of
q to sj . However, this distance is at least ε · sinϕi,j .
Summarizing, our assertion holds if

L · sinαi ≤ min{µ/4, ε sinϕi,j},

which is

λ ≥ L

|vi| ·min{µ/4, ε sinϕi,j}
.

However, our choice for λ fulfills this condition. The
case where sj and si are collinear such that mi crashes

< L

L · sinαi >

ε ≤
q

ε sinϕi,j ≤

ϕi,j

pi

pj

si

sj

αi

Figure 6: The point q has a smaller orthogonal distance
to the left arm of mi than to the right arm of mj .

at pj is similar. The wavefront of ∆j reaches q at least
in time ε/2 and vi reaches q in at most L

λ|vi| time. �

Let us define by S∗λ(m1, . . . ,mn) ⊂ S(G) the union
of the reflex straight-skeleton arcs which emanate from
p1, . . . , pn, where G is given as described above. Then
we get the following corollary of Lem. 5.

Corollary 6

lim
λ→∞

S∗λ(m1, . . . ,mn) =M(m1, . . . ,mn)

This corollary also asserts that a point q on a motor-
cycle trace si of a motorcycle mi that never crashed is
covered by an arc of S∗λ(m1, . . . ,mn) for large enough λ.
However, this is easily proved by applying Lem. 3 and
Lem. 4, and by finally finding λ large enough such that
the point q is reached by ui until time µ/4.

3 Computing the motorcycle graph

In order to actually compute the motorcycle graph
M(m1, . . . ,mn) from S∗λ(m1, . . . ,mn) for some big λ,
we still have to cope with the remaining gaps within
S∗λ(m1, . . . ,mn). For deciding whether a motorcycle mi

actually escapes or crashes into some trace sj we want
to determine λ large enough such that the following two
conditions hold:

• If mi crashes into a trace sj then ui leads to a split
event until the time µ/4 and the reflex arc traced
out by ui has an endpoint in a straight-skeleton
face of an edge of ∆j . (The right arm of mj if si is
right of −→sj and the left arm if si is left of −→sj .)

• If mi escapes then ui did not lead to a split event
until the time µ/4.

Lemma 7 Consider S(G) with

λ ≥
max

{
2, 8L

µ

}
mink |vk| · sin Φ

.

Then mi crashes into sj if and only if ui leads to a
split event with a wavefront emanated by ∆j until time
µ/4. In particular, mi escapes if and only if ui does not
lead to a split event until time µ/4.

Proof. We distinguish two cases. First, suppose that
the motorcycle mi crashed into the trace sj , see Fig. 7.
We may assume without loss of generality that si is
right of −→sj . First we note that by our choice of λ we
may apply Lem. 3. We denote by p the intersection
si ∩ sj . Further, we set ε := µ/8 which allows us to
apply Lem. 5 since

max

{
2,

8L

µ

}
≥ max

{
2,

L

min{µ/4, ε}

}
.
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Figure 7: The reflex wavefront vertex at pi is forced to
cause a split event until time µ/4.

Thus, the endpoint q of the reflex arc traced out by ui
has a distance of at most µ/8 to p.

On the other hand, uj reaches p in at most L
λ|vj | time.

We conclude that the wavefront edge from the right
arm of mj reaches q in at most L

λ|vj | + µ
8 time which

is bounded from above by

L · µ ·mink |vk| · sin Φ

8 · L · |vj |
+
µ

8
≤ µ

4

by our choice of λ. Summarizing, the point q is swept by
the wavefront of the right arm of mj and is reached by
ui until µ/4 time. Hence, the vertex ui must have caused
a split event until the requested time by crashing into
the wavefront of the right arm of mj .

For the second case assume that mi escapes. Lem-
mas 3 + 4 imply that ui does not lead to a split event
until time µ/4. �

In order to compute the motorcycle graph by em-
ploying a straight skeleton algorithm, we would have
to compute the appropriate values for L,Φ, µ in order
to determine a sufficiently large λ. While L and Φ are
already given independent of M(m1, . . . ,mn), the fol-
lowing lemma gives a formula for µ for which the actual
motorcycle graph is not needed to be known. (In the
following lemma we take d(−→si , ∅) to be infinity.)

Lemma 8 For any two disjoint motorcycle traces si
and sj the Minkowski sums si + Dµ and sj + Dµ are
disjoint if

µ :=
1

3
min

1≤i,j,k≤n
R+ ∩ {d(−→si , pj), d(−→si ,−→sj ∩ −→sk)}.

Proof. In order to guarantee that the Minkowski sums
are disjoint, it suffices to set µ to a lower bound of a
third of the minimum of all pairwise infimum distances
of disjoint traces si and sj .

Let us consider two disjoint traces si and sj . We
choose two points qi ∈ si, qj ∈ sj for which d(si, sj) =
d(qi, qj) holds. We may assume that either qi is an end-
point of si or qj is an endpoint of sj . (If sk is a ray,

the only endpoint is pk.) If qj is the start point of sj
then we have d(si, sj) = d(si, pj) ≥ 3µ. If qj is the op-
posite endpoint of sj — and hence sj is a segment —
then sj crashed into some other motorcycle trace. So
there is a trace sk such that qj = sj ∩ sk. Again we get
d(si, sj) = d(si, qj) ≥ 3µ. Analogous arguments hold if
qi is an endpoint of si. �

After computing appropriate values for L,Φ and µ
for a set of motorcycles m1, . . . ,mn, we can determine
a sufficiently large λ and build the input graph G by
constructing the triangles ∆1, . . . ,∆n as described. Af-
ter computing the straight skeleton S(G) we determine
the length of each motorcycle’s trace by applying the
conditions listed in Lemma 7.

4 Constructing the straight skeleton is P-complete

Atallah et al. [3] described a framework for reductions of
the P-complete Planar Circuit Value problem and
used it to prove the P-completeness of several geometric
problems. However, investigating the P-completeness of
geometric problems often requires the availability of ex-
act geometric computations which are not in NC. In or-
der to investigate the P-completeness of geometric prob-
lems Attalah et al. [3] propose that the answers to basic
geometric queries are provided by an oracle.

A basic building block for showing that the straight
skeleton is P-complete is the construction of the trian-
gles ∆i. Assume pi, αi, vi, µ, and λ are given. We fur-
ther assume that an oracle determines the intersection
points of two circles with given centers and radii. Then
we can construct ∆i as follows. We first compute the
point qi = pi + λvi, which is the position of mi at time
one, see Figure 3. Then we construct the circle C1 with
[pi, qi] as diameter and the circle C2 centered at pi with
radius 1. The two circles C1, C2 intersect at two points,
say ai, bi. The triangle ∆∗i with vertices ai, bi, qi is an
isosceles triangle with angle 2αi at qi and therefore sim-
ilar to ∆i. The length of the arms of ∆∗i at qi are at
most λ|vi|. By scaling the triangle by the factor µ/2λ|vi|
and by translating it accordingly, we get a triangle with
the desired geometry. (Actually, the arms of the con-
structed triangle are a bit shorter than µ/2, but this is
only to our advantage.)

Eppstein and Erickson [5] proved that the computa-
tion of the motorcycle graph is P-complete by presenting
a LOGSPACE reduction of the Circuit Value problem
to the computation of the motorcycle graph. The Cir-
cuit Value problem asks for the output value of a gate
in a binary circuit with n input gates, which is presented
an input vector of binary values. Eppstein and Erick-
son demonstrated how to translate the Circuit Value
problem to the motorcycle graph construction problem
by simulating each gadget using motorcycles. The val-
ues 1 and 0 on a wire are represented by the presence
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or absence of a motorcycle on a track. The original
question for the output value of a particular gate of
the circuit can be translated to the question whether
a specific motorcycle crashes until some distance from
its start point. In other words, Eppstein and Erickson
proved that the decision problem whether a specific mo-
torcycle crashes until some distance from its start point
is P-complete.

Lemma 9 The construction of the straight skeleton
of a planar straight-line graph is P-complete under
LOGSPACE reductions.

Proof. Eppstein and Erickson reduced the Circuit
Value problem to a specific motorcycle graph problem.
The next step is to reduce the motorcycle graph prob-
lem to the straight-skeleton problem: we construct a
suitable input graph G which allows us to apply Lem. 7
for deciding whether a specific motorcycle crashes until
some distance from its start point.

According to [5] all O(1) different types of motorcycle
gadgets are arranged in an n× n grid, and each gadget
takes constant space and consists of O(1) motorcycles.
For determining a sufficiently large λ we need bounds
on L,Φ and µ. An upper bound on L is the length of
the diagonal of the n×n grid. Further, sin Φ ≥ 1/2 since
the direction angles of the motorcycles are all multiples
of π/4. A lower bound on µ can be found by consid-
ering each gadget independently and taking the mini-
mum among them. Finally, we build G by constructing
for each motorcycle (independently from each other) an
isosceles triangle, as described in Section 2. �

We can easily extend the construction of G to form a
polygon with holes, by adding a sufficiently large bound-
ing box to G. As remarked in [5], only one motorcycle
m may leave the bounding box B of the n×n grid. The
motorcycle m encodes the output of the binary circuit
by leaving B if the circuit evaluates to 1 and by crashing
within B if the circuit evaluates to 0.

By Lemma 7, the reflex wavefront vertex u, which
corresponds to m, encodes the output of the binary cir-
cuit by leading to a split event until time µ/4 if and only
if the circuit evaluates to 0. Lemma 3 implies that the
wavefront vertices stay within B +Dµ, except possibly
u. Hence, we could enlarge B by 2µ at each side and
add it to G such that the wavefronts of B do not inter-
fere with the wavefronts of the triangles until time µ/4,
except for u. Still, we can determine the output of the
binary circuit by checking whether the reflex straight-
skeleton arc that corresponds to u ends within B +Dµ

until time µ/4. (Recall that the end of a reflex straight-
skeleton arc marks the place where the reflex wavefront
vertex led to a split event.)

Corollary 10 The construction of the straight skeleton
of a polygon with holes is P-complete under LOGSPACE
reductions.

Unfortunately, our P-completeness proof cannot be
applied easily to simple polygons. Consider the five
motorcycles depicted in Fig. 8. A polygon, whose reflex
straight-skeleton arcs would approximate the motorcy-
cle traces, would need to connect the start points of m
and m1, . . . ,m4. But in order to decide where the red
square formed by the traces of m1, . . . ,m4 can be pen-
etrated by the polygon, while avoiding to stop a motor-
cycle too early, it would be necessary to know a specific
pair mi,mj of motorcycles such that mi is guaranteed to
crash into the trace of mj . However, deciding whether
a specific motorcycle crashes does not seem much easier
than computing the whole motorcycle graph. Hence,
it remains open whether the computation of straight
skeletons of polygons is P-complete.

m

m1

m2 m3

m4

Figure 8: These motorcycle traces cannot be approxi-
mated easily by a straight skeleton of a simple polygon.
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