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Abstract

We present a novel approach for distributed orthogonal
range search on a set ofN points stored on n nodes. The
non-redundant rainbow skip graph [Goodrich et al [12]
is used to coordinate message passing among nodes. We
show that the maximum number of levels L in such a
graph is L = W (n ln 2)/ ln 2, where W is the lambertW
function. Experimental validation is performed using
24 nodes, with N = 2.4 × 107 points distributed in a
uniform random fashion in a [0, 1]2 space. Each node
stores an equal number of points, with the distribution
of points among nodes controlled by point x coordinates.
The experiments were implemented using the Message
Passing Interface (MPI) communication model running
on a high performance computer cluster. Our results
show that the expected number of messages required to
answer a point query originating from any node matches
the theoretical bound of Θ(log n) messages.

1 Introduction

We wish to preprocess a set S of N points into a data
structure, so that for an axis aligned rectangle range
query γ, the points in S ∩ γ can be reported or counted
efficiently [3]. Increased reliability arises if multiple
copies of the data are stored in multiple locations. In ad-
dition, increased flexibility (e.g. for access control) can
arise for data maintenance by different organizations at
each of the different locations. Distributed data struc-
tures are useful in these settings.
The performance measure of a data structure is re-

lated to the model of computation in which it is defined.
Range search complexity is the number of memory ac-
cesses in the RAM and pointer-machine models, and
the number of I/Os in the I/O model [3]. In the dis-
tributed computing model it is assumed that the cost of
sending a message is higher than the cost of an I/O, so
the number of messages exchanged when answering a
query becomes the complexity measure.
For the last four decades, orthogonal range search was

and continues to be one of the most important prob-
lems in data structures, and many people worked on it
[10]. The most efficient data structure for worst case
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2-dimensional range queries in the RAM model is a
modified version of the layered range tree, described by
Chazelle [6]. Chazelle succeeded in improving the stor-
age to O( N logN

log logN ) with query time of O(logN + k), for

k points reported in range. Chazelle [7, 8] also proved
that this time and space bound are optimal in the worst
case. Arge et al [4] provided a two dimensional I/O-
efficient structure for general range searching which oc-

cupies O(NB
log(N/B)
log log

B
N ) disk blocks and answers queries

in O(logB N + T
B ) I/Os, which are optimal in the worst

case. Afshani et al [2] presented a space optimal pointer
machine data structure for 3-d orthogonal range report-
ing that answers queries in O(logN + k) time.

None of these optimum solutions considers a dis-
tributed model where reducing node congestion and
improving fault tolerance are important. Sridhar et.
al. [18] presented a parallel algorithm to report the
in-range set of points in a rectangular range-search in
O(logN) time, withO(log2 N) processors on an EREW-
PRAM model (Exclusive-Read-Exclusive-Write Parallel
Random Access Model). A shared memory model pre-
sented by Sridhar et. al. [18] can be used in a network,
but they did not consider fault tolerance and reliability
because their model is for a single machine with multi-
ple processors. Hash functions do not preserve the or-
der of keys and methods like Chord [19] and CAN [17]
which use distributed hash tables (DHT) are good for
lookup (single point) queries. Aspnes and G. Shah [5]
have presented a distributed data structure which sup-
ports range queries along single atribute 1-D. However,
the Skip Graph stores log n pointers for each node and
asigning one point to each node requires n log n space
which is not practical.

For range search using a distributed model, the basic
idea is to divide S into n subsets (maybe with overlap)
and to distribute them among n nodes. Each one of
these nodes can be a representative of a host in a phys-
ical network. Generally, in a distributed data structure
each node has a key (or name) m and an address a (like
an IP address), so a pointer to a node is a pair (m, a).
A lookup query in these data structures can be inter-
preted as “What is the address of the node that has the
key m?”. In the case of range search, the question is a
bit different; i.e. “What are the addresses of the nodes
storing points intersecting with the range query γ?”. We
would like to find the answer to this question by send-
ing the minimum number of messages. The query can
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be issued from any node u among the n nodes. Once
the destination nodes are found, within-node search can
be performed using e.g. an I/O-efficient data structure
supporting range search.
Many distributed data structures have been presented

for general applications in a distributed model. The skip
graph [5], family tree [20] and rainbow skip graph [12]
are a few of them. Zatloukal and Harvey [20] use a
modified SkipNet [15] to construct a structure they call
the family tree, achieving O(log n) expected messages
for search and update, while restricting required space
(number of stored pointers) for each node to be O(1),
which is optimal.
Goodrich et al [12] presented a peer-to-peer data

structure called the rainbow skip graph that achieves
high fault-tolerance, constant-sized nodes, and fast up-
date and query times for ordered data. In this paper, a
non-redundant rainbow skip graph [12] is used for rout-
ing purposes.

2 Our Results

We utilized the non-redundant rainbow skip graph to
implement an orthogonal range search structure. To
our knowledge, this is the first implementation of this
routing data structure for range search on spatial data.
In this data structure, the cost of search is independent
of the query issuer. Our experimental results support
this statement. We prove that the maximum number

of levels in a rainbow skip graph is L = W (n ln 2)
ln 2 where

W is the lambertW [9] function and n is the number of
nodes in the non-redundant rainbow skip graph [12].

3 Data Structure and Search Algorithm

3.1 Non-Redundant Rainbow Skip Graphs

A skip graph [5] is a distributed data structure which
consists of skip lists [16]. It has all the functionality of a
balanced tree in a distributed system and its algorithms
for insertion and deletion are the same as a skip list
(see Figure 1). The search algorithm in a skip graph
is almost the same as searching a skip list. The main
difference is that every node is in every level of a skip
graph.
To implement a distributed orthogonal range search

data structure, a non-redundant rainbow skip graph is
used because it provides all the features necessary for a
general purpose peer–to–peer data structure. Based on
the Goodrich et al [12] definition, a non-redundant rain-
bow skip graph on n nodes consists of a skip graph [5]
on Θ( n

logn ) supernodes, where a supernode consists of

Θ(log n) nodes that are maintained in a doubly-linked
list called the core list of the supernode. As explained in
the next section, Θ(log n) is not the optimum size of su-
pernodes. The keys of the nodes of each supernode are

Figure 1: An example of skip graph from [11]. The
levels are separated by dashed lines.

a contiguous subsequence of the ordered sequence of all
keys. The smallest key of each supernode V is referred
to as the key of V , and the skip graph is defined over
these keys. For each supernode V , a different member of
V is associated with each level i of the skip graph, and
this member is the level i representative of V , which is
denoted as Vi. The level i list to which V belongs con-
tains Vi. These lists of the skip graph are called the level
lists. Vi, which can be chosen arbitrarily from among
the elements of V , is connected to Vi+1 and Vi−1, which
respectively are called the parent and child of Vi. These
vertical connections form another linked list associated
with supernode V that is referred as the tower list of
V . Each supernode has one tower list. Each element of
a supernode is a member of at most three lists; the core
list, the tower list, and one level list. Figure 2 shows a
rainbow skip graph created over the same data shown
in Figure 1. For example, to search for the key 19 from
node 2, nodes 2, 5, 22, 16, 27, 16, 22 are visited to find
that key 19 is not in the graph.

Figure 2: Nine nodes are grouped into four supernodes
to create a rainbow skip graph with two levels and four
tower lists.

3.2 Supernode Size

Lemma 1 Considering that a node cannot be in multi-
ple level lists, the maximum number of levels for a non-
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redundant rainbow skip graph with n nodes is when the
size of all supernodes are equal to the number of levels.

Proof. A non-redundant rainbow skip graph is the re-
sult of creating a skip graph from supernodes (groups
of nodes) with each supernode belongs to many level
lists. There are two constraints: First, at each level i a
different member of a supernode is the supernode rep-
resentative Vi in that level, and a supernode cannot be
a member of level i + 1 if it is not a member of level
i. If the number of nodes in a supernode is less than
the number of levels in the skip graph, this supernode
cannot be in all the levels.
As the second constraint, the number of supernodes

is n
|V | and the number of levels is related to the number

of supernodes. Therefore the number of levels log2
n
|V |

is related to size of the supernodes. If |V | goes up, the
number of levels goes down.
Therefore, the number of levels is always the minu-

mim of |V | and log2
n
|V | (see Figure 3). �

Figure 3: Relationship of the size of supernodes |V | and
number of levels L when n = 24.

Theorem 2 The maximum number of levels L for a
non-redundant rainbow skip graph is

L =
W (n ln 2)

ln 2
(1)

where n is the number of nodes and W is the lambertW
function which is the inverse function of z = WeW .

Proof. When every node is a member of a level list,
there is no node that is just in the core list of its supern-
ode. In other words, to maximize the value of L from
Lemma 1, the size of supernode V and the number of
levels L should be equal. Such a rainbow skip graph
has L levels and each of its supernodes has L members
as their level representative. Consequently, there are 2L

supernodes with a size of L. As a result, the number
of all nodes is L × 2L = n. Solving this equation for L
gives the value for n which is based on the lambertW [9]
function shown in equation (1). �

3.3 Data Distribution

Routing in the non-redundant rainbow skip graph re-
quires a set of keys having a total order relation. Having
a total order relation [13] on the set of keys makes it pos-
sible for each node to determine whether the requested
node of a query is one of the successor or predecessor
nodes without knowledge about the whole data struc-
ture. Therefore, each node can route the received query
message in the correct direction.

Figure 4: A distribution of a 2D space among 5 nodes.
The hatched area is a rectangular query. Also, the lower
and upper bounds L2 and U2 of the second node region
are labelled.

To use the non-redundant rainbow skip graph, the en-
tire space must be split into regions in such a way that
a total order binary relation [13] (here denoted by ≤) is
definable on this set of regions. The simplest distribu-
tion is splitting points based on one of their coordinates
(e.g. x) which is shown in Figure 4. For example, a
suitable key for the presented distribution in Figure 4
can be m(Li, Ui) where i is the node number, and Li

and Ui are the lower and upper x coordinate bounds of
node region, respectively. In this way, the key set has a
total order based on the x coordinate.

In orthogonal range search, if a point is not in the
query range in one dimension, its coordinate value (in
that dimension) is either greater or lower than all the
points in the query range. As the distribution of points
is based on one dimension, if the query range has in-
tersection with nodes i − 1 and i + 1, it has intersec-
tion with node i for sure. Consequently, having the
address of node i whose region intersects the query
γ([Lx, Ux], [Ly, Uy]), node i − 1 should be checked too
unless Li ≤ Lx ≤ Ui and node i + 1 should be checked
unless Li ≤ Ux ≤ Ui.
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3.4 Range Search

We created a non-redundant rainbow skip graph using
the lower bound of each node region as its key. The
rainbow skip graph normal routing algorithm is used
to find the node whose region covers Lx. In order to
answer a query γ([Lx, Ux], [Ly, Uy]) from node u, the
rainbow skip graph search algorithm [12] is used to find
the node that stores the lower bound of γ. First we find
the top level representative of the supernode of node u.
Then, by a standard skip graph [5] search, we find the
supernode whose key (x lower bound) is the maximum
key lower than Lx. The next step is performing a linear
scan through the core list to find the first node that
stores points in range query γ. Then, this node reports
the points to u (the query issuer) and passes the query
to its successor node if the upper bound of the query
(Ux) is outside its region; the next node does the same.
Each of these steps (except the reporting part) requires
O(log n) messages, then the complexity of point search
using the non-redundant rainbow skip graph is O(log n)
messages.
In the distributed computing model, the notion of

failed nodes is important. If no messages are received
in response to a query, we assume the nodes intersecting
the query range have failed. In the worst case, a query
intersects all n regions, but finds no points in range. A
message indicating this empty set is required at each
queried node. This leads to O(n) messages for range
search on a set of N points distributed on n nodes of
a non-redundant rainbow skip graph. The same worst
case search complexity holds if k > 0 and we assume
O(1) messages can hold the k points reported in range.

4 Experimental Validation

To test this data structure, 2.4 × 107 two dimensional
points drawn from a uniform random distribution ∈
[0, 1]2 are distributed based on their x coordinate among
24 nodes. Therefore each node covered around 4% of the
whole area. Around 2,400 queries (see Figure 6) were
randomly generated such that:

- query center (xi, yi) ∈ [0.1, 0.9]2

- lower bound (xL, yL) = (xi, yi)− (∆xi,∆yi)

- upper bound (xU , yU ) = (xi, yi) + (∆xi,∆yi)

- ∆xi and ∆yi are uniform random ∈ [0.0, 0.1]

The experiments used the Message Passing Interface
[14] (MPI) on the Atlantic Computational Excellence
Network [1](ACEnet). Figure 5 shows the implemented
data structure. This structure consists of three levels
and each supernode has 3 nodes which are its repre-
sentatives in different levels. Notice that in this figure,
levels are shown by different dashed lines for their links.

Figure 5: The rainbow skip graph which is used for
experimental validation. Level lists are shown by curved
lines. There are 8 supernodes, each containing three
nodes.

As the tower list is exactly the same as the core list,
the maximum number of connections for each node is
4. The program uses 25 slots, the first one (index 0) as
the test harness and the rest as the nodes. Node 0 ran-
domly sent commands for issuing queries to nodes and
collected the data. We made the simplifying assump-
tion that messages are big enough for nodes to report
back all the points in their intersection with γ in one
message.

Figure 6: The center and size of query rectangles are
generated from a uniform random distribution function.

As shown in Figure 7, each query was answered by
passing an average of 13 messages through the network,
with the number of passed messages averaging no more
than 16 and no less than 11.
Figure 8 and 9 show two graphs representing the re-

lationship between query cost and size of query rectan-
gles. Each dot in figures 8- 11 represents one of the
2,400 range query results. As expected, the number of
messages is independent of the height of query rectan-
gles because each node covers the height of the total
area. The cost for responding to queries rises linearly
with increasing query rectangle width.
As shown in Figure 10, the query cost is from 1 to

24 messages when the area of the query is small (see
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Figure 7: The average number of messages for answering
queries issued from each node.

Figure 8: The number of messages for answering queries
is not related to the height of query rectangles. The
black line is a linear trendline for the number of mes-
sages.

Figure 9: Number of messages increases linearly with
increasing query rectangle width. The black line is a
linear trendline for the number of messages.

Figure 10). The maximum messages arising on the left
of Figure 10 is high as a very thin horizontal query
rectangle requires a lot of message passing to answer
even if it has a relatively small area.

The maximum cost of queries with aspect ratio less
than one is lower than the queries with aspect ratio >
1 (see Figure 11). There is a higher probability for low

Figure 10: Number of messages increases with growth
of the query size since the size is dependent on query
width. The black line is a linear trendline for the num-
ber of messages.

aspect ratio query rectangles to have a smaller width
and thus intersect with fewer node regions.

Figure 11: Number of messages rises linearly with in-
creasing query rectangle aspect ratio.

5 Simulation

We performed a simulation of the performance of the
non-redundant rainbow skip graph for n = 24, 36, 48,
64, 80 and 96. The results are shown in Figure 12. The
average cost to find the first node in range corresponds
to a point search issued from any node. As Figure 12
shows, a point search costs < 2 log2 n messages, which
matches the expected number of messages reported in
[12]. Figure 12 also shows the average cost that includes
messages sent to report the points in range.

6 Conclusion

The aim of using a distributed model for orthogonal
range search is to provide reliability, flexibility and ro-
bustness to the data structure. In this paper we pre-
sented a novel approach for distributed orthogonal range
search using the non-redundant rainbow skip graph.
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Figure 12: Average number of messages to answer one
query based on the number of nodes.

We proved that the maximum number of levels in a
non-redundant rainbow skip graph occurs when the
size of each supernode is equal to number of levels.

The maximum number of levels L = W (n log 2)
log 2 . We

also showed experimentally that a point search cost re-
quires Θ(log n) messages, which matches the expected
results in Goodrich et al [12]. The experimental results
showed that distributed range search cost using the non-
redundant rainbow skip graph was independent of which
node issued the query. In addition we showed that the
number of messages required to answer a range query
increased linearly with increasing query rectangle width.
It remains to determine the optimum size of a supern-

ode in the non-redundant rainbow skip graph such that
the number of messages passed to answer a range query
is minimized.
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